Sufficient conditions for close-to-starlikeness and close-to-convexity of order β

Yuwei Liu ${ }^{1, a}$, Lifeng Guo ${ }^{2, b}$
${ }^{1}$ College of Petroleum Engineering, Northeast Petroleum University Daqing 163318, China.
${ }^{2}$ School of Mathematical Science and Technology, Northeast Petroleum University Daqing 163318, China.
${ }^{1}$ yuweiliuhl@126.com, ${ }^{2}$ hitglf@yahoo.com.cn

Keywords: Analytic functions; Close-to-star functions; Close-to-convex functions.
Abstract. The object of the present paper is to obtain certain sufficient conditions for close-to-starlikeness and close-to-convexity of order β.

Introduction

The function, for which the equation $f(z)=w$ has p roots in D for every complex number w, is said to be p-valent (or multivalent) function, where D is a domain in the extended complex plane C. Let H be the class of analytic functions in $U=\{z \in C:|z|<1\}$, and A_{p} be the subclass of H consisting of functions of the form

$$
\begin{equation*}
f(z)=z^{p}+a_{p+1} z^{p+1}+a_{p+2} z^{p+2}+\cdots, p \in N, z \in U \tag{1}
\end{equation*}
$$

with $A_{1}=A$.
A function $f(z) \in A_{p}$ is consist as starlike of order $\alpha(0 \leq \alpha<p)$ in U (see [1]), that is, $f(z) \in S_{p}^{*}(\alpha)$, if and only if

$$
\begin{equation*}
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\alpha, 0 \leq \alpha<p, z \in U \tag{2}
\end{equation*}
$$

with $S_{1}^{*}(0):=S^{*}$.
A function $f(z) \in A_{p}$ is consist as p-valently strongly close-to-star of order $\beta(0<\beta \leq 1)$ in U with respect to $g(z)$, that is, $f(z) \in C S_{p}^{*}(\beta)$, if and only if

$$
\begin{equation*}
\left|\arg \left(\frac{f(z)}{g(z)}\right)\right|<\frac{\beta \pi}{2}, z \in U \tag{3}
\end{equation*}
$$

for some real $\beta(0<\beta \leq 1)$ and for some starlike function $g(z) \in A_{p}$ (see [2]). For $g(z)=z^{p}$ in condition (3), we have that $f(z) \in A_{p}$ is p-valently strongly close-to-star of order $\beta(0<\beta \leq 1)$ in U if

$$
\begin{equation*}
\left|\arg \left(\frac{f(z)}{g(z)}\right)\right|<\frac{\beta \pi}{2}, z \in U . \tag{4}
\end{equation*}
$$

A function $f(z) \in A_{p}$ is consist as p-valently strongly close-to-convex of order $\beta(0<\beta \leq 1)$ in U with respect to $g(z)$, that is, $f(z) \in C C_{p}(\beta)$, if and only if

$$
\begin{equation*}
\left|\arg \left(\frac{z f^{\prime}(z)}{g(z)}\right)\right|<\frac{\beta \pi}{2}, z \in U \tag{5}
\end{equation*}
$$

for some real $\beta(0<\beta \leq 1)$ and for some starlike function $g(z) \in A_{p}$ (see [3]). For $g(z)=z^{p}$ in condition (5), we have that $f(z) \in A_{p}$ is p-valently strongly close-to-convex of order $\beta(0<\beta \leq 1)$ in U if

$$
\begin{equation*}
\left|\arg \left(\frac{z f^{\prime}(z)}{g(z)}\right)\right|<\frac{\beta \pi}{2}, z \in U . \tag{6}
\end{equation*}
$$

