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Abstract

In this talk we introduce generalised Calogero–Moser models and demonstrate their
integrability by constructing universal Lax pair operators. These include models based
on non-crystallographic root systems, that is the root systems of the finite reflection
groups, H3, H4, and the dihedral group I2(m), besides the well-known ones based on
crystallographic root systems, namely those associated with Lie algebras. Universal
Lax pair operators for all of the generalised Calogero–Moser models and for any choices
of the potentials are linear combinations of the reflection operators. The equivalence
of the Lax pair with the equations of motion is proved by decomposing the root system
into a sum of two-dimensional sub-root systems, A2, B2, G2, and I2(m). The root
type and the minimal type Lax pairs, derived in our previous papers, are given as the
simplest representations. The spectral parameter dependence plays an important role
in the Lax pair operators, which bear a strong resemblance to the Dunkl operators.

1 Introduction

This talk is based on a series of papers on Calogero–Moser models [1, 2, 3], in particular [4].
Generalized Calogero–Moser models are integrable many-particle dynamical systems based
on finite reflection groups, which include the dihedral groups I2(m) and H3 and H4 to-
gether with the Weyl groups of the root systems associated with Lie algebras, called
crystallographic root systems. Integrability of classical Calogero–Moser models based on
the crystallographic root systems [5, 6, 7] is shown in terms of Lax pairs. The root and the
minimal type Lax pairs derived in [1] provide a universal framework for these Calogero–
Moser models, including those based on exceptional root systems and with the twisted
potentials. On the other hand, a theory of classical integrability for the models based
on non-crystallographic root systems has been virtually non-existent. This is in sharp
contrast with the quantum counterpart. Dunkl operators, which are useful for solving
quantum Calogero–Moser models, were first explicitly constructed for the models based
on the dihedral groups [8].

In this talk we present a Lax pair in an operator form for generalized Calogero–Moser
models, which applies universally to the models based on non-crystallographic root systems
as well as those based on crystallographic ones. In this Lax pair the reflection operators
play a central role and the spectral parameter dependence is also essential. When suitable
representation spaces are chosen, the universal Lax pair reproduces the root type and the
minimal type Lax pairs for the models based on the crystallographic root systems [4].
For the applications of Calogero–Moser models to the theories based on Lie algebras, for
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example, the Toda models [9, 2] and the supersymmetric gauge theories [7], the minimal
type Lax pairs are relevant.

For the general background of this paper and the physical applications of the Calogero–
Moser models with various potentials to lower-dimensional physics, we refer to our previous
papers [1] and references therein.

2 Generalized Calogero–Moser models

A generalized Calogero–Moser model is a Hamiltonian system associated with a root sys-
tem. A root system ∆ of rank r is a set of vectors in Rr which is invariant under reflections
in the hyperplane perpendicular to each vector in ∆. In other words,

∆ � sα(β) = β−2(α·β/|α|2)α, ∀α, β ∈ ∆. (2.1)

Dual roots are defined by α∨ = 2α/|α|2, in terms of which

sα(β) = β− (α∨·β)α. (2.2)

The root systems for finite reflection groups may be divided into two types: crystallo-
graphic and non-crystallographic root systems. Crystallographic root systems satisfy the
additional condition

α∨·β ∈ Z, ∀α, β ∈ ∆. (2.3)

These root systems are associated with simple Lie algebras: Ar, Br, Cr, Dr, E6, E7, E8,
F4, and G2 and BCr. The remaining non-crystallographic root systems [10] are H3, H4,
and the dihedral group of order 2m, {I2(m), m ≥ 4}.

The dynamical variables are the coordinates {qj} and their canonically conjugate mo-
menta {pj}, with the Poisson brackets

{qj , pk} = δj
k, {qj , qk} = {pj , pk} = 0, j, k = 1, . . . , r. (2.4)

These will be denoted by vectors in Rr, q = (q1, . . . , qr), p = (p1, . . . , pr). The Hamiltonian
for the generalized Calogero–Moser model is

H =
1
2
p2 +

∑
α∈∆

g2
|α|

|α|2 V|α|(α ·q), (2.5)

in which the real coupling constants g|α| and potential functions V|α| are defined on orbits
of the corresponding finite reflection group. This then ensures that the Hamiltonian is
invariant under reflections of the phase space variables about a hyperplane perpendicular
to any root

q → sα(q), p → sα(p), ∀α ∈ ∆. (2.6)

The Lax pair that we will construct will apply for the following potentials:

1. Untwisted elliptic potential for all of the crystallographic root systems.

V|α|(α·q) = ℘(α·q|{2ω1, 2ω3}), for all roots, (2.7)

in which ℘ is the Weierstrass ℘ function with a pair of primitive periods {2ω1, 2ω3}.
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2. Twisted elliptic potential for all of the non-simply laced root systems.

