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Abstract

In this note, we present a result to show that the symplectic structures have been
naturally encoded into the Painlevé test. In fact, for every principal balance, there is
a symplectic change of dependent variables near movable poles.

1 Introduction

Recently, we provided an algorithm for finding an appropriate change of variables that
regularizes the solutions near movable singularities for differential equations passing the
Painlevé test [1, 2]. In [3], we further proved that our algorithm is in fact equivalent to
the Painlevé test. An immediate consequence of this is a conceptual proof that demon-
strates, for ordinary differential equations, that the formal Laurent series produced from
a successful application of the Painlevé test is always convergent.

The main result of this paper is that our algorithm is compatible with Hamiltonian
systems. Specifically, we show that, by carrying out our algorithms more carefully, we can
make sure that the change of variable used for constructing the mirror system preserves the
symplectic structure and converts the original Hamiltonian system to another Hamiltonian
system given by a regular Hamiltonian function near movable singularities.

2 The first Painlevé equation

In this section, we use the first Painlevé equation P1, u′′ = 6u2 + t, as an example to
demonstrate the symplectic structure of the Painlevé test. We rewrite the equation as a
Hamiltonian system

q̇1 = p1, ṗ1 = 6q2
1 +q2, q̇2 = 1, ṗ2 = q1, (1)

whose Hamiltonian is given by H = 1
2p2

1 − 2q3
1 − q2q1 + p2. The formal Laurent series

solution is given by

q1 ∼ t−2

[
1 + 0t + 0t2 + 0t3 − r1 t4

10
− t5

6
+

r3 t6

4
+ · · ·

]
,

q2 ∼ t−4
[
0 + 0t + 0t2 + 0t3 + r1t

5 + t5 + 0t6 + · · · ] ,

Copyright c© 2001 by J Hu and M Yan



146 J Hu and M Yan

p1 ∼ t−3

[
−2 + 0t + 0t2 + 0t3 − r1 t4

5
− t5

2
+ r3 t6 + · · ·

]
,

p2 ∼ t−1

[
−1 + r2t + 0t2 + 0t3 − r1 t4

30
− t5

24
+

r3 t6

20
+ · · ·

]
.

From the expansions, we can construct the following table:

resonance t r2 r1 r3

j -1 1 4 6
q1 2 0 -1/10 1/4
q2 0 0 1 0
p1 -6 0 -1/5 1
p2 -1 1 -1/30 1/20

In the first column vector are the products of the leading exponents to the corresponding
leading coefficients; the other vectors are the coefficients of the resonances. After rescaling,
the following column vectors in the table form a symplectic basis of R4:




2
0
−6
−1


 ,




0
0
0
1


 ,

2
7




1/4
0
1

1/20


 , (−1)




−1/10
1

−1/5
−1/30


 .

This nice symplectic structure has an important consequence in the study of Painlevé
analysis for Hamiltonian systems. To see this, let us make a transform for the original
Hamiltonian system to a system governing the behavior of solutions near pole singula-
rity. By following a standard procedure [2], we first introduce the indicial normalization
q1 = θ−2 and have the following expansions in terms of small θ:




θ′ = 1 − 3r2θ
4 +

1
2
θ5 + r3θ

6 + · · · ,

q2 = −12r2 + θ + 0θ2 + · · · ,

p1 = −2θ−3 + 6r2θ − θ2 − 2r3θ
3 + · · · ,

p2 = −θ−1 + r1 + r2θ
3 − 1

8
θ4 − 1

5
r3θ

5 + · · · .

Then we introduce new variables η1, η2, and η3 by successively truncating the θ-series of
q2, p2, and p1 at r1, r2, and r3. The result is




q2 = η1,

p1 = −2θ−3 − 1
2
η1θ − 1

2
θ2 + η3θ

3,

p2 = −θ−1 + η2.

(2)

The transform (q1, q2, p1, p2) ↔ (θ, η1, η2, η3) given by q1 = θ−2 and (2) converts the
system (1) into a regular system for the new variables. The proof is given in [3].

