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Abstract—Impervious surface played an important role in 

monitoring urban sprawl and understanding human activities. 

Linear spectral mixture analysis (LSMA) is commonly used to 

estimate impervious surface due to its simple structure and clear 

physical meaning. But previous researches found that LSMA 

seems to overestimate slightly impervious surface fraction in less 

developed areas (0–20%), while underestimating it in the central 

business district (CBD) (over 80%). This paper using LSMA 

model, under fully constrained and semi-constrained condition, 

developed impervious surface of Fujin town, Heilongjiang 

Province from the Landsat Thematic Mapper (TM) image. 

Accuracy evaluation was estimated between town and rural areas 

under the two different constraints. The results indicated that 

impervious surface developed by four endmembers(high albedo, 

low albedo, soil, and vegetation) under fully constrained and 

semi-constrained conditions overestimated slightly in less 

developed areas. Impervious surface developed by three 

endmembers (high albedo, soil, and vegetation) under semi-

constrained condition provided a fine performance with a RMS 

reduced from 19.79% to 17.73%. 

Key words: inpervious surface; LSMA; semi-constrained 

condition 

I. INTRODUCTION  

 Impervious surfaces refer to any surfaces that water 

cannot infiltrate, and are primarily associated with 

transportation and buildings [1]. Impervious surface has been 

recognized as a key indicator of environment because they are 

related to many environmental problems, such as water quality, 

stream health, and the urban heat island effect [2-3]. So 

accuracy impervious surface information is crucial for urban 

planning and environment management. Many algorithms and 

techniques have been proposed based on various spatial 

resolutions sensors of data. For medium spatial resolution data 

(10-100m) [4], linear spectral mixture analysis (LSMA) is 

commonly used to estimate impervious surface due to its 

simple structure and clear physical meaning [5-9].  But 

previous researches found that LSMA seemed to overestimate 

slightly impervious surface fraction in less developed areas 

(0–20%), while underestimating it in the central business 

district (CBD) (over 80%). This is reasonable since the fully 

constrained linear mixture model requires that endmember 

fractions are positive and sum to 1 [10]. Little research was 

examined in previous literature to estimate impervious 

surfaces under different constraints. Therefore, we try to 

discuss the effects of different constraints to impervious 

surfaces estimation and to improve the estimation accuracy. 

 

II. STUDY AREA 

The county of Fujin, Heilongjiang Province, was selected 

to implement this study. Fujin is located between 131°25′ and 

133°26′ E, 46°51′ and 47°31′ N (Fig. 1). Fujin is the key grain 

and sugar beet base in Heilongjiang Province and one of the 

country's 100 major grain-producing counties in China. With 

the annual grain output reached 3.07 billion kilograms, Fujin 

was honoured as the “Chinese soybean town” and “China's 

northeast rice Township”. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. The study area–Fujin County, Hei Longjiang, China. 

III. DATA SOURCE 

A Landsat5 TM image, acquired on October 9, 2009 

(row/path: 27/115), was chosen in this study. The digital 

numbers (DNs) of the TM images were converted to 

normalized exo-atmospheric reflectance. No atmospheric 

calibration was conducted for the TM images, because 

previous researches had demonstrated that atmospheric 

calibration did not have an effect on fraction images when 

image end members were used [11]. The study area was 

extracted from the reflectance image. 
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IV. METHODS 

LSMA assumes that the spectrum measured by a sensor 

is a linear combination of the spectra of all components within 

the pixel. The linear mixture model is: 
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Where Rk is the reflectance of band k of a pixel; N is the 

number of endmembers; fi is the proportion of endmembers k 

within the pixel; R(i,k) is the spectral reflectance of endmember 

i within the pixel on band k, and ek is the unmodeled residual 

for band k in the pixel. In this study, fi is subject to the 

following restrictions: 

1) Fully constrained condition 
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2) Semi-constrained condition 
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xi is the final proportion of endmembers k within the pixel and 

is normalized with fi. 