V|α|(α·q) =

{
℘(α · q|{2ω1, 2ω3}), for long roots,

℘(α · q|{ω1, 2ω3}), for short roots,
except for G2, (2.8)

V|α|(α·q) =




℘(α · q|{2ω1, 2ω3}), for long roots,

℘

(
α · q|

{
2ω1

3
, 2ω3

})
, for short roots,

for G2. (2.9)

3. Trigonometric and hyperbolic potentials for all crystallographic systems.

V|α|(α·q) =

{
a2/sin2 a(α · q),
a2/sinh2 a(α · q),

for all roots, a is real const. (2.10)

4. Rational potential for all of the generalized Calogero–Moser models.

V|α|(α ·q) =
1

(α · q)2 , for all roots. (2.11)

These models are also integrable if a confining harmonic potential ω2q2/2 is added
to the Hamiltonian. The above degenerate potentials, (2.10) and (2.11) are obtained
as one or both periods of the elliptic function diverge.

3 Lax pair operators

Here we construct a Lax pair for the generalized Calogero–Moser models in an operator
form acting on an as yet unspecified vector space. The operators appearing in the Lax
pair are naturally the reflection operators {ŝα, α ∈ ∆} of the root system. They act on
a set of Rr vectors Γ = {µ(k) ∈ Rr, k = 1, . . .}, which is permuted under the action of
the reflection group. The totality of the vectors in Γ forms the representation space V.
Another set of operators {Ĥj , j = 1, . . . , r} is necessary. If Ĥj acts on a vector µ(k) ∈ Γ,
the j-th component is returned:

Ĥjµ
(k) = µ

(k)
j µ(k).

These form the following operator algebra:

[Ĥj , Ĥk] = 0, [Ĥj , ŝα] = αj

(
α∨· Ĥ

)
ŝα, ŝαŝβ ŝα = ŝsα(β). (3.1)

The first relation implies that the operators {Ĥj} form an Abelian subalgebra and the last
relations are those for the finite reflection group associated with the root system ∆.

Next we describe the Lax pair and the corresponding Hamiltonian for the generalized
Calogero–Moser model for the root system ∆. The Lax operators are

L = p · Ĥ + X, X = i
∑

ρ∈∆+

g|ρ|
(
ρ∨· Ĥ

)
x|ρ|

(
ρ · q,

(
ρ∨· Ĥ

)
ξ
)
ŝρ,

M = i
∑

ρ∈∆+

g|ρ| y|ρ|
(
ρ · q,

(
ρ∨· Ĥ

)
ξ
)
ŝρ.

(3.2)
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The function x for the untwisted models are (b is an arbitrary constant):

x(u) = xL(u,w) = xS(u,w) =
σ(w − u)
σ(w)σ(u)

exp[bw u]. (3.3)

For the twisted models except for G2:

xL(u,w) =
σ(w − u)
σ(w)σ(u)

exp[bw u],

xS(u,w) =
σ(w/2 − u|{ω1, 2ω3})

σ(w/2|{ω1, 2ω3})σ(u|{ω1, 2ω3}) exp
[(

b +
e1

2

)
w u

]
,

=
xL(u,w/2)xL(u + ω1, w/2)

xL(ω1, w/2)
, e1 ≡ ℘(ω1).

(3.4)

For the twisted G2 model:

xL(u,w) =
σ(w − u)
σ(w)σ(u)

exp[bw u],

xS(u,w) =
σ(w/3 − u|{2ω1/3, 2ω3})

σ(w/3|{2ω1/3, 2ω3})σ(u|{2ω1/3, 2ω3}) exp
[(

b +
2
3
℘(2ω1/3)

)
w u

]
,

=
xL(u,w/3)xL(u + 2ω1/3, w/3)xL(u + 4ω1/3, w/3)

xL(2ω1/3, w/3)xL(4ω1/3, w/3)
exp[bw u].

(3.5)

The function y|ρ| is defined by y|ρ|(u,w) ≡ ∂
∂ux|ρ|(u,w). Furthermore, x|ρ|(u,w) is odd:

x|ρ|(−u,−w) = −x|ρ|(u,w) so that L and M are independent of the choice of positive
roots ∆+. The function x|ρ| is a “square root” of the potential V|ρ|

x|ρ|(u,w)x|ρ|(−u,w) = −V|ρ|(u)+C|ρ|(w). (3.6)

The Hamiltonian for the theory is defined in terms of a representation of the operator L
of (3.2) by H = Tr(L2)/2CΓ where the constant CΓ, which depends on the representation,
is defined by Tr(ĤjĤk) = CΓ δjk. The resulting Hamiltonian is then (2.5) plus a constant.

The underlying idea of the Lax operator L, (3.2), is quite simple. As seen above, L is
a “square root” of the Hamiltonian. Thus one part of L contains p which is not associated
with roots and another part contains x|ρ|(ρ · q), a “square root” of the potential V|ρ|(ρ · q),
which being associated with a root ρ is therefore accompanied by the reflection operator ŝρ.

The equations of motion following from this Hamiltonian are

q̇j =
∂H
∂pj

= pj , (3.7)

ṗj = −∂H
∂qj

= − ∂

∂qj


∑

ρ∈∆

g2
|ρ|

|ρ|2V|ρ|(ρ · q)



=
∑
ρ∈∆

g2
|ρ|

|ρ|2ρj

[
y|ρ|(ρ · q, w)x|ρ|(−ρ · q, w) − x|ρ|(ρ · q, w)y|ρ|(−ρ · q, w)

]
.