In proving our main theorem, we need the following lemma due to Owa, Nunokawa, Saitoh and Fukui.
Lemma 1.1. (see [4])Let Let $p(z)$ be analytic, $p(z) \neq 0$ in U and $p(0)=1$. Suppose that there exists a point $z_{0} \in U$ such that

$$
\begin{equation*}
|\arg p(z)|<\frac{\pi \beta}{2} \text { for }|z|<\left|z_{0}\right| \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\arg p\left(z_{0}\right)\right|=\frac{\pi \beta}{2} \tag{8}
\end{equation*}
$$

where $\beta>0$. Then we have

$$
\begin{equation*}
\frac{z_{0} p^{\prime}\left(z_{0}\right)}{p\left(z_{0}\right)}=i k \beta \tag{9}
\end{equation*}
$$

where

$$
\begin{equation*}
k \geq \frac{1}{2}\left(\gamma+\frac{1}{\gamma}\right) \geq 1 \text { when } \arg p\left(z_{0}\right)=\frac{\pi \beta}{2} \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
k \leq-\frac{1}{2}\left(\gamma+\frac{1}{\gamma}\right) \leq-1 w h e n \arg p\left(z_{0}\right)=-\frac{\pi \beta}{2} \tag{11}
\end{equation*}
$$

where

$$
\begin{equation*}
p\left(z_{0}\right)^{1 / \beta}= \pm i \gamma a n d \gamma>0 . \tag{12}
\end{equation*}
$$

Main Result

Theorem 2.1. If $f(z) \in A_{p}$ satisfies the condition,

$$
\begin{equation*}
\left|1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\alpha\right|<\alpha, z \in U \tag{13}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha=\frac{p^{2}+\beta^{2}}{2 p} \tag{14}
\end{equation*}
$$

and $0<\beta \leq 1$, then $f(z) \in C C_{p}(\beta)$.
Proof. Let us put

$$
\begin{equation*}
F(z)=\frac{f^{\prime}(z)}{p z^{p-1}} . \tag{15}
\end{equation*}
$$

By logarithmic differentiation of (15), we have

$$
\begin{equation*}
\frac{z F^{\prime}(z)}{F(z)}=1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-p \tag{16}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{z F^{\prime}(z)}{F(z)}+p=1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \tag{17}
\end{equation*}
$$

Suppose there exist a point $z_{0} \in U$ such that

$$
\begin{equation*}
|\arg F(z)|<\frac{\pi}{2} \beta \text { for }|z|<\left|z_{0}\right| \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\arg F\left(z_{0}\right)\right|=\frac{\pi}{2} \beta \tag{19}
\end{equation*}
$$

then from Lemma 1.1, we have

$$
\begin{equation*}
\frac{z_{0} F^{\prime}\left(z_{0}\right)}{F\left(z_{0}\right)}=i \beta k \tag{20}
\end{equation*}
$$

where

$$
\begin{equation*}
k \geq \frac{1}{2}\left(\gamma+\frac{1}{\gamma}\right) \geq 1 \text { when arg } p\left(z_{0}\right)=\frac{\pi \beta}{2} \tag{21}
\end{equation*}
$$

and

$$
\begin{equation*}
k \leq-\frac{1}{2}\left(\gamma+\frac{1}{\gamma}\right) \leq-1 \text { when } \arg p\left(z_{0}\right)=-\frac{\pi \beta}{2} \tag{22}
\end{equation*}
$$

where

$$
\begin{equation*}
p\left(z_{0}\right)^{1 / \beta}= \pm i \gamma a n d \gamma>0 . \tag{23}
\end{equation*}
$$

At first, let us suppose $p\left(z_{0}\right)^{1 / \beta}=i \gamma$, then we have

$$
\begin{equation*}
\frac{z_{0} F^{\prime}\left(z_{0}\right)}{F\left(z_{0}\right)}+p=i \beta k+p \tag{24}
\end{equation*}
$$

where

$$
\begin{equation*}
k \geq \frac{1}{2}\left(\gamma+\frac{1}{\gamma}\right) \geq 1 . \tag{25}
\end{equation*}
$$

From this, we have

$$
\begin{equation*}
\operatorname{Re}\left(\frac{z_{0} F^{\prime}\left(z_{0}\right)}{F\left(z_{0}\right)}+p\right)^{-1}=\frac{p}{p^{2}+\beta^{2} k^{2}} \leq \frac{p}{p^{2}+\beta^{2}} \tag{26}
\end{equation*}
$$

Since $|w-\alpha|<\alpha \Leftrightarrow \operatorname{Re}(1 / w)>\frac{1}{2 \alpha}$, this contradicts the assumption of this theorem.
For the case $p\left(z_{0}\right)^{1 / \beta}=-i \gamma$, applying the same method as the above, we have the condition (26). Therefore we complete the proof.

