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Abstract

An influence of the quantum potential on the Chern–Simons solitons leads to quan-
tization of the statistical parameter κ = me2/g, and the quantum potential strenght
s = 1 − m2. A new type of exponentially localized Chern–Simons solitons for the
Bloch electrons near the hyperbolic energy band boundary are found.

1 Introduction

Extensions of the Schrödinger equation by the quantum potential non-linearity have been
considered in connection with several problems [1, 2, 3]:

a) to allow formally the diffusion coefficient of the stochastic process in a stochastic
quantization to differ from �/2m, related to the difference in the Plank constant or
the inertial mass;

b) to allow corrections from quantum gravity. Below we find exactly solvable cases
for 2 + 1 dimensional nonlinear Schrödinger (NLS) model interacting with Chern–
Simons field under the influence of the quantum potential, which could represent the
stochastically quantized anyons.

2 Self-dual solitons hierarchy

The Lagrangian of the modified Jackiw–Pi model [4]:

L =
κ

2
εµνλAµ∂νAλ+

i

2
(ψ̄D0ψ−ψD̄0ψ̄)−D̄ψ̄Dψ+s∇|ψ|∇|ψ|+g|ψ|4, (1)

where Dµ = ∂µ + ieAµ (µ = 0, 1, 2), includes an additional quantum potential term
with strenght s. In classical equations of motion for s < 1 we decompose ψ = eR−iS

and introduce new rescaled variables t = t̃/
√
1− s, S =

√
1− sS̃, A0 = (1 − s)Ã0,
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A =
√
1− sÃ. Then for the new function ψ̃ = exp(R − iS̃), we get the standard gauged

NLS

iD̃0̃ψ̃+D̃2ψ̃+
2g

1− s
|ψ̃|2ψ̃ = 0, (2)

but with rescaled κ̃ = κ(1−s)1/2, g̃ = g/(1−s). When the coupling constants are restricted
by the condition gκ/e2 =

√
1− s the static solutions require the self-dual Chern–Simons

equations with modified magnetic flux in the Gauss law

D̃−ψ̃ = 0, ∂1Ã2−∂2Ã1 =
e

κ(1− s)1/2
˜̄ψψ̃. (3)

Inserting A from the first equation into the second one we get the Liouville equation with
radially symmetric solutions

ρ(r) = 4
κ(1− s)1/2N2

e2r2

[(
r

r0

)N

+
(
r0
r

)N
]−2

, (4)

which would be regular if N ≥ 1. Then, from the regularity of the gauge potential A we
can fix the phase of ψ̃ = exp(R − iS̃) as S̃ = (N − 1)θ, θ = arctanx2/x1, and restrict N
to be an integer for single-valued ψ̃. However, the auxiliary function ψ̃ is not the physical
one, this is the reason that fixing an integer N is not sufficient for single-valuedness of
the original function ψ = exp

(
R− i(1− s)1/2(1−N)θ

)
. An integer valued must be the

product (1−s)1/2(N −1) = n, which requires an integer-valuedness of
√
1− s = m and as

the consequence of (5), we obtain the quantization condition gκ2

e2 = m, (m = 1, 2, 3, . . .).
The latter means that in the presence of quartic self-interaction the Chern–Simons coupling
constant and the quantum potential strength must be quantized

κ = m
e2

g
, s = 1−m2. (5)

In this relation the g and κ coupling constants play a role similar to the one in the
electro-magnetic duality condition derived by Dirac. The self-dual system (3) for original
(ψ,A) has a form depending on the quantum potential with a coefficient proportional to
the angular defect, and turn the energy to vanish H = 0. This shows that under the
influence of the quantum potential Chern–Simons solitons continue to be a zero energy
configuration. Due to (5) the flux for solution (4) is quantized Φ = 2π

e (2m)N , where
N = 1, 2, 3, . . . and the value of m is fixed. Thus, the magnetic flux of our vortex/soliton
is an even multiple m of the elementary flux quantum. This generalizes the Jackiw–Pi
result related to the particular value m = 1.

The decomposition ψ = exp(R − iS) in quantum mechanics produces the Madelung
fluid representation. For the self-dual flows, with velocity v = −2(∇S − eA) we find the
canonical Hamiltonian equations

ẋ ≡ v1 =
∂χ

∂y
, ẏ ≡ v2 = −∂χ

∂x
, (6)

where the stream function χ, plays the role of a Hamiltonian, χ = (1 − s)1/2 ln ρ. For
soliton (4), ρ is regular everywhere and has 2(N − 1)-th order zero at the origin of
the coordinates. This zero determines a singularity of χ and v, such that near the
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singularity χ = 2(N − 1)(1 − s)1/2 ln r ≡ − β
2π ln r, corresponding to the line vortex,

with quantized strength β = −4πn = 4πm(1 − N). The velocity field near the cen-
ter v =

(−2n/r2
)
(−y, x), is the gradient of multivalued function φ = −2n arctan(y/x),

which fixes the value of the phase of the wave function ψ. Functions χ and φ are conjugate
harmonic functions, providing holomorphicity condition for the gauge potential near the
center. This shows that Chern–Simons soliton can be interpreted as a planar vortex in
the Madelung fluid, having the form of a linear vortex near the rotation point.