(3.8)

Because of (3.6) the last expression in (3.8) is independent of w.
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The Lax equation

L̇ =
d

dt
L = [L,M ] (3.9)

may be divided into three parts as

d

dt
X = [p · Ĥ,M ], (3.10)

d

dt
(p ·Ĥ) = [X,M ]diagonal, (3.11)

0 = [X,M ]off-diagonal. (3.12)

We next prove that each of these equations is consistent with the equations of motion (3.7).
The left-hand side of (3.10) is

d

dt
X = i

∑
ρ∈∆+

g|ρ|
(
ρ∨· Ĥ

)
y|ρ|

(
ρ · q,

(
ρ∨· Ĥ

)
ξ
)

(ρ · q̇) ŝρ (3.13)

and the right-hand side is

[p · Ĥ,M ] =


p · Ĥ, i

∑
ρ∈∆+

g|ρ| y|ρ|
(
ρ · q,

(
ρ∨· Ĥ

)
ξ
)
ŝρ


 ,

= i
∑

ρ∈∆+

g|ρ| y|ρ|
(
ρ · q,

(
ρ∨· Ĥ

)
ξ
) (

ρ∨· Ĥ
)

(ρ · p) ŝρ =
d

dt
X.

(3.14)

The second line follows from the commutation relation (3.1) and the last equality follows
from the equation of motion q̇ = p.

The left-hand side of (3.11), after using the equations of motion (3.8), is

d

dt

(
p · Ĥ

)
=

∑
ρ∈∆

g2
|ρ|

|ρ|2
(
ρ · Ĥ

)

× [
y|ρ|(ρ · q, w)x|ρ|(−ρ · q, w) − x|ρ|(ρ · q, w)y|ρ|(−ρ · q, w)

]
.

(3.15)

The commutator [X,M ] reads

[X,M ] = −

 ∑

ρ∈∆+

g|ρ|
(
ρ∨· Ĥ

)
x|ρ|

(
ρ · q,

(
ρ∨· Ĥ

)
ξ
)
ŝρ,

∑
σ∈∆+

g|σ| y|σ|
(
σ · q,

(
σ∨· Ĥ

)
ξ
)
ŝσ


 ,

= −
∑

ρ,σ∈∆+

g|ρ|g|σ|
[(

ρ∨· Ĥ
)
x|ρ|

(
ρ · q,

(
ρ∨· Ĥ

)
ξ
)

× y|σ|
(
σ · q,

(
sρ(σ)∨· Ĥ

)
ξ
)
ŝρŝσ − y|σ|

(
σ · q,

(
σ∨· Ĥ

)
ξ
) (

sσ(ρ)∨· Ĥ
)
,

x|ρ|
(
ρ · q,

(
sσ(ρ)∨· Ĥ

)
ξ
)
ŝσ ŝρ

]
.

(3.16)
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Since ŝρŝσ and ŝσ ŝρ are rotations (except for ρ = σ, ŝ2
ρ = 1) they do not leave any real

vectors in the rotation plane invariant. Thus [X,M ] is decomposed into the diagonal
(ρ = σ) and the off-diagonal (ρ �= σ) parts. The diagonal part gives the equation of
motion

[X,M ]diag. =
∑

ρ∈∆+

g2
|ρ|

(
ρ∨· Ĥ

) [
y|ρ|

(
ρ · q,

(
ρ∨· Ĥ

)
ξ
)
x|ρ|

(
−ρ · q,

(
ρ∨· Ĥ

)
ξ
)

−x|ρ|
(
ρ · q,

(
ρ∨· Ĥ

)
ξ
)
y|ρ|

(
−ρ · q,

(
ρ∨· Ĥ

)
ξ
)]

,

=
d

dt

(
p · Ĥ

)
.

(3.17)

Finally, the off-diagonal part vanishes:

0 = [X,M ]off-diag.

=
∑

ρ �=σ∈∆+

g|ρ|g|σ|
[(

ρ∨· Ĥ
)
x|ρ|

(
ρ · q,

(
ρ∨· Ĥ

)
ξ
)
y|σ|

(
σ · q,

(
sρ(σ)∨· Ĥ

)
ξ
)

−
(
sρ(σ)∨· Ĥ

)
y|ρ|

(
ρ · q,

(
ρ∨· Ĥ

)
ξ
)
x|σ|

(
σ · q,

(
sρ(σ)∨· Ĥ

)
ξ
)]

ŝρŝσ.

(3.18)

The right hand side is decomposed into a sum corresponding to a fixed rotation R̂ψ ≡ ŝρŝσ

in each two-dimensional plane. The coefficient of each R̂ψ ≡ ŝρŝσ which corresponds to
possible two-dimensional sub-root systems, A2, B2, G2, and I2(m), separately vanishes.
For the details of the proof and other materials, we refer to [4].
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