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Abstract—Inversing soil moisture from remote sensing data is 

difficult for the problem is usually nonlinear and ill-posed. To 

enhance the accuracy of this inversion problem and reduce the 

effect of surface roughness, a least square-support machine (LS-

SVM) based inversion approach is used to retrieve the soil 

moisture from the radar backscattering coefficients. Starting 

from the generation of data set by using Integral Equation Model 

(IEM), wide range of soil moisture and surface roughness are 

simulated. The kernel and capacity parameter of LS-SVM are 

optimized through the training process. Then, to assess the 

effectiveness of the proposed approach, testing data added with 

Gaussian distributed noise is processed by the suitably defined 

model. Concerning the robustness of the approach, selected 

training data is applied when the model is established, and the 

soil moisture is inversed again. Along this process, the 

comparison between BP neural network and LS-SVM based 

method is  conducted.  

Index Terms—Soil moisture, inversion, remote sensing, 

backscattering coefficient, LS-SVM. 

I. INTRODUCTION 

Soil moisture is fundamentally important to land activities, 

especially those involving agriculture, hydrology, forestry, 

meteorology, and climate change. To estimate the soil 

moisture in field scale, numerous approaches have been 

conducted via using active radar system and passive 

microwave imaging radiometers [1]-[5]. Among a variety of 

remote sensing methods, radar backscattering coefficient 

relate closely to the soil dielectric constant, which is sensitive 

to 0%-35% soil moisture volumetric content. The integral 

equation method [6] is the most widely used theoretical radar 

scattering model for bare surface or sparsely vegetated 

landscape. According to Mametsa et al. [7], the IEM had a 

much wider applicable region compared to the Kirchhoff 

approximation (KA) [2], [8] and the small perturbation model 

(SPM) [2], [8]. It is indicated in the IEM that the 

backscattering coefficient is also affected by root mean square 

of surface height and correlation length. Hence, it is 

indispensible to inverse soil moisture under the effect of 

various soil roughness properties. To overcome this difficulty, 

empirical [9-10] and probabilistic [11] approaches have been 

presented. However, those methods have several 

disadvantages that hinder them from further application, 

which include limited valid span and accuracy, subjecting to a 

specific region, etc. 

This study is trying to approach the inversion problem by 

using LS-SVM combined with IEM, and aiming to enhance the 

accuracy of the retrieval process. The IEM model is act as the 

theoretical direct model, whereas the LS-SVM is for the model 

based retrieval method. The overall accuracy of this method 

would also be verified by the noisy and noiseless testing data 

set. In order to cover wider range of surface roughness 

condition, this approach is model-based so that it is not site-

dependent, and it can be easily adapted to different 

experimental conditions. 

II. BACKGROUND AND METHOD 

A. Integral Equation Method (IEM) 

For a randomly rough dielectric surface, the backscattering 

coefficient is mainly determined by soil moisture, surface 

roughness, soil texture. In the condition of natural terrains, 

mostly with small slope ( 3k  ), the single scattering will 

dominate over the multiple scattering in polarized scattering 

calculation. Hence, the like polarization backscattering 

coefficients are given below [6] 
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where is the surface root mean square(rms) height, k is the 

wave number, coszk k  ,  is the incidence angle, 

p pf and ppF are field coefficients which can be found in [6]. 

( ) ( , )n

x yW k k is the Fourier transform of the n th power of a 

known surface correlation function which can be calculated by  

   ( ) 1
( , ) , exp

2

n

x y n x yW k k x y jk x jk y dxdy


        (3)  

where ( , )n x y is the surface correlation function. 

B. Least Square Support Vector Machine (LS-SVM) 
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LS-SVM, put forward by J. A. K. Suykens [12], is 

different from the original support vector machine. 

Specifically, LS-SVM using least-square linear system as loss 

function, thus inequality constraints can be converted to equal 

constraints. Its advantages over traditional SVM can be shown 

in the following aspects: a) Simpler operation; b) fast 

convergence; c) high accuracy; d) small training sample is 

needed. 

The corresponding algorithm goes as follows [12]: 

Assume k to the training sample 

( , ) , , 1,n

i i i ix y x R y R i k                                   

Provides the optimization problems as follows: 

2 2

, ,
1

min ( , ) 0.5( )
k

i

J C
  

   


                                     (4) 

subject to equality constraint condition: 

( ) 1 , 1, ,T

i i iy x b i k                                          (5) 

According to the above description, the corresponding 

Lagrange function can be constructed as 

( , , , ) ( , ) ( , , , ), 1, ,L b J l b i k                        (6) 

where  
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i are the Lagrangian multipliers corresponding to (6). The 

saddle point is obtained from  

, ,
max min ( , , , )

b
L b
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This yields the Karush-Kuhn-Tucher optimality condition: 
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And then the optimization problem is transformed into 

solving linear equations 
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According to Mercer condition, there are mapping 

function and kernel function K , make: 

( , ) ( ) ( )i j i jK x x x x                                                     (11) 

Then obtain LS-SVM decision function 
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Among them, the b and  can be determined by formula 

(8). 

III. DATA SET AND SIMULATION 

Generally, the LS-SVM based inversion model need three 

successive steps: 1) train the model with the data simulating 

from the IEM; 2) determine the two parameters, C and
2 , 

respectively. The former is the capacity paramount that 

control the tradeoff between the empirical risk and the model 

complexity to avoid over-fitting. The latter is the RBF kernel 

width if RBF kernel is used; 3) test the LS-SVM on a different 

data set. 

