

Crawling Strategy Based on Domain Ontology of Emergency Plans

Junjie Wang1, a, Depeng Dang2, b, Pengxia Zhou3, Hongjie Wang4, Xue Jiang5
and Shihang Huang6

1 2 3 4 5 6 College of Information Science and Technology, Beijing Normal University, Beijing, 100875,
China

aemail: wangjunjie@mail.bnu.edu.cn, bemail:ddepeng@bnu.edu.cn

Keywords: Ontology; Emergency plan; Theme crawler

Abstract. In order to build an effective emergency plans crawler, this paper affords a new
algorithm for emergency plans identification and a new idea of URL predict using URL pattern
library. Through the experiment, we found the crawler achieves efficient collection of emergency
plans from the web. The emergency plan crawler is proper for emergency plan collection.

Background and significance

Emergency plans guide precaution of potential disasters. There is no emergency plan base which
makes the emergency plans be easily shared. In the research we crawl emergency plans and then
save them to the server. It is the foundation to share and search emergency plans.

There are different kinds of web pages analysis methods. In TF/IDF it is thought that words
appear in less documents, and appear in one document more times represent the document better[1].
Naive Bayesian classifier method assumes each feature of the samples cannot be associated with
other features [2]. C4.5 decision tree needs be given a bunch of samples[3]. Ehrig uses the ontology
into the subject crawling in his work [4]. Ye Yuxin [5] introduces ontology reasoning into theme
crawler. BestFirst [6] believes that if a web page A is related to a theme, then the page pointed by
the web page A should also be related to this theme. PageRank algorithm is based on network
topology [7]. HITS assesses the quality of the web by two weights—the Authority and the Hub [8].
In this paper we learn from the HITS and construct our own page crawling method.

Theme crawler of emergency plans domain

Links that
were handled

Pages base
URL

pattern
libraray

Seed
URLs

Emergen
cy plan

ontolgoy

master

Jobtracker

Namenode

slave

Tasktracker1

L ocal disk
Datanode1

Child JVM

 M
ap/Reduce Task

MapT
ask

Reduc
eTask

Submit

Fetcher

MapRunna
ble:
Fetching

Injector

Mapper:
Filt,
normalize

Reducer:
update

Generator

Mapper:
Score, sort,
distribute

Reducer:
Limit the
urls of the
same host

ParserSeg
ment

Mapper:
parse

Reducer:
Update,
theme
identify

CrawlDb

Mapper:
Filt,
normalize

Reducer:
Update
score and
the library

slave

Tasktracker1

Local disk
Datanode1

Child JVM

 M
ap/Reduce Task

MapT
ask

Reduc
eTask

hdfs

International Conference on Education Technology and Information System (ICETIS 2013)

© 2013. The authors - Published by Atlantis Press 645

Fig.1. Theme crawling framework of emergency plans
This paper establishes domain ontology through the research on emergency plans, and conducts

the theme determination. Also finds the special nature of the link structure of the theme, and designs
a new method based on the URL pattern library for the link prediction. This study extends the
common crawler of Nutch, and uses the plug-in mechanism of Nutch.

Definition 1 Target page contains emergency plans and need to be crawled into storage.
The crawling framework used in this paper, as shown in Fig.1 has two special modules. The

emergency plans ontology records the knowledge in emergency plans. This ontology supports
calculating how much a page relevance to the theme. The URL pattern library is a library of URL
patterns. URLs satisfied with these patterns have more probabilities to point to the target pages. The
URL in accordance with the pattern in the queue will be crawled preferentially.

Emergency plans topics identification

We doing topic identification using domain ontology of emergency plan. Ontology is a new field
of research in information technology areas, and is an important mean to describe the semantic
model. We can use ontology to store knowledge of emergency plan in this paper.

Definition 2: Emergency plan crawling ontology can be described as a four-tuple: Oemergency
= {C, K, E, M}.
C represents a collection of concepts, K means a collection of key words, E denotes the inclusion
relation among the concepts, and M represents a mapping function from keywords to concepts.

