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Abstract

The Cauchy problem for the Liouville equation with a small perturbation is considered.
We are interested in the asymptotics of the perturbed solution under the assumption
that one has singularity. The main goal is to study both the asymptotic approximation
of the singular lines and the asymptotic approximation of the solution everywhere
outside the narrow neighbourhood of the singular lines.

The Cauchy problem for the Liouville equation with a small perturbation

∂2
t u−∂2

xu+8 exp u = εF[u], 0 < ε � 1, (0.1)

u|t=0 = ψ0(x; ε), ∂tu|t=0 = ψ1(x; ε), x ∈ R (0.2)

is considered. We are interesting for asymptotics of the perturbed solution u(x, t; ε) as
ε → 0.

Perturbation theory for integrable equations remains a very attractive task. As a rule
a perturbation of smooth solutions such as a single soliton were usually considered. We
intend here to discuss a perturbation of a singular solution under assumption that the
perturbed solution has singularities as well. A simple well known instance of this kind
is a chock wave under weak perturbation as given by the Hopf equation with a small
perturbation term ut + uux = εf(u), 0 < ε � 1. In this paper we consider a more
complicated problem namely a perturbation of the singular solution of Liouville equation.
We deal with the singularities studied by Pogrebkov and Polivanov [1].

1 Unperturbed equation

Unperturbed equation (as ε = 0) ∂2
t u − ∂2

xu + 8 exp u = 0 was solved by Liouville [2] and
a formula of the general solution is well known

u(x, t) = ln
r′+(s+)r′−(s−)

r2(s+, s−)
, r = r+(s+)+r−(s−), s± = x±t. (1.1)

Initial equations (0.2) give two ODE’s for the r± which may be linearized.
The singularities of the solution occur due to zero of the denominate r(x + t, x − t) ≡

r+(x+ t)+r−(x− t) = 0 under condition r′± > 0. We consider just this case. The singular
solution is unique under matching condition imposed on the singular lines Γ [3]. That is
continuity (zero jump across the singular lines) of two expressions

[
1/2

(
u2

t + u2
x

)
+ 2 exp u − 2uxx

]
Γ

= 0, [−utφx+2utx]Γ = 0. (1.2)
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2 Perturbed problem (ε �= 0)

As regards the perturbation operator F [u] we assume that one has no higher order deriva-
tives. We desire the singularities do not disperse so that singular lines only deform slowly
under perturbation. Note that an existence theorem for the perturbed problem is not
proved up to now. We only give a formal asymptotic solution.

The main goals are both an asymptotic approximation of the singular lines and an
asymptotic approximation of the solution everywhere out of narrow neighborhood of the
singular lines.

Definition. The formal asymptotic solution (FAS) of order N is a function UN (x, t; ε)
satisfied to both the equation (0.1) and the initial condition (0.2) up to order O (

εN
)

everywhere in {x ∈ R, 0 ≤ t ≤ T = const} out of narrow strips of order O (
εN

)
. In the

strips there are smooth lines on which the matching conditions (1.2) are satisfied.

Remark. A direct asymptotic expansion as given by u ≈ ∑
n

εn n
u (x, t), ε → 0 does not

provide an approach to both the singular lines and the solution inside of stripes (near
limit singular lines) whose width has the order of O(ε). This assertion can be verified on
a simple example when F ≡ 0 and exact solution is taken in the explicit form (1.1) with
the smooth functions r±(s±; ε) depending on the parameter ε. Asymptotic expansion of
such solution as ε → 0 has coefficients with the increasing order singularities O (

r−n
0

)
at

the limit singular lines r−n
0 ≡ r+(s+; 0) + r−(s−; 0) = 0.