The overall root mean square error (RMS) is often used to 

assess the fit of the model, and is computed based on errors 

and number of spectral bands used:  
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Where ek is the residual for band k, M is the number of 

spectral bands. 

Endmember selection is critical for estimating 

impervious surfaces. Minimum noise fraction (MNF) was 

used to segregate and equalize the noise in the data, and to 

reduce the data dimensionality for target detection processing 

[12-13]. The resulting bands of the MNF transformed data are 

sorted by spatial coherence in descending order. Lower MNF 

bands typically have spatial structure and contain most of the 

information. Higher MNF bands typically have little spatial 

structure and contain most of the noise.  

In this study, the six TM bands (1, 2, 3, 4, 5, and 7) were 

transformed with MNF. The first three MNF components were 

constructed to select four endmembers: high albedo, low 

albedo, soil, and vegetation. After selection of the image 

endmembers, a constrained least-squares solution was used to 

unmix the six TM reflective bands into fraction images under 

fully constrained and semi-constrained condition.  

 

V. RESULTS 

The GeoEye image of Fujin town was used for validation 

of impervious surface estimation results. And a random 

sampling method was applied to assess accuracy of 

impervious surfaces estimation (Fig. 2a). 107 sample plots 

with 5×5 pixels were generated and linked to GeoEye image. 

The impervious surface objects within each sample plot were 

digitized on the GeoEye image (Fig. 2b). The acquisition date 

of the GeoEye image is April 30, 2011, which is about 6 

months later than the TM image. Therefore, a careful check of 

each sample plot between a TM color composite and GeoEye 

image was conducted. Three sample plots changed a lot during 

the past 6 months, then they were removed from the accuracy 

assessment. Finally, 104 samples were used to assess the 

developed impervious surface image quality. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2. Strategy for collection of reference data for the accuracy assessment 

of impervious surface image:(a) distribution of sample plots in Fujin town; (b) 

the sample plot size is 5×5 TM pixels and the actual impervious surface is 
digitalized with Geoeye image. 

 

Fig. 3 showed the accuracy assessment results of 

impervious surface. The results indicated that impervious 

surface developed by four endmembers under fully 
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constrained and semi-constrained conditions overestimated 

slightly in less developed areas. Impervious surface developed 

by three endmembers HSV (high albedo, soil, and vegetation) 

provided a fine performance with a RMS of 17.73% (Table 1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3. Results of impervious surface estimation accuracy assessment: (a) 

impervious surface developed by four endmembers HLSV(high albedo, low 

albedo,  soil, and vegetation) under fully constrained condition, (b) 
impervious surface developed by HLSV under semi-constrained condition, (c) 

impervious surface developed by HSV (high albedo, soil, and vegetation) 

under fully constrained condition, (d) impervious surface developed by HSV 
under semi-constrained condition. 

 

TABLE 1. A summary of the best constrained conditions for estimating 

impervious surface 

Endmembers Constrained condition RMS(%) 

HLSV Fully 19.79% 

HLSV Semi 20.37% 

HSV Fully 39.38% 

HSV Semi 17.73% 

 

VI. CONCLUSION 

In this paper, we developed impervious surface of Fujin 

from the Landsat TM image using LSMA model under fully 

constrained and semi-constrained condition. The results 

indicated that impervious surface developed by three 

endmembers HSV (high albedo, soil, and vegetation) under 

semi-constrained condition improved the estimate accuracy 

with a RMS reduced from 19.79% to 17.73%. 

The results suggest that low albedo endmember associated 

with water, shade and asphalt produced estimate errors in this 

study. Fujin urban land use and land cover classes can be 

modeled by the fraction of vegetation, high albedo, and soil. 

Low albedo fraction accounts for little in study area. Therefore, 

Three endmembers HSV under emi-constrained condition may 

provide a better result in developing impervious surface. 
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