We explored emergency plans, and we collected 8 concepts in the plans. The concepts are put
into a tree structure according to the inclusion relation. In fact, there are many other concepts. In the
identifying of emergency plan, only the 8 concepts in the top layer are useable.

Using the word frequency statistics method, we did the segmentation, words frequency statistic,
and selected keywords from the emergency. We determined the mapping function from keywords to
concepts artificially. In the constructed emergency plan crawling ontology there are 8 concepts, 7
relations among concepts, 3894 keywords and 4077 maps from keyword to concepts.

After establishing the emergency plans domain ontology, we can get the score of each module of
emergency plans. Emergency plans generally have four parts (emergency preparedness, monitoring
and warning, emergency response and further disposal), two attributes (geographical information
and domain information) and one group (related department). When using emergency plans
ontology doing identify, we need to check each part and each attribute if it obtain a certain score.

The link prediction based on URL pattern library

Algorithm 1. The algorithm for emergency plans identification
input:
 words’ frequency statistical tables WT(<word, count>pair)
 emergency plans ontology Oemergency

output: topic identification results True.False
Step1. initialize the concept set CE empty
Step2. If there is no unvisited element in the WT, go to Step 7.
Step3. Took out a pair of < wordi counti >, and look for wordi from the keywords table K of the Oemergency. If not find, go to Step 2.
Step4. Based on the relationship in the mapping relationship table M of keyword to the concept, get the corresponding concept cj of wordi. If the

cj is in CE, go to Step 6.
Step5. set the frequency of cj countj = counti , and put < cj, countj > into the CE, then skip to Step 2.
Step6. Update countj = countj + counti, and skip to Step 2.
Step7. According to the concept set C and concept inclusion relation E in the Oemergency, form tree structure Temergency.

Step7.1 Set the < emergency plans, countemergency plans> as the root node of the Temergency, and initialize the countemergency plans= 0. And put the
"emergency plan" into the queue.

Step7.2 If the queue is empty, go to Step 8. Otherwise, put out an element < ci, countci > from the queue.
Step7.3 Find such relationships cj ⊂ ci in the E. If do not exist, skip to Step 7.2.
Step7.4 Set countcj = 0, make< cj, countcj > as a child of < ci, countci >, and put cj into the queue, then skip to Step 7.2

Step8. Recursively calculate the count value of each node in the Temergency. Set the root node as the current node.
Step8.1 If the current node c has children c1, c2,…Cn, so countc=countc1+countc2+…+countcn, By the recursive process, we know that

countc1,countc2,…,countcn will turn out to be the current node. Continue this step.
Step8.2 Find whether c in CE. If not, set countc = 0. If in, read to get the corresponding Pair< c, countc >of the concept c in the CE. Then

update the concept frequency as countc for c in the Temergency.
Step9. Check the nodes of "emergency preparation", "monitoring and early warning" and "emergency response" and " further disposal",

whether the frequency of the four concept is more than the threshold value tp. If one item does not reach, it returns False.
Step10. Check the root node "emergency plan". If the frequency countemergency plan > Ө, return True. Otherwise , return False.

646

The link relations between web pages have an important role for predicting web topics.
Definition 3: Noise link are links that not points to a target page.
Definition 4: URL pattern is a string which is used to describe a series of URL with a certain

syntactic rule.
After have analyzed the emergency plans link structure in the network, we find that the URLs of

different target pages from the same website have the same pattern. After realizing it, we do the
URL prediction according to the links’ structure, or pattern. We can extract the URL pattern of the
target pages from the website. URL pattern should only be extracted from the same website.

Trie tree is used to store the URL pattern library in this paper. We add URL pattern or merge
URL patterns by corresponding operate of the Trie tree. Trie tree's advantage is that minimizing
unnecessary string comparisons. The defect is space consumption.