3 Exponentially localized Chern–Simons solitons

In the dynamics of Bloch electron in a solid for two-dimensional motion, in simplest case
of the energy surface near the band boundary E(k) = k2

1/2m− k2
2/2m, the effective mass

matrix is M−1 = diag (1/m,−1/m) and the Bloch electron subject to the Lorentz force,
imitated by Chern–Simons interaction, has a “dissipative” character [5], with the constant
magnetic field playing the role of the damping. Then, in Lagrangian (1) and equations
of motion (2) we replace the positive space metric ηij = diag (1, 1) with the indefinite
one ηij = diag (1,−1) so that ∂a∂

a = ηab∂a∂b = ∂2
1 − ∂2

2 . Now we rescale t = t̃/
√
s− 1,

S =
√
s− 1S̃, A0 = (s−1)Ã0, A = (s−1)1/2Ã and instead of ψ = exp(R− iS), introduce

two real functions Q± = exp(R± S̃), satisfying the gauged pair of time-reversal invariant
diffusion equations with the reaction term Q+Q−:

∓D̃∓
0̃
Q±+D̃∓

a D̃
a∓Q±− 2g

s− 1
Q+Q−Q± = 0, (7)

where D̃±
µ = ∂µ ± eÃµ and instead of the local U(1) phase transformations now Chern–

Simons gauge field corresponds to the local rescaling of Q±. For static configurations,
when

√
s− 1 = −gκ/e2 we have the self-duality equations

D̃−
−Q

+ = 0 = D̃+
+Q

−,
[
D̃±

+, D̃
±
−

]
= ∓ 2e2

κ(s− 1)1/2
Q+Q−,

with D̃a± = D̃a
1 ± D̃a

2 , from which for ρ = Q+Q− we obtain the Liouville equation

(
∂2

1 − ∂2
2

)
ln ρ = 2

e2

κ(s− 1)1/2
ρ. (8)

admitting the general solution in terms of two arbitrary functions A(x+) and B(x−) of
x± = x1 ± x2. The known regular soliton solutions lead to the divergent integral for ρ,
thus they have no physical meaning in our problem. If we choose instead the A and B
functions in the form

A = (a+1) coth2k+1 α

2
x+, B = (a−1) tanh2l+1 β

2
x−, (9)

then we get

ρ ∼ (1− a2)αβ sinh2k αx+ sinh2l βx−[
(a+ 1) cosh2k+1 αx+

2 cosh2l+1 βx−
2 + (a− 1) sinh2k+1 αx+

2 sinh2l+1 βx−
2

]2 .

For a > 0 this solution is nonsingular in the whole (x1, x2) plane. The sign definiteness of ρ
requires k, l to be integer, while regularity at the “light-cone”, x+ = 0 or x− = 0 is valid
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for k ≥ 0, l ≥ 0. In contrast with the algebraic Chern-Simons solitons (4), the solution
is exponentially decreasing in the plane for the “future” and “past” null infinities. It is
worth to note that our solutions are related with exponentially localized planar solitons
(EL2) for the Davey–Stewartson-I (DS-I) equation. Comparing to (4), having for N > 1
the zero at the origin of the coordinates, the zeroes for solution (9) ρ ∼ x2k

+ x2l− are located
along the “light cone” x+ = 0, x− = 0 for k > 0 and l > 0 correspondingly. For k = 0
and l = 0, we have exponentially localized soliton located at the beginning of coordinates.
If only one of the k, l values is vanishing, then we have two soliton solution represented
on Fig. 1a. and symmetrical under one of the light cone directions. When both numbers
are nonzero we get a four-soliton solution, represented on Fig. 1b, with zeroes along the
whole light cone. For solution (9), the singularities of potential A are located along the
light cone and can be compensated by derivation of function S̃ as S̃ = ln |xk

+/x
l−|. This

allows us to define exact solutions of Eqs. (7) and the original system as

ψ =
√
ρ

(
xl−
xk

+

)i
√

s−1

. (10)

For particular values k = l, the phase S̃ = k ln |x+/x−| defines the hyperbolic analog of
the singular Aharonov–Bohm potential eai = 2kεijxj/

(
x2

1 − x2
2

)
having singularities not

only at the origin of the coordinates, but also along the “light-cone”, x+ = 0, x− = 0.
It may be represented as a singular pure gauge eai = −∂iS̃ = −2k∂iθ, where S̃ = 2kθ.
The magnetic flux associated with soliton solutions is independent of k and l, and is not
quantized. Moreover, the phase of ψ includes the hyperbolic rotation angle θ which is
valued on the whole real line and no restriction of single-valuednees arises.

4 Conclusions

Our hyperbolic self-duality equations are equivalent to SO(2, 1)/O(1, 1) self-dual σ model
and our vortex configurations (9) for a > 0 generate regular non-topological solution. For
topologically nontrivial configurations we need to consider a < 0, which would produce
singularity for ρ.

In conclusions we stress that two long-range interactions considered in the present
paper, the Chern–Simons gauge interaction introduced to physics by S Deser, R Jackiw
and S Templeton and the quantum potential introduced by L de Broglie and D Bohm, are
compatible in supporting static soliton solutions in 2 + 1 dimensions, with arbitrary N ,
only when the coupling constants for both interactions are quantized.
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Figure 1. a) 3D plot of two Chern-Simons solitons; b) Contour plot of four solitons.
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