A. DATA SET 

Considering the fact that LS-SVM does not need huge 

training patterns as neural network do, it is reasonable to use 

large interval during the data generating process. The range of 

soil moisture and surface rough parameters cover the most 

common field and thus can adapt to different experimental 

conditions.  

As far as the training set is concerned, Table 1 includes 

various incidence angles that have been involved in the range 

of the satellite-based SAR, such as ENVISAT-ASAR, and 

other airborne microwave sensing parameter. 

TABLE I.  SOIL MOISTURE AND SURFACE PARAMETERS 

USED IN SIMULATION 

Parameters Min Max Interval Unit 

Moisture 2.0 40 2 % by  volume 

RMS height 0.2 2.0 0.2 cm 

Correlation length 2.5 20 2.5 cm 

Incidence angle 20 50 15 degree 

Correlation function Exponential 

Altogether 1260 points is included. Similarly, the testing 

set are generated with moisture ranging from 2.0 to 40.5 with 

step length of 2.5, RMS height ranging from 0.2 to 2.0 with 

step length of 0.45, and correlation length ranging from 2.5 to 

20 with step length of 4.5, while the incidence angle are the 

same. The testing data set contains 480 points.  

B. SIMULATION  

During the process of simulation, the soil moisture was 

taken as the output and the backscattering simulated by IEM 

was used as the input, which include the information of vv and 

hh polarization and different incidence angle. Here only two 

parameters of the LS-SVM was to be determined, C and
2 . 

More in detail, C varied in range [10, 10
4
] and 

2 from 0.001 

up to 3. The best value of the two parameters was determined 

by its overall error between the retrieval and the reference 

value of soil moisture. After such a process, the optimal values 

of the parameters turned out to be =1000C and 2 =0.003 . In 

the following retrievals, the same parameters have been used. 

IV. ANALYSIS OF RESULTS 

First of all, it is necessary to find out how the single or 

multiple frequency bands exert the effect on the accuracy of 
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moisture inversion. As was shown in Fig. 1, the error of single 

C band (5.3GHz) is larger than the multi-band of C band and 

X band (9.3GHz).  
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Fig.1. The comparison of inversion: C band-only data (a) and both C and X 

band data (b). 

The C band-only trial shows the root mean squared error 

(RMSE) and the correlation coefficient between the retrieved 

soil moisture and the reference is 0.87% and 0.9971 

respectively. However, when both C and X band data been 

used, RMSE and R turned out to be 0.89% and   0.9971. This 

result shows that multiple frequencies might not make a big 

difference to the accuracy like expected. Thus, in the 

following inversion scheme, only C band frequency is 

conducted. The same scheme was applied to the BP neural 

network, which was trained under the function 'trainlm' and 

with the same hidden layer is 6 and 10, respectively. The 

result of the BP method shows that 1.06% in the C band-only 

inversion and 1.07% in the C and X band inversion process. It 

is also worth noting that the BP method yield different result 

every time and quite time-consuming, over 6.5 seconds 

compared to the LS-SVM which is less than 1 seconds in the 

same computing platform. This suggests that the LS-SVM 

based method is more stable and accurate than BP-method.   

To further verify the ability of the approach to estimate 

soil moisture in noisy condition, Gaussian distributed noises 

with standard deviation of 0.01 and 0.001 were added to the C 

band scheme. In here, the Gaussian distributed noise is taken 

as the instrumental noise when the data was gathered and 

processed.  
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Fig.2. Added with Gaussian distributed noise: standard deviation of 0.001 (a) 

and 0.01 (b) 

Affected by the noise of backscattering data, the RMSE 

and R turned out to be 1.96% and 0.9854. When the standard 

deviation of Gaussian noise increase to 0.01, the RMSE and R 

increase to 9.75% and 0.7217. This was due to the fact that the 

instrumental noise is comparable to the backscattering 

coefficient. In the context of application, the data is worthless 

when the noise is comparable to the signal, which should be 

averted. Moreover, it is essential to find out to what extend the 

noise is tolerable. Thus we conducted the inversion scheme 

when the standard range from 0.001 to 0.01, we find that when 

the deviation is larger than 0.05, the RMSE is larger 4.81% 

and the R is less than 0.9170. And it is necessary to point out 

that the best capacity parameter should be 50 at the noisy 

condition. 

In order to assess the robustness of the method, we only 

use the former 700 samples of the training data set in the 

training phase, while the testing data is identical to the formal 

inversion process. The same scheme is applied to the BP 

neural network method. The RMSE and R of the LS-SVM and 
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BP method is 5.16% and 0.9596, 6.15% and 0.9461, 

respectively. 
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Fig.3. Train the SVM method (a) and BP neural network method (b) with 700 

samples to assess their robustness.  

V. CONCLUSION 

In this paper, an inversion approach has been proposed to 

retrieve the soil moisture form simulated radar backscattering 

data. A suitable LS-SVM based strategy has been developed to 

eliminate the effect of roughness during the inversion process. 

The effectiveness of the approach has been assessed by 

considering the noiseless as well as noisy condition. 

Comparison between LS-SVM and BPNN is also been made in 

terms of the accuracy and robustness. The obtained results 

confirmed the advantage of the method in estimating the soil 

moisture.  

Nevertheless, it is essential to add the real data to train and 

test this approach in the near future. Also, the information 

derived from both active and passive remote sensing could 

integrated into the method to further learn the relation between 

remote sensing data and soil moisture as well as other 

parameters. After this, it might meet the need of the upcoming 

satellite SAR data processing and the future near-real-time soil 

moisture estimation. 
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