When we use Nutch to crawl emergency plans, we use distributed cluster. URLs are distributed
to each task machine, and pages are crawled by the corresponding machine. In the process of
distribution, the URLs from the same host are guaranteed to be distributed to the same machine. So,
on each machine we can establish a Trie tree to represent a part of URL pattern library processed by
the corresponding machine. The Trie tree residing on each machine in the correspond to one part of
the entire URL pattern library. It won't affect the decision result of URL pattern , and also can
effectively reduce the size of the Trie tree on each machine.

Definition 5: The digital character set D= {‘0’, ‘1’, ‘2’, ‘3’, ‘4’, ‘5’, ‘6’, ‘7’, ‘8’, ‘9’, ‘/b’}. For
any numeric characters digitaChar, digitaChar = ‘/b’ established.

Definition 6: The alphabetic character set A = {‘a’, ‘b’, ‘c’, ‘d’, ‘e’, ‘f’, ‘g’, ‘h’, ‘i’, ‘j’, ‘k’, ‘l’,
‘m’, ‘n’, ‘o’, ‘p’, ‘q’, ‘r’, ‘s’, ‘t’, ‘u’, ‘v’, ‘w’, ‘x’, ‘y’, ‘z’, ‘A’, ‘B’, ‘C’, ‘D’, ‘E’, ‘F’, ‘G’, ‘H’, ‘I’,
‘J’, ‘K’, ‘L’, ‘M’, ‘N’, ‘O’, ‘P’, ‘Q’, ‘R’, ‘S’, ‘T’, ‘U’, ‘V’, ‘W’, ‘X’, ‘Y’, ‘Z’, ‘/r’}. For any
alphabetic characters alphaChar, alphaChar= ‘/r’ established.

Algorithm 2: the algorithm for URL pattern
Initial state: the URL pattern library TurlPattern is empty.
Step1. Whether it runs up to the grab depth or the number of reserved pages, if reaches, just quit.
Step2. If the crawling queue is empty, go to Step5. Else select a URL url1 from the crawling queue , crawl the page and analysis, then stores

the link information to crawldb. Analysis the text content, if it is not an emergency plan, then continue to repeat Step2 to grab the next
page. Otherwise go to the next step.

Step3. Find url1,s hostname host, then in the URL pattern library find whether there is URL pattern deriving from the host. If not, put url1
into the URL pattern library, and go to Step2; Otherwise go to the Step4.The following is the method of joining Url1 into the mode
library URL:

Step3.1 Set the current character currentChar1 as the first character of url1, and set the current node currentNode as the root node
of TurlPattern tree.

Step3.2 If currentNode had no child, go to Step3.3; Otherwise, scanning every child childNode of currentNode. If a childNode’s
characters = currentChar1, go to Step3.4. If there is no any character in a childNode equals currentChar1, go to Step3.3.

Step3.3 New-built a node newNode , and the characters in the newNode are currentChar1, and add the newNode as a child of
currentNode , then update currentNode = newNode. If url1 has a next character , it will be store the next character in the
currentChar1, and repeat Step3.3. Otherwise the method of adding url1 to URL pattern library is over.

Step3.4 Set currentNode = childNode, and currentChar1 is the next character of url1, and jump to Step3.2.
Step4. Merge Url1 with the corresponding to address mode urlPattern in the URL pattern library, and make the new URL pattern can

match the url1 and urlPattern. Specific merging step is:
Step4.1 Currently comparative character currentChar1, currentChar2 respectively is set to the first characters of url1 and the first

character of urlPattern.
Step4.2 If currentChar1 = currentChar2, go to Step4.4. Otherwise, go to the next step.
Step4.3 At this time currentChar1! = currentChar2, if currentChar1 currentChar2 ∈ D, then update the current urlPattern current

character as '/b '. If currentChar1 currentChar2 ∈ A, then update the current urlPattern current character as’/ r’.
Step4.4 Check whether there is characters in the back of url1 and urlPattern . If there is no character in the back of urlPattern, skip

to Step2. If there is character in the back of urlPattern, and no character in the back of url1, delete all children of urlPattern,s
current node , then skip to the Step1. If all have, set the current character of currentChar1 as the next character of url1, and set
the current character of currentChar2 as the next character of url2, then skip to Step4.2.

