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Abstract—This paper describes the training, validation and 

application of recurrent neural network (RNN) models to 

computing the algal dynamic variation at three sites in Gonghu 

Bay of Lake Taihu in summer. The input variables of Elman’s 

RNN were selected by means of the canonical correspondence 

analysis (CCA) and Chl_a concentration as output variable. 

Sequentially, the conceptual models for Elman’s RNN were 

established and the Elman models were trained and validated on 

daily data set. The values of Chl_a concentration computed by 

the models were closely related to their respective values 

measured at the three sites. The correlation coefficient (R2) 

between the predicted Chl_a concentrations by the model and the 

observed value were 0.86-0.92. The results show that the CCA 

can efficiently ascertain appropriate input variables for Elman’s 

RNN and the Elman’s RNN can precisely forecast the Chl_a 

concentration at three different sites in Gonghu Bay of Lake 

Taihu in summer. 

Keywords—Elman’s recurrent neural network; canonical 

correspondence analysis (CCA); Algal dynamic variation 

I. INTRODUCTION  

Algal bloom is an environmental hazard which reduces the 

quality of water in rivers, lakes and reservoirs. Recurrent 

proliferation of algae usually causes a series of problems such 

as alteration of community structure, deterioration of water 

quality, and loss of cost-efficiency in water purification process 

[1-4]. Therefore there is a strong necessity for the 

establishment of appropriate ecological modelling systems, 

which can analyze behavior of proliferating phytoplankton 

with high accuracy. 

In view of the complexity of aquatic food webs and their 

interactions with environmental variables, recurrent neural 

network (RNN) models capable of modelling a complex 

nonlinear system are required to elucidate and predict 

underlying processes of algal blooms. Many researchers have 

used neural networks to simulate the timing and magnitude of 

algal blooms and to forecast the cyanobacteria abundance [5-7]. 

In order to process sufficient information from the target 

ecosystem or entity, the size of RNN models tended to become 

larger by applying diverse state variables. In an RNN, one of 

main task is to determine the model input variables that affect 

the output variable significantly. Many researches provided 

algorithms or paradigms for selecting suitable input variables 

[8,9]. 

In recent years multivariate statistical analysis, especially 

canonical correspondence analysis (CCA) has been widely 

employed to examine relationships in large-scale ecological 

data sets. Hansel-welch et al.[10]showed the annual variation 

in abundance of filamentous algae by using CCA. Ke et al. [11] 

used it to explore the phytoplankton succession during the 

spring-summer periods in 2004 and 2005 in Meiliang Bay of 

Lake Taihu. CCA was also performed to elucidate the 

relationship between Microcystis operational taxonomic unit 

composition and the environmental factors in Lake Taihu [12].  

The present study utilized RNN and CCA for unraveling 

complex ecological relationships in the database of Gonghu 

Bay in summer, and forecasting of algae concentrations by 

means of water quality and meteorological data. The study 

aimed at: (1) elucidating the relationships between algal 

dynamic variation and environmental factors in Gonghu Bay 

by means of CCA (2) forecasting the algae concentrations and 

to different environmental variables by means of recurrent 

neural network. 

II. STUDY SITE AND DATA 

Gonghu Bay is located in the northeast of Lake Taihu 

which is the third largest freshwater lake in China, with an area 

of 146 km
2
 and average depth of 2.0m. Until now, there are 

three main waterworks scattered along shore of Gonghu Bay 

and supplied approximately 0.7 billion m
3
 drinking water 

annually from the lake to the surrounding cities, such as 

Suzhou and Wuxi. The blooms usually take place in June-

October dominated by cyanobacteria in Gonghu Bay. 

 
Fig. 1.  Map showing the geographical setting of the present survey area with 

three sites 
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The data used in this study were derived from the water 

resource of Gonghu water quality survey and Gonghu wind-

wave-platform conducted by Bureau of Hydrology and Water 

Resources Monitoring, Taihu Basin Management Bureau 

(TBA). The selected three sites (Fig.1) are designated as 1#, 2# 

and 3# closing three waterworks of Gonghu Bay. From June to 

October in 2010, sampling was undertaken once each day at 

three sites in the experiment area measuring environmental 

factors such as water temperature(WT, ℃ ), pH, dissolved 

oxygen(DO, mgL
-1

), chemical oxygen demand (CODMN, mgL
-

1
), total nitrogen(TN, mgL

-1
), total phosphorus(TP, mgL

-1
), 

Chlorophyll-a concentration(Chl_a, mgm
-3

), the quantity of 

dilution water(WQ, m
3
). Water samples were collected from a 

depth of 50cm below the surface, sampling network and 

analytical procedures are executed by standard. 

