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Abstract

An integrable discretization of an inhomogeneous Volterra lattice is introduced. Some
aspects of dynamics of a soliton affected by a random force are discussed.

1 Introduction

One of the main tasks of a full discretization of nonlinear continuous evolution equations
is reproducing their behavior on a discrete level. In the case of integrable models there
exist several well elaborated methods of doing this. In particular one can explore the
discrete analog of the zero-curvature condition. However most of studies of particular
models have been restricted, so far, to homogeneous equations. Meantime taking time-
and coordinate-dependent coefficients into account is the natural extension of the theory as
it brings the nonlinear models closer to the reality. Moreover, as it has been shown already
in the first studies, where inhomogeneous integrable differential-difference equations were
introduced, such generalization can lead to qualitatively new phenomena (i.e. phenomena
which disappear in the continuum limit and in underline homogeneous models). For
example, it has been obtained in Ref. [1] that the linear force added to the Ablowitz–
Ladik (AL) model [2] results in oscillatory behavior of solutions. This does not happen
in the continuum limit, i.e. in the case of the nonlinear Schrödinger equation with the
linear force [3]. Later in Ref. [4] it has been argued that the mentioned effect has direct
analogy in the solid state physics — an electron in a crystal lattice — and that is why
it has been called Bloch oscillations (the discreteness of the nonlinear model corresponds
to the periodicity of a potential of the crystal lattice). The analogy between a soliton in
a discrete model and an electron in a crystal lattice has been found to be indeed deep
since it has been shown analytically [4] and numerically [5] that another phenomenon —
the dynamical localization — observed for electrons [6] is observed for solitons in of the
forced AL model, as well. (The mentioned phenomenon consists of spatial localization of
a soliton by a linear force which periodically depends on time with definite values of the
frequency.) Bloch oscillations are obtained also for a “dark” lattice soliton [7].
A remarkable fact is that the results found for integrable AL lattice qualitatively hold

also for nonintegrable, but having more wide physical applications, discrete nonlinear
Schrödinger equation, the so-called self-trapping, model [8].
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Integrable discretization of the inhomogeneous AL model has been proposed in [9].
Naturally, in a fully discrete model there appear new features of the soliton motion. As an
example we mention a set of periods of Bloch oscillations which depend on the discretiza-
tion step, and in particular, in order to be observable, require the step to be comensurable
with the period of oscillations in the continuum-time model.
Another inhomogeneous lattice, discussed in [10], is the forced Volterra model

v̇n+vn(vn−1−vn+1)−2γ(t)vn+(pn−pn+1)vn = 0, (1)

pnvn −pn+2vn+1 = 0, (2)

where γ(t) is an arbitrary real function of time and the dot stands for the derivative with
respect to time. A releant property of the model (1), (2) is that its continuum limit [10]
is the inhomogeneous Koreteweg-de Vries equation

vt −6vvx+ vxxx = f(t)

studied in [11] from the viewpoint of the effect of a stochastic force on soliton dynamics.
The aim of the present paper is to introduce an integrable discretization of (1), (2) and

discuss some properties of its one-soliton solution.
It is to be mentioned that the discretization of the homogeneous (pn = 0, f(t) = h−1)

Volterra model as well as to its generalizations, so-called Bogoyavlensky lattices, is well
known [12].

2 Discretization of the forced Volterra model

System (1), (2) can be included in the inverse scattering scheme if the respective spectral
parameter is allowed to depend on time, λ̇ = γ(t)λ. The last property makes the form
of lattice (1), (2) to be inconvenient for the purposes of the discretization. In order to
avoid this inconvenience we notice that the simple transformation vn(t) = v(t)un(t) where
v(t) = exp(2

