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Abstract

Renormalization group flow equations for scalar λΦ4 are generated using smooth
smearing functions. Numerical results for the critical exponent ν in d = 3 are cal-
culated by polynomial truncation of the blocked potential. It is shown that the con-
vergence of ν with the order of truncation can be improved by fine tuning of the
smoothness parameter.

1 Introduction

The Renormalization Group (RG) is a powerful tool for investigating nonperturbative
physical phenomena [1]. Through the continuous elimination of degrees of freedom, RG
provides a systematic resummation of the perturbative series and yields information about
the nonperturbative nature of the system. However, the power of RG relies on the existence
of efficient analytic and computational methods since the full RG equation cannot be
solved exactly. The goal in this contribution is to show how the approximate RG can be
optimized to improve the nonperturbative calculations.

For a field theoretical system a continuous RG transformation can be realized by in-
troducing a smearing function ρk(x) which governs the coarse-graining procedure [2]. The
scale k acts as an effective IR cutoff that separates the low- and high-momentum modes.
Using this smearing function an averaged blocked field can be defined as

φk(x) =
∫

y
ρk(x−y)φ(y). (1.1)

The modified propagator becomes ∆k(p) = ρ̃k(p)/p2, where ρk(p)+ ρ̃k(p) = 1. By varying
the blocked action S̃k[Φ] infinitesimally with k, we obtain the following RG equation [3]:

k
∂S̃k

∂k
= −1

2
Tr

ρ̃−1
k

(
k
∂ρ̃k

∂k

) (
1 +

ρ̃k

p2

δ2S̃k

δΦ2

)−1
 . (1.2)

A reliable method for approximating S̃ is the derivative expansion [4]:

S̃k[Φ] =
∫

x

{
Zk(Φ)

2
(∂µΦ)2 + Uk(Φ) +O

(
∂4

)}
, (1.3)
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where Zk(Φ) and Uk(Φ) are, respectively, the wave function renormalization and the bloc-
ked potential. At leading order where Zk(Φ) = 1, the low-energy effective action is de-
scribed solely in terms of Uk(Φ) [5]. This local potential approximation (LPA) results in
the following flow equation:

k
∂Uk(Φ)

∂k
=

1
2

∫
p

(
k
∂ρ̃k(p)
∂k

)
U ′′

k (Φ)
p2 + ρ̃k(p)U ′′

k (Φ)

=
Sdk

d

2

∫ t(z=∞)

t(z=0)

dt zd(t)Ū ′′
k (Φ)

z2(t) + (1− t)Ū ′′
k (Φ)

,

(1.4)

where t = 1− ρ̃k(p), Sd = 2/(4π)d/2Γ(d/2), z(t) = p(t)/k and Ū ′′
k (Φ) = U ′′

k (Φ)/k
2.

Clearly, the form of the RG equation for Uk(Φ) depends on the choice of ρk(p). However,
according to the universality principle the shape of ρk(p) should not influence the physics
of finite length scales; so long as the effective action contains all marginal or relevant
operators the resulting RG flow must be scheme independent. This indeed holds at leading
order in the derivative expansion. On the other hand, universal properties of the system
may vary when they are determined in the vicinity of the fixed point of the truncated
equation given in Eq. (1.4).

2 Smooth cutoff functions

The smooth smearing functions considered here are

(i) ρk,ε(p) =
1
2

[
1 + tanh

(
k2 − p2

pkε

)]
,

(ii) ρk,b(p) = e−a(p/k)b
,

(iii) ρk,m(p) =
1

1 + (p/k)m
.

(2.1)

They approach Θ(k − p) as the smoothness parameter σ(ε, b,m) tends to zero. For the
general case of a smooth cutoff, it is difficult to obtain a non-truncated solution, and we
circumvent the problem with polynomial truncation at order φ2M [6]:

Uk(Φ) =
M∑

�=1

g
(2�)
k

(2�)!
Φ2�, g

(2�)
k = U

(2�)
k (0) =

∂2�Uk

∂Φ2�

∣∣∣∣∣
Φ=0

. (2.2)

The remaining task is to solve a system of M integro-differential equations for the coupling
constants g(2�)∗, � = 1, . . . ,M .

Eq. (1.4) in dimensionless form reads:[
k
∂

∂k
− 1

2
(d− 2)Φ̄

∂

∂Φ̄
+ d

]
Ūk(Φ̄) = −

∫ 1

0
dt

zd(t)Ū ′′
k (Φ̄)

z2(t) + (1− t)Ū ′′
k (Φ̄)

, (2.3)

where Ūk(Φ̄) = ζ2k−dUk(Φ), Φ̄ = ζk−(d−2)/2Φ, ζ =
√
2/Sd =

√
(4π)d/2Γ(d/2), and η = 0.

To characterize the critical behavior of the theory, we must first identify all the fixed
points around which RG is linearlized. For a general smooth ρk,σ(p), the location of the
Wilson–Fisher fixed point will depend on σ.
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Figure 1. Critical exponent ν as a function of 1/ε using the hyperbolic tangent smearing function.
Results for four different levels of polynomial truncation are shown.