TABLE I.  THE QUANTITY OF DILUTION WATER DURING JULY TO OCTOBER 

IN 2010 

Time 
Total quantity 

（m3） 

Average input rate 

（m3） 

2010.6.30-2010.7.18 13169 693.1 

2010.8.18-2010.9.11 21733 905.5 

2010.10.11-2010.10.25 9754 650.3 

 

The wind data collected at the several meteorological 

stations located around Gonghu Lake are similar [13]. 

Therefore, we used the wind data collected every minute at 

Gonghu wind wave platform (about 10m above the water level 

of Taihu Lake), which nearing site 2# (Fig.1). All winds were 

sampled at 1HZ and the wind measurements were conducted 

according to Marcel Bottema [15]. In this research, we choice 8 

hours mean significant wave height before sampling as wave 

variable. And the wind-induced wave height H can be 

estimated using the following empirical formula [14]: 
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Where F and d represent the fetch and the depth of the site, 

U is the wind speed of 10m above the water level of Gonghu 

wind-wave platform, and g is gravity. Some statistics that 

describe the measured data, as well as the longitude and 

latitude for each sampling site are indicated TABLEⅠ and 

TABLE Ⅷ. 

III. METHODS 

A. The network structure 

Elman’s recurrent networks are a special type of the 

dynamic neural nets. The feedback connection in Elman’s 

neural nets is from the outputs of neurons in the hidden layer to 

the context layer units that are called as context nodes. This 

part of the input layer, namely, the context layer, plays a role in 

storing internal states in Elman’s net as mentioned above [16]. 

The result of processing in a previous time step can be used at 

the current time step. This property of the Elman type RNN 

provides very important advantage, especially, in real time 

applications to follow the dynamical change of water resources 

variables in practice. 

In this study, three-layer Elman’s neural networks were 

constructed for prediction of algal dynamic variation in three 

sites of Gonghu Bay, as shown in Fig.2. The model was 

composed of one input layer optimized input variables selected 

by the method of CCA, one hidden layer and one output layer 

with one output variable in three sites. In order to determine the 

optimum number of nodes in the hidden layer and transfer 

functions, different Elman models were constructed and tested. 

 

Fig. 2.  The architecture of the Elman model for algae concentration in 

Gonghu Bay  

B. Selection of input variables based on CCA 

The choice of Elman’s input variables is generally based on 

a priori knowledge of causal variables, inspections of time 

series plots, and statistical analysis of potential inputs and 

outputs. In this study, we applied CCA to determine the factors 

that influence the extent of the algal dynamic variation 

experienced by each environmental variable. We correlated the 

8 environmental variables to algal dynamic variation. The goal 

of the method is to be able to select the algal dynamic variation 

best correlated with the environmental variables for the input 

variables of the Elman model subsequently. CCA creates pairs 

of linear combinations between each group of variables called 

canonical variables, so that the correlation between the 

variables of the same pare is maximized and so that correlation 

between the variables of two different pairs is nil. The analyses 

were performed with SAS 9 software. Details concerning CCA 

are available in reference books [17].  

As a rule of thumb, an absolute value of 0.3 or greater in 

canonical loading was used to select the variables that are 

thought to have a meaningful interpretation of the related 

canonical variable [19, 20]. We chose a cutoff value of 0.45 to 

select important loadings in this study. 

C. Model validation and neural network based sensitivity 

analysis approach 

To determine the performance of selected network model, 

two different criteria were used: the Mean Relative Percentage 

Error (MRPE) and the coefficient of determination (R
2
) [18]. 

The MRPE represents the error associated with the model and 

can be computed as: 
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The coefficient of determination (R
2
) represents the 

percentage of variability that can be explained by the model 

and is calculated as: 
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Where xpi and xi represent the model computed and 

measured values of the variable, and N represents the number 

of observations. The MRPE, a measure of the goodness-of-fit, 

best describes an average measure of the error in predicting the 

dependent variable. Depending on sensitivity of algal dynamic 

variation and the mismatch between the forecasted algal 

dynamic variation and that measured; an expert can decide 

whether the predictability of the Elman model is accurate 

enough to make important decisions regarding data usage. 

IV. RESULT AND DISCUSSION 

A. Identification by canonical correlation analysis of the 

factors influencing Microcystis blooms  CCA results 

1) Site 1#  

Only the first canonical correlations was statistically 

significant (F=1.83, P<0.001), indicating that the two sets of 

variables were correlated (TABLE Ⅱ). Axis 1 of the CCA, 

with the value of coefficient exceeds 0.78, explained 66.71% of 

the cumulative percentage variance of algal concentration 

while all the environmental variables considered for the 

analysis accounted for 89.21% of the total variance of the algal 

concentration. 