∫ t
0 γ(t′)dt′), leads to the following system

u̇n+v(t)un(un−1−un+1)+(pn−pn+1)un = 0, (3)

pnun −pn+2un+1 = 0, (4)

which has a UV -pair with the spectral parameter independent on time [10]. Due to this
reason in the present paper we concentrate on discretization of model (3), (4) which is
subject to the boundary conditions as follows

lim
n→±∞ p(n, t) = p(t), lim

n→±∞u(n, t) = 1. (5)

It is to be mentioned here that further simplification of (3) can be achieved by trivial
renormalization of both time, t �→ ∫ t

0 v(t′)dt′ and pn, pn �→ v(t)qn, allowing one to eliminate
the explicit dependence on v(t). In practice, this however not always leads to simplification
of the problem, what happens for example in the case of stochastic perturbations: in that
case for computing average values one has to return to original parameters.
Assume now that the variable t is discrete with the discretization step h. Consider the

UV -pair as follows

Un =
(

λ un

−1 0

)
, (6)
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Vn =
(

f − ũncn −un [λcn+1 + pn+1/λ]
λcn + pn/λ f − ũn−1cn−1 + pn + cnλ

2

)
, (7)

where λ is independent on time spectral parameter, f ≡ f(t) is an arbitrary function of t
and tilde is used for the shift by h, e.g. ũn ≡ un(t + h). Then the discrete analog of the
zero curvative conditions

ŨnVn = Vn+1Un (8)

results in the following system of equations

f [ũn−un]+cnũn[ũn+1−un−1]+ũnpn−unpn+1 = 0, (9)

ũn−1pn−1−unpn+1 = 0, (10)

cn+1un − cnũn = 0. (11)

It is a straightforward algebra to verify that in the limit h → 0 (9)–(11) are reduced
to (2), (3) (in the last equation vn being expressed through un) if one chooses f(t) ≡ h−1

and cn ∼ v(t).
The discrete analog of boundary conditions (5) reads (p ≡ p(t) and c ≡ c(t) are arbitrary

functions of time)

lim
n→±∞ pn = p, lim

n→±∞un = 1, lim
n→±∞ cn = c. (12)

System (9)–(11) can be rewritten explicitly in a form of a map un �→ ũn. To this end
we notice that it follows from (10) and (11) that

cn = φunpnpn+1, (13)

where φ ≡ c/p2 is a function on time only. Then the map we are interested in takes the
form

ũn =
pn+2

pn
un+1 (14)

and pn is computed with help of the formula

f(un+1pn+2 − unpn) + un+1pnpn+2(φunun+2pn+3 + 1)

−unpnpn+1(φun−1un+1pn+2 + 1) = 0.
(15)

3 Soliton dynamics

Let us now concentrate on a one-soliton solution of (9)–(11). Recalling the well known
results on the inverse scattering technique applied to the Volterra lattice [13] we introduce
the transfer matrix T ≡ T (t) through the relation T−(n, t) = T+(n, t)T , where T±(n, t) is
a solution of the eigenvalue problem T±(n + 1, t) = UnT±(n, t) subject to the boundary
conditions lim

n→±∞T±(n, t) =MZn with Z = diag (1/z, z),M = I−zσ1, λ = z+1/z and σ1

being the Pauli matrix. Then the dependence of T on the discrete time is given by

T̃ = ATA−1, (16)
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where

A = diag
(
f + z2c+

p

1 + z−2
, f + z−2c+

p

1 + z2

)
.

Now we consider in details the case when the solution of discrete problem is reduced to
one-soliton solution of the inhomogeneous Volterra lattice [10]. To this end we put f ≡ h−1

(i.e. to be constant) and assume that the Cauchy problem is defined by “initial”conditions
given at t = 0 (generalization to the case t = t0 > 0 is straightforward). Then t = mh
where m is a nonegative integer, and we introduce the notation

µm(z) =

(
1 + hc(m)z2

) (
1 + z2

)
+ hp(m)z2(

1 + hc(m)z−2
)
(1 + z2) + hp(m)