Ansatz. A FAS (for any N) is taken as a finite peace of the asymptotic series

u(x, t; ε) ≈
∞∑

n=0

εn n
u (x, t; ε), ε → 0. (2.1)

The leading order term is here taken as an exact solution of the unperturbed equation

0
u= ln

r′+(s+; ε)r′−(s−; ε)
r2(s+, s−; ε)

, (r = r++r−). (2.2)

We permit dependence on a small parameter in the functions r±(s±; ε). For these functions
an asymptotics is constructed in the form

r±(s±; ε) ≈
∞∑

n=0

εn n
r± (s±), ε → 0. (2.3)

The formulas (2.1)–(2.3) are usually named Bogolubov–Krylov ansatz. This approach pro-
vides an asymptotic approximation of the singular lines up to any order from the equation
r+(s±; ε) + r−(s±; ε) = 0. Thus the matter is reduced to define the coefficients

n
u,

n
r±.

3 Linearized problem for the correction

Corrections
n
u (n ≥ 1) are determined from the linear equations

∂2
t

n
u −∂2

x
n
u +8

r′+r′−
r2

n
u=

n
f (x, t; ε), (x, t) ∈ R2
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with the corresponding initial data. The right sides are here calculated from previous

steps, for example
1
f= F

[
0
u
]
,

2
f= δF

[
0
u
]

1
u −4r′+r′−

(
1
u
)2

/r2.
General solution of the homogeneous linear equation is given by the formula

u(x, t; ε) = j′+/r′+ +j′−/r′−−2(j+ + j−)/r.

Here j± =
n
j± (s±; ε) are arbitrary functions. In context of the Cauchy problem they are

determined by the initial functions and an expression similar to the D’Alembert formula
takes place. Take into account the singularities of order O(1/r).

To solve the nonhomogeneous linear equation the similar formula may be used with
the functions j±(x, t), depending on two variables, which are defined from ODE’s in the
explicit form. So a solution of the linear equation is determined by the integral

u(x, t) =
∫ s+

s−

∫ σ+

s−
K(s+, s−, σ+, σ−)f(σ+, σ−) dσ− dσ+

taken over the characteristic triangle. The kernel K is here expressed by

K(s+, s−, σ+, σ−) =
1

2r(s+, s−)r(σ+, σ−)

{
r+(s+)r−(s−) + r+(σ+)r−(σ−)

+
1
2

[
r+(s+) − r−(s−)

] [
r+(σ+) − r−(σ−)

] }
.

Let us denote by
n
u1 (x, t; ε) a part of the correction corresponding to a solution of the

nonhomogeneous linear equation. One depends on both the r±(s±; ε) and the
m
j± (s±; ε)

(0 < m < n) and one is determined by means of the quite well specific operator
n
u1=

n
U

[r±,
1

j±, . . . ,
n−1
j± ]. It is convenient to identify the singular part in these representation

n
U=

n
V

[
r±,

1
j±, . . . ,

n−1
j±

]
−(2/r)

n
W

[
r±,

1
j±, . . . ,

n−1
j±

]
. (3.1)

Singularities play here a role of secular terms. If we take a FAS in the form of the direct
expansion, then we find that the singularities became stronger on each step. One can guess
that this effect is due to the poor approximation of the perturbed singular lines. Hence the
singularities must to be eliminated from the corrections. Just this elimination gives us a
good approximation of the perturbed singular lines1. Of course a representation (3.1) with

smooth functions
n
V,

n
W is possible just only under some restrictions on the perturbation

operator F [u]. In fact, the more general condition on the F [u] is a representation (3.1)

with smooth functions
n
V,

n
W on each step n.

4 Identification of corrections

The system of linear equations are based on the leading term whose parameters r± are
determined by initial data from equation:

ln
r′+r′−
r2

+
∞∑

n=1

εn

[
n
j+

′
/r′+ +

n
j−

′
/r′− − 2

r

(
n
j+ +

n
j−

)
+

n
u1

]
= ψ0(x; ε), (4.1)

1One can think these ideas are suitable for another problems with singularities under perturbations.
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r′′+
r′+

− r′′−
r′−

− 2
r′+ − r′−

r
+

∞∑
n=1

εn

[(
n
j+

′
/r′+

)′
−

(
n
j−

′
/r′−

)′
− 2

r

(
n
j+

′
− n

j−
′)

+
2
r2

(
n
j+ +

n
j−

)
(r′+ − r′−) + ∂t

n
u1

]
= ψ1(x; ε).