TABLE II.  CANONICAL CORRELATION COEFFICIENTS IN SITE 1# 

Axis Axis1 Axis2 Axis3 

Eigenvalues 1.8344 0.2488 0.0660 

Species-environment correlations 0.7824 0.6348 0.3472 

Cumulative (%) 66.71 76.53 89.21 

Monte Carlo test: Eingenvalues-p <.001 0.7081 0.1055 

TABLE III.  CANONICAL STRUCTURES OF THE FIRST PAIR OF CANONICAL 

VARIATES IN SITE 1# ( CC=0.7824(APPROX.F=1.83,P<0.001)) 

Environmental factors Algal concentration 

variable loading variable loading 

WT(℃) 0.4686 chl_a_1 0.8085 

pH 0.5759 chl_a_2 0.1210 

DO (mgL-1) 0.2887 chl_a_3 0.2588 

CODmn (mgL-1) 0.2717   

TN (mgL-1) -0.1273   

TP (mgL-1) 0.3852   

8Hm(cm) -0.6357   

WQ -0.5486   

 

The canonical structures of the first pairs of canonical 

variates were shown in TABLE Ⅲ. It is shown that WT, pH, 

8Hm and WQ were strongly correlated with the first CCA axis 

(0.4686, 0.5759, -0.6357 and -0.5486 respectively). This result 

helps to narrow down the relationship between the 

environmental factors and algal concentration. That is, 

hydrologic variables and wave climate might affect algal 

concentration in the next day. According the result of CCA and 

domain knowledge, WT, pH, 8hm and WQ were selected to the 

input variables of Elman model of Site 1#. 

2) Site 2#  

TABLE Ⅳ reveals that the first canonical correlation was 

statistically significant (F=5.63, P<0.001). The value of the 

first coefficient exceeds 0.92 and explained variance is about 

84.7%. In fact, this value reflects a very strong link between 

the environmental factors and algal concentration. The 

canonical structures of the first pairs of canonical variates 

recorded in TABLE Ⅴ shows that the environmental factors 

mainly represented the hydrologic variables and wind-related 

wave height (WT, pH, 8Hm and WQ) strongly correlated to 

algal concentration mainly represented Chl_a_1. Obviously, 

hydrologic variables, wave climate and water division might 

affect algal concentration in the next day. According the result 

of CCA and domain knowledge, WT, pH, 8Hm and WQ were 

selected to the input variables of Elman model of Site 2#. 

TABLE IV.  CANONICAL CORRELATION COEFFICIENTS IN SITE 2# 

Axis Axis1 Axis2 Axis3 

Eigenvalues 5.6337 0.6750 0.2973 

Species-environment correlations 0.9216 0.6348 0.4777 

Cumulative (%) 84.70 91.14 100 

Monte Carlo test: Eingenvalues-p <.001 0.217 0.3222 

TABLE V.  CANONICAL STRUCTURES OF THE FIRST PAIR OF CANONICAL 

VARIATES IN SITE 2# ( CC=0.9216(APPROX.F=5.63,P<0.001) 

Environmental factors Algal concentration 

variable loading variable loading 

WT(℃) 0.4862 chl_a_1 0.9515 

pH 0.4514 chl_a_2 0.3051 

DO (mgL-1) 0.2420 chl_a_3 0.2300 

CODmn (mgL-1) 0.3175   

TN (mgL-1) -0.1582   

TP (mgL-1) -0.4280   

8Hm(cm) -0.6307   

WQ -0.5528   

3) Site 3#  

Based on the CCA results (TABLE Ⅵ), the first canonical 

correlations were statistically significant (F=1.66, P<0.001). 

The canonical correlation coefficient was 0.79. Altogether, 

these 8 variables explained 75.21% of the total variance in 

algal-environment relation. The first axis of the ordination 

explained 55.9% of the total variance.  
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Results from CCA ordination of the most environmental 

variables and algal concentration show that WT, TP, pH and 

8Hm were strongly correlated with the first CCA axis (0.5997, 

-0.6674, 0.4934 and -0.4559 respectively). TABLE Ⅶ shows 

the canonical structures of the first pairs of canonical variates. 

In Site 3#, the algal concentration represented Chl_a_1 was 

significantly affected by the environmental variables in one day 

before. According the result of CCA and domain knowledge, 

WT, TP, pH and 8Hm were selected to the input variables of 

Elman model of Site 3#. 