Theorem 2.2. If $f(z) \in A_{p}$ satisfies the condition,

$$
\begin{equation*}
\left|\frac{z f^{\prime}(z)}{f(z)}-\alpha\right|<\alpha, z \in U \tag{27}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha=\frac{p^{2}+\beta^{2}}{2 p} \tag{28}
\end{equation*}
$$

and $0<\beta \leq 1$, then $f(z) \in S S_{p}^{*}(\beta)$.
Proof. Let us put

$$
\begin{equation*}
F(z)=\frac{f(z)}{z^{p}} . \tag{29}
\end{equation*}
$$

By logarithmic differentiation of (15), we have

$$
\begin{equation*}
\frac{z F^{\prime}(z)}{F(z)}=\frac{z f^{\prime}(z)}{f(z)}-p \tag{30}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{z F^{\prime}(z)}{F(z)}+p=\frac{z f^{\prime}(z)}{f(z)} \tag{31}
\end{equation*}
$$

Suppose there exist a point $z_{0} \in U$ such that

$$
\begin{equation*}
|\arg F(z)|<\frac{\pi}{2} \beta \text { for }|z|<\left|z_{0}\right| \tag{32}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\arg F\left(z_{0}\right)\right|=\frac{\pi}{2} \beta \tag{33}
\end{equation*}
$$

then from Lemma 1.1, we have

$$
\begin{equation*}
\frac{z_{0} F^{\prime}\left(z_{0}\right)}{F\left(z_{0}\right)}=i \beta k \tag{34}
\end{equation*}
$$

where

$$
\begin{equation*}
k \geq \frac{1}{2}\left(\gamma+\frac{1}{\gamma}\right) \geq 1 \text { when arg } p\left(z_{0}\right)=\frac{\pi \beta}{2} \tag{35}
\end{equation*}
$$

and

$$
\begin{equation*}
k \leq-\frac{1}{2}\left(\gamma+\frac{1}{\gamma}\right) \leq-1 \text { when } \arg p\left(z_{0}\right)=-\frac{\pi \beta}{2} \tag{36}
\end{equation*}
$$

where

$$
\begin{equation*}
p\left(z_{0}\right)^{1 / \beta}= \pm i \gamma a n d \gamma>0 . \tag{37}
\end{equation*}
$$

At first, let us suppose $p\left(z_{0}\right)^{1 / \beta}=i \gamma$, then we have

$$
\begin{equation*}
\frac{z_{0} F^{\prime}\left(z_{0}\right)}{F\left(z_{0}\right)}+p=i \beta k+p \tag{38}
\end{equation*}
$$

where

$$
\begin{equation*}
k \geq \frac{1}{2}\left(\gamma+\frac{1}{\gamma}\right) \geq 1 . \tag{39}
\end{equation*}
$$

From this, we have

$$
\begin{equation*}
\operatorname{Re}\left(\frac{z_{0} F^{\prime}\left(z_{0}\right)}{F\left(z_{0}\right)}+p\right)^{-1}=\frac{p}{p^{2}+\beta^{2} k^{2}} \leq \frac{p}{p^{2}+\beta^{2}} \tag{40}
\end{equation*}
$$

Since $|w-\alpha|<\alpha \Leftrightarrow \operatorname{Re}(1 / w)>\frac{1}{2 \alpha}$, this contradicts the assumption of this theorem.
For the case $p\left(z_{0}\right)^{1 / \beta}=-i \gamma$, applying the same method as the above, we have the condition (26). Therefore we complete the proof.

References

[1] M. S. Robertson, On the theory of univalent functions, Ann. of Math., 37 (1936), 374-408.
[2] Y. O. Park and S. Y. Lee, On a class of strongly close-to-star functions, Bull. Korean Math. Soc., 37(4) (2000), 755-764.
[3] H. Shiraishi and S. Owa, Some sufficient problems for Strongly Close-to-Convex of order μ, General Mathematics, 17 (4) (2009), 157-169.
[4] S. Owa, M. Nunokawa, H. Saitoh and S. Fukui, Starlikeness and close-to-convexity of certain analytic functions, Far East J. Math. Sci. 2(2) (1994), 143-148.