(4.2)

Note that there are unknown functions
n
j± apart from r±.

A naive approach to these equations with a small parameter is as follows. Functions r±
are identified with the leading term r± =

0
r± (s±) which is defined from the nonlinear

equations as ε = 0. After that all functions
n
j± (s±) are determined from the recurrent

system of linear equations. In this way a direct asymptotic expansion is just obtained,
whose coefficients have the singularities of increasing order O (

r−n
0

)
at the limit singular

lines r0 ≡ r+(s+; 0) + r−(s−; 0) = 0. Deformation of the singular lines is not determined
in this way.

In our approach the functions r± are taken in the form of asymptotic series (2.3).
Additional ambiguities in the coefficients

n
r± (s±), n ≥ 1 are used to solve the (4.1), (4.2)

under additional requirements. We desire to eliminate the singularities of order O (
r−1

)
from the corrections

n
u on each step. Elimination of these terms give rise to the algebraic

equations

n
j+ (s+; ε)+

n
j− (s−; ε)+

n
W

[
r±,

1
j±, . . . ,

n−1
j±

]
= 0 as r(s+, s−; ε) = 0. (4.3)

Moreover an additional condition is used

n
r+ (x)+

n
r− (x) = 0, ∀x ∈ R (n ≥ 1). (4.4)

So we obtain the systems of equations (4.1)–(4.4) for the four functions
n
r±,

n
j± on each

step n = 1, 2, . . .. However these equations contain a small parameter throw r±(x; ε).

Hence an asymptotic expansion have to be constructed for the functions
n
j± like (2.3)

n
j± (x; ε) ≈ ∑

m
εm

n,m
j± (x). Coefficients can be here obtained from the recurrent system of

algebraic equations

n,m

j+ (s+)+
n,m

j− (s−) =
n,m

W (n ≥ 1, 0 < m < n) as
0
r (s+, s−) = 0. (4.5)

So all functions
n
r±,

n,0

j± (x) (n ≥ 1) and
n,m

j± (1 ≤ m < n) are defined step-by-step from
the algebraic and differential equations. The main objects are differential equations, which
can be represented in the form

n
y+

′
/

0
r+

′
(x)+

n
y−

′
/

0
r−

′
(x)−2

n
y+ +

n
y−

r(x, x)
=

n
Ψ0 (x),

(
n

y+
′
/

0
r+

′
(x) − n

y−
′
/

0
r−

′
(x)

)′
−2

n
y+

′ − n
y−

′

r(x, x)
+2

(
n

y+ +
n

y−
)(

0
r+

′
(x)− 0

r−
′
(x)

)

r2(x, x)
=

n
Ψ1 (x)
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for the combinations
n
y± (x) =

n
r± (x)+

n,0
j ± (x). If we take into account r(x, x) =

0
r+ (x)

+
0

r− (x), then a solution is obtained in the explicit form

y± =
1
2

∫
(Ψ0±g)

0
r±

′
dx+

1
2

∫
0

r±
′ ∫ (

Ψ0r
′/r +

(
0
r+ − 0

r−
)′

g/r

)
dx dx,

g(x) = r(x, x)
∫ (

Ψ1(x)/r(x, x) + Ψ0(x) (r+(x) − r−(x))′/r2(x, x)
)
dx.

After that the algebraic equations (4.4)–(4.5) are solved. There are some arbitrariness in

the solution
n
r±,

n,m
j ±, which however do not effect the obtained approximation for the

u(x, t; ε).

5 Conclusion

The main result of the paper is the given above manner of determination of the FAS
(2.1)–(2.3) in the occurrence of singularities.
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