Step5. According to the URL pattern library, one by one check the links url1 in the crawldb. For a url1, if we can find a route from the root
node to a leaf node in the TurlPattern tree , and the string in the route is url1 prefix, then the url1 matches a URL pattern. Particular way
is:

Step5.1 If in the crawldb there are no matching url, take out a article, and write for url1, then go to Step5.2; Otherwise, go to the
Step6.

Step5.2 Set the current character currentChar1 as the first character of url1, and set the current node currentNode as the root node
of TurlPattern tree.

Step5.3 If currentNode has no child, then the match is successful, and improve url1’s score, then go to Step5.1. Otherwise, scan every
child of currentNode childNode , if one childNode’s character = currentChar1, the current matching is successful, then go to
Step5.4.

Step5.4 Set currentNode = childNode. If there is no next character in the url1, go to Step5.5 t; Otherwise go to Step5.6.
Step5.5 If currentNode’s child is empty, the match is successful, and improve url1’s score, then go to Step5.1. If currentNode’s child is

not null, the match fails, and skip to Step5.1.
Step5.6 Update currentChar1 as the next character of url1, and skip to Step5.2.

Step6. Putting the crawldb after updating into the queue, and skip to Step1.

647

Results and conclusion

In the experiment, we made the secondary development on Nutch 1.2.

0, 0
1, 398

25, 825

49, 2833

73, 3656

97, 5238

121, 6234

0

1000

2000

3000

4000

5000

6000

7000

0 20 40 60 80 100 120 140

Time /h

E
m

er
ge

nc
y

pl
an

s

Emergency plans' num

 Fig.2. The result of theme identify Fig.3. Emergency plans gathering
From Fig.2 we learn that, the positive correct rate is 225/231 = 0.97. But the negative correct rate

is 227/247 = 0.91. It is because, there are documents of legal provisions or reports that related to
emergency on the governments’ websites. These documents are similar to emergency plans after
segmentation. From Fig.3 we can find that, we got 398 emergency plans in the first hour. It is a
sharp speed, it is mainly due to our choice of the seed URLs.

Through the experiment, we find that, the emergency plans identification algorithm performs
well of the emergency identification. Using the URL pattern library made use be able to gather
about 50 emergency plans per hour. The emergency plan crawler is proper for emergency plan
collection.

Acknowledgement

In this paper, the research was sponsored by the Nature Science Foundation of Henan Province
(Project No. 201112400450401) and Youth Fund Project of Luoyang Institute of Science and
Technology (Project No. 2010QZ16).

References

[1] Salton, G. & Buckley, C. (1988). Term-weighing approaches in automatic text retrieval. In
Information Processing & Management, 24(5): 513-523.
[2] E. Frank, R.R. Bouchaert. Naive Bayes for text classification with unbalanced classes.
Proceedings of the 10th European conference on principles and practice of knowledge discovery in
databases, Springer, Berlin (2006), pp. 503–510
[3] Peter D. Turney, Learning Algorithms for Keyphrase Extraction, Information Retrieval, v.2 n.4,
p.303-336, May 2000
[4] Ehrig M, Maedche A. Ontology-Focused crawling of Web documents. In: Lamont BG, ed. Proc.
of the 2003 ACM Symp. on Applied Computing. New York: ACM Press, 2003.
[5] YE Yu-Xin, OUYANG Dan-Tong. Semantic-Based Focused Crawling Approach. Journal of
Software, 2011, 22(9)
[6] Pearl, J. (1984). Heuristics: Intelligent Search Strategies for Computer Problem Solving.
Reading, MA: Addison-Wesley.
[7] L. Page, S. Brin, R. Motwani, T. Winograd. The PageRank citation ranking: bringing order to
the Web Manuscript in Progress. 2010.
[8] J. Kleinberg. Authoritative sources in a hyperlinked environment. Proc. ACM-SIAM
Symposium on Discrete Algorithms. 1998.

648