, (17)

where c(m) ≡ c(mh), and p(m) ≡ p(mh). The dependence of the soliton solution on time
is then governed by the equation

b(m) =
m∏

l=1

µl(z1)b(0). (18)

Finally the soliton solution can be written down in the form [v(m) ≡ v(mh)]

vn = v(m) coshΘ
(m)
n+1 coshΘ

(m)
n−2

coshΘ(m)
n coshΘ(m)

n−1

, (19)

where

Θ(m)
n = −Kn−n0+F (m), (20)

F (m) =
1
2

m∑
l=1

ln
2

(
1 + hc(l)e−2K

)
cosh(2K) + hp(l)e−K

2
(
1 + hc(l)e2K

)
cosh(2K) + hp(l)eK

, (21)

K is a positive constant defining the soliton width and amplitude, and n0 is a constant
which plays a part of the initial position of the soliton (in what follows it will be taken
equal to zero).
As an example we consider application of integrable inhomogeneous discrete models

to study of effect of random forces on the soliton dynamics, which in general, i.e. in
nonintegrable cases, seems to be still an open question. Indeed, most of conventional
method of the theory of stochastical processes are not applicable here. Moreover, passing
to numerical simulations one meets new problems related to interplay of temporal scales
associated with random forces, i.e correlation radii, and with the discretization step. In
order to explain the last point let us assume that we are interested in soliton dynamics
subject to delta-correlated Gaussian noise p(t) (D is a constant):

〈p(t)〉 = 0, 〈p(t)p(t′)〉 = 2Dδ(t−t′). (22)

To this end one has to discretize the random force. In order to generate respective sequence
associated with the discretization of p(t) one introduces [14]

p(m) =
1
h

∫ (m+1)h

mh
p(t) dt (23)
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Figure 1. Dispersion of the trajectory of the soliton centre at (a) h = 0.01, K = 2; (b) h = 0.02,
K = 2; (c) h = 0.01, K = 1; and (d) h = 0.02, K = 1. In all the cases D = 0.1. Dashed
lines display the law Dt. In all the cases the mean values were computed over 40 realizations.
Pseudo-random sequences were obtained using MAPLE generators of random numbers distributed
according to the normal law.

and require

〈p(m)〉 = 0, 〈p(m)p(n)〉 = σ2δnm, (24)

where σ2 = 2D/h and δnm is the Kronecker delta.
However, as it is evident from the definition (23) strictly speaking the results of sim-

ulations with the discrete stochastic process defined by (24) must be interpreted as ones
corresponding to a random force with the correlation radius τ less that the step of the
discretization, τ < h, rather than to a process with the zero correlation radius. This be-
comes especially important for long term simulations and for cases of strong fluctautions,
i.e. large D. This is illustrated in Fig. 1, where we present typical results of numeriacal
simulations of the dynamics of the center of the soliton at initial stages affected by the
Gaussian noise. More specifically we present the dispersion Σ of the soliton center defined
as Σ = 〈(F (m) − F

(m)
0 )2〉 where F

(m)
0 is the position of the center of the soliton in the

absence of the random force, i.e. F
(m)
0 is given by (21) with all p(m) = 0. Comparing

Figs. 1a and c with Figs. 1b and d, correspondingly, one conclude that in the moving
frame the soliton displays the Brownian motion, i.e. Σ = Dt, as it must be in accordence
with the continuum model. The diffusion coefficient D however essentially depends on the
step of discretization. So in Figs. 1a and b one has D ≈ 0.25D0 and D ≈ 0.095D0, where
D0 =

(
tanh K

2K

)2 · D (≈) is the diffusion coefficient of the continuum model. The relation
D/D0 is almost unity already at h = 0.005. Decreasing of the soliton amplitude and
increasing of the soliton width results in more rapid convergence to the delta-correlated
process. In Figs. 1c and d the same force is applied to the soliton with K = 1. The
relation D = D0 is achieved already at h = 0.01 while at h = 0.02 we have D ≈ 0.4D0.
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