A simple computation shows that the symplectic form

dq1∧dp1 +dq2∧dp2 = −2dθ∧dη3 +dη1∧dη2.
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Therefore, if we denote Q1 = θ, Q2 = η1, P1 = −2η3 and P2 = η2, then the following
transform




q1 = Q−2
1 ,

q2 = Q2,

p1 = −2Q−3
1 − 1

2
Q1Q2 − 1

2
Q2

1 −
1
2
Q3

1P1,

p2 = −Q−1
1 + P2,

(3)

preserves the symplectic form. Moreover, the transform converts the Hamiltonian sys-
tem (1) into a Hamiltonian system given by

H(q1, p1, q2, p2) = H̄(Q1, Q2, P1, P2)

= P1 + P2 +
1
8
Q2

1Q
2
2 +

1
4
Q3

1Q2 +
1
8
Q4

1 +
1
4
Q4

1Q2P1 +
1
4
Q5

1P1 +
1
8
Q6

1P
2
1 ,

which is again a polynomial.
We remark that the fact that the mirror transform is symplectic is actually a general

property for Hamiltonian systems, provided that the systems pass the Painlevé test.

3 Main theorem

In this section, we consider general polynomial Hamiltonian systems

u′ = J∇H, ∇H =
(

∂H

∂u1
, · · · ,

∂H

∂un

)
, J =

(
O Im

−Im O

)
(4)

in which n = 2m and H(u) is a polynomial.
A balance for the system is a formal Laurent series solution of the form

ui = ci(t−t0)−gi+u1,i(t−t0)1−gi+· · ·+uj,i(t−t0)j−gi+· · · , i = 1, . . . , n (5)

in which the coefficients are analytic functions of t0, and we have at least one i, such that
ci �= 0 and gi < 0. The integers gi are called the leading exponents of the balance.

Note that the leading exponents in Laurent series are usually understood as the orders
of the poles. We allow some (but not all) of the leading terms in (5) to be trivial.

We call a balance to be principal if it allows (n − 1) free parameters. If we include t0,
this brings the total number of free parameters to n. We say the ODE system (4) passes
the Painlevé test if all balances are principal.

Definition. We say the Hamiltonian system (4) is almost scalar invariant relative to the
leading exponents g1, . . . , gn if gi + gi+m = h − 1 for all i = 1, . . . , m.

Theorem. Suppose the Hamiltonian system (4) is almost scalar invariant relative to the
leading exponents of a principal balance. Then up to exchanging some pi with qi and
rearranging the order among the pairs (q1, p1), . . ., (qm, pm), there is a change of variables
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of the form



q1 = Q−g1
1 ,

q2 = Q−g2
1

(
a2,0 + a2,1Q1 + · · · + a2,j1−1Q

j1−1
1 + Q2Q

j1
1

)
,

...
qm = Q−gm

1

(
am,0 + am,1Q1 + · · · + am,jm−1−1Q

jm−1−1
1 + QmQ

jm−1

1

)
,

p1 = Q
−g1+m

1

(
b1,0 + b1,1Q1 + · · · + b1,jn−1−1Q

jn−1−1
1 − g−1

1 P1Q
jn−1

1

)
,

p2 = Q
−g2+m

1

(
b2,0 + b2,1Q1 + · · · + b2,jn−2−1Q

jn−2−1
1 + P2Q

jn−2

1

)
,

...
pm = Q−gn

1

(
bm,0 + bm,1Q1 + · · · + bm,jm−1Q

jm−1
1 + PmQjm

1

)

such that

1. j1 ≤ · · · ≤ jn−1;

2. ai,j is an analytic function of Qk with jk ≤ j;

3. bi,j is an analytic function of Q2, . . ., Qm, and Pk with jk ≤ j;

4. The symplectic form is preserved

dq1∧dp1+· · ·+dqm∧dpm = dQ1∧dP1+· · ·+dQm∧dPm;

5. The Hamiltonian system is converted to another Hamiltonian system with a polyno-
mial of (Q∗, P∗) as the Hamiltonian function;

6. The principal balance is converted to a solution of the new Hamiltonian system with
the initial data equivalent to the resonances.

The crucial points to prove the main result are that under the above conditions:

1. The Kowalewski exponents appear in pairs;

2. The 2-form dq1 ∧ dp1 + · · · + dqm ∧ dpm is regular under the transform.

We remark that the second point was first realized by Ercolani and Siggia [4].
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