Around the fixed point(s), the theory exhibits scale invariance, i.e. ∂kŪ
∗
k = 0, and the

RG flow can be linearized by writing Ūk(Φ̄) = Ū∗(Φ̄)+ v̄(Φ̄)e−λlnk. We first determine the
fixed-point solution analytically in the sharp cutoff limit, which is then used as an initial
guess in our numerical root-finding subroutine for the smooth case. The smoothness of the
cutoff function is increased in small steps by decreasing the parameters. In this manner
we are able to track the solution associated with a physical fixed point from the sharp
cutoff limit to an arbitrary smoothness.

In Fig. 1 we plot the dependence of ν in d = 3 as a function of ε−1. We see that ν varies
by 2–5 % over the range shown. The variation would be greater had we taken ε−1 → 0.
The exponents in this limit are mean-field like, e.g., ν = 0.5. It is also interesting to
note that at each order in M there is a dip, or an extremum whose position changes only
slightly with M . The behavior remains qualitatively the same for the exponential and
power-law smearing functions.

3 Scheme dependence and optimization

Even though non-truncated solutions for the fixed-point potential Ū∗(Φ̄) can be obtained
in special cases [4], this is not possible in general. Any approximation inevitably brings
in scheme-dependent effects. Our results are seen to depend both on the order of trunca-
tion M as well as the smoothness parameter σ.

At order M we obtain M fixed-point solutions parameterized by the critical coupling
constants

(
g(2)∗, . . . , g(2M)∗), each having its own eigenvectors and eigenvalues which in



186 S-B Liao

2 4 6 8 10 12
M

0.5

0.55

0.6

0.65

0.7

0.75

ν

Sharp Cutoff
Power Law (m = 5.5)
Gaussian (b=3)
Tanh (ε = 0.82)

Figure 2. Critical exponent ν as a function of the level of polynomial truncation for all three
optimized smearing functions and the sharp cutoff.

turn can be used for calculating the critical exponents. However, only one of the solutions
corresponds to the Wilson–Fisher (WF) fixed point which is characterized by one relevant
operator, with the rest being irrelevant. Computational artifacts are induced with a poly-
nomial truncation of Ūk(Φ̄) [7, 4]. For example, as M is increased, numerous unphysical
fixed points are also generated. The salient feature of the WF solution is that it is stable
against an increase in M . Unphysical solutions will be sensitive to the higher order equa-
tions and their eigenvalues will fluctuate in an unpredictable manner. Another prominent
artifact of the polynomial truncation is the oscillation of the critical exponents with M
when a sharp cutoff is used.

Why can we not reproduce the exact critical exponent(s) by keeping only the renor-
malizable coupling constants? The main reason lies in that fact the that fixed point of the
truncated solution is applicable only up to the operators which have been neglected. At
the point which we call a “fixed point”, the would-be ignored set of irrelevant operators
does not vanish but continues to evolve. On the other hand, in the exact RG approach,
the fixed-point condition implies a complicated cancellation between different operators.

From Fig. 1, we see that ν clearly depends on σ. That is, because of the polynomial
truncation, physical results now depend on M as well as on σ. How can such dependence
be reconciled with universality? The key to the problem here again lies in the role played
by the irrelevant operators in the approximate solution. If we solve the RG equation for
the full theory and come down to the IR regime, the dependence on the initial condition
for the irrelevant operators must die out according to the universality hypothesis. The
explicit verification of this scenario by reaching the IR fixed point in principle requires
an infinite number of iterations. This is not what was followed in this work. Instead we
move close to the UV fixed point and a linearized RG prescription is utilized to deduce the
critical exponents and the corresponding scaling laws. Using the derivative expansion and
the polynomial truncation schemes gives the advantage of a readily accessible (approxi-
mate) fixed-point solution; however, we are no longer certain what the omitted irrelevant
operators do. The comparison with the exact RG can offer a direction of improvement in
our approximation.

We wish to choose the cutoff to be as smooth as possible in order to minimize the
generation of non-local, higher-derivative irrelevant interactions, as well as the order of
truncation M . For the three smearing functions discussed, there is an “optimal” value
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of σ for which ν converges most rapidly. As illustrated in Fig. 2, the optimal value for
the exponential function is found to be b = 3. Although there remains small oscillations,
we see a dramatic improvement in the convergence. In fact, the variation beyond M = 7
is only 1–2 %.

In general, as σ increases and more fast modes are being included in the loop integra-
tions, more cancellations between the effects of the irrelevant operators take place and the
theory moves closer to the true Wilson–Fisher fixed point found in the exact approach.
Nevertheless, when σ becomes too large and the resulting smearing function is too sharp,
non-local effects begins to set in and the theory drifts away from the true RG trajectory.
At σ = ∞ where the smearing function becomes a step function Θ(k−p), non-local effects
become maximal and LPA is no longer adequate. One must then include derivative oper-
ators to all orders in the blocked action S̃k[Φ] in order to arrive at a scheme-independent
result.

4 Summary and discussions

In the present work we have demonstrated how one can improve the convergence of critical
exponents calculated using polynomial truncations of the RG flow equation for the blocked
potential Uk(Φ). We find that there exists an optimal smoothness value which gives the
most rapid convergence as a function of M . This is due to the maximal cancellation of the
effects generated by the irrelevant operators in the blocked action. Our optimal smearing
functions yield ν = 0.65(5) forM ≥ 7 with a variation of 1–2 %. The convergence behavior
of the polynomial truncation scheme is intimately related to the non-truncated solution
of Ūk(Φ̄).
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