TABLE VI.  CANONICAL CORRELATION COEFFICIENTS IN SITE 3# 

Axis Axis1 Axis2 Axis3 

Eigenvalues 1.6560 0.6234 0.2627 

Species-environment correlations 0.7896 0.4561 0.2981 

Cumulative (%) 55.90 60.68 75.21 

Monte Carlo test: Eingenvalues-p <.001 0.1775 0.0665 

TABLE VII.  CANONICAL STRUCTURES OF THE FIRST PAIR OF CANONICAL 

VARIATES IN SITE 3# ( CC=0.7896(APPROX.F=1.66,P<0.001) 

Environmental factors Algal concentration 

variable loading variable loading 

WT(℃) 0.5997 chl_a_1 0.9232 

pH 0.4934 chl_a_2 0.3380 

DO (mgL-1) 0.2698 chl_a_3 0.1765 

CODmn (mgL-1) 0.3290   

TN (mgL-1) -0.1393   

TP (mgL-1) -0.6674   

8Hm(cm) -0.4005   

WQ -0.4559   

B. Predictability of the Elman models 

The Elman model was developed to simulate 1-day-ahead 

of Chl_a concentrations at three sites in Gonghu Bay of Lake 

Taihu. The architecture of the best Elman model for the Chl_a 

is shown in Fig.2. The Elman model is composed of one input 

layer with input variables selected by CCA, one hidden layer 

with optimized nodes and one output layer with one output 

variable. The parameters of Elman model which produced the 

“best results” for validation data set was were conducted 

according to Heyi Wang[9]. 

The developed Elman models accurately simulated the 

Chl_a concentrations at three sites in Gonghu Bay of Lake 

Taihu. The results are described in Fig.3. Using optimized 

input variables, the Chl_a concentrations prediction model 

accurately simulated the range of Chl_a concentrations at site 

1(R
2
=0.90; MRPE=19.42%), site 2(R

2
=0.86; MRPE=17.61%) 

and site 3(R
2
=0.92; MRPE=13.17%). The model simulated 

Chl_a concentrations with a good accuracy. The Elman model 

was able to simulate the Chl_a concentration with an accuracy 

of a degree or less (MRPE<20% and R
2
>0.85). The result of 

Elman model shows that it is possible to predict algal dynamic 

variation in three sites in summer. 

V.  CONCLUSION 

In this paper, using continuous daily measurements of 

environmental parameters at different sites, Elman models 

were created to imitate algal dynamic of Gonghu Bay during 

alga bloom. Based on CCA, the factors affecting the change of 

algal dynamic were selected to be input variables. In spite of 

largely unknown factors controlling transferring algal dynamic 

variation and the limited data set size, a relatively good 

correlation was observed between the measured and predicted 

values. In our study, CCA was first employed to examine 

interactions between the ecological factors that influence 

plankton communities in Gonghu Bay. The discussion shows 

that the Elman can be used to extract, recognize and predict 

related patterns of limnological time series. It is also stated that 

the input variables computed by CCA is acceptable. We 

suggest that the Elman can be as a powerful predictive 

alternative to traditional modelling techniques and the accuracy 

of the predictions is improved with increasing event and time 

resolution of training data. The successful application of Elman 

models to freshwater ecosystems may provide the opportunity 

of improving the efficiency of monitoring and management 

systems. 
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TABLE VIII.  SOME STATISTICS ON THE MEASURED DATA 

 WT(℃) pH DO (mgL-1) CODMN (mgL-1) TN (mgL-1) TP (mgL-1) Chl_a(mgm-3) 8Hm(cm) 

Site 1# (120°13′51.0″E，31°23′51.8″N) 

Mean 26.54 8.23 6.97 3.79 1.61 0.06 14.83 8.96 

Min 18.50 7.51 4.69 2.18 0.65 0.02 2.50 1.76 

Max 33.10 9.33 10.94 13.20 4.55 0.15 73.40 28.29 

Site 2# (120°22′17.8″E，31°26′46.8″N) 

Mean 26.66 8.33 7.40 4.03 1.62 0.08 27.68 9.00 

Min 17.9 7.21 5.22 2.44 0.72 0.03 2.80 1.76 

Max 33.5 9.18 10.8 9.98 3.74 0.40 77.50 28.29 

Site 3# (120°22′32.5″E，31°22′50.6″N) 

Mean 26.69 8.59 7.74 3.08 1.03 0.02 4.67 8.92 

Min 18.30 7.50 4.58 2.18 0.29 0.01 1.00 1.76 

Max 33.40 9.51 12.84 4.36 3.12 0.07 24.10 28.29 

     

           

Fig.3 Measured and predicted Chl_a concentrations for training and validation tests of three sites 
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