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Abstract—Based on Landsat7 ETM+ imagery and ground-

measured Leaf area index (LAI) data, a optimal estimation 

model was developed in order to accomplish the retrieval of 

Phragmites australis LAI in Panjin Wetland of China. To obtain 

more knowledge about the actual status of Phragmites australis, 

the spatial pattern of LAI was also analyzed. Results showed that: 

in 2012, Phragmites australis area in Panjin is 58,393ha. 

Multivariate linear model regarding the ratio vegetation index 

(RVI), two mid-infrared spectral bands (Band5 and Band7) as 

independent variables is the optimal estimation model of 

Phragmites australis LAI (p ＜  0.01, R2 = 0.727). The spacial 

difference of Phragmites australis LAI is very evident, and 

basically decreases from northeast to southwest of Panjin 

wetland.  

Index Terms—Phragmites australis, Leaf Area Index (LAI), 

Panjin wetland, Landsat7 ETM+ imagery, multi-season satellite 

imagery.  

I. INTRODUCTION  

Leaf Area Index (LAI), defined as half of the total leaf area 

per unit ground surface area
[1]

, is a key component of 

biogeochemical cycles in ecosystems and an important 

biophysical parameter in the studies about atmosphere-

ecosystem interaction and global change. LAI plays an 

significant role in vegetation monitoring and protection
[2,3]

. At 

present, LAI assessment in large-scale area are mainly 

achieved through regressive models and physically-based 

models. Compared with the physically-based models, 

regressive models based on remote sensing data are simple and 

require fewer necessary parameters. Therefore, they have been 

widely used in various types of vegetation monitoring, such as 

crop, grassland and forest
[4-5]

. 

 In recent years, researchers have been paid more attentions 

to the studies on wetland LAI. On the basis of precise 

classification of wetland types, establishing a precise LAI 

estimation model became the focus of studying wetland 

vegetation LAI
[6-7]

.,However, there are still some problems 

existing in current studies. The generally-recognized 

vegetation indices (VIs) are the most widely used to establish 

LAI estimate models in most of studies. However, the method 

for establishment of LAI estimate model, i.e., combining 

reflectance data of spectral bands with various VIs, has been 

successfully applied in studies on other types of vegetation
[8-9]

. 

Moreover, using hyperspectral technology can improve 

accuracy for LAI estimation. But, because of limitations in the 

model application, it is difficult to achieve the dynamic 

monitoring of vegetation at a large scale during a short period. 

Hence, it is necessary to give a further study on how to make 

full use of the multi-spectral information of remote sensing 

imagery to develop the LAI estimation of wetland vegetation. 

Panjin, a considerable production base of Phragmites 

australis, has rich wetland resources. Owing to climate change 

and development of economy, the living environment of 

vegetation in Panjin wetland is trending to deteriorate. 

Therefore, a quantitative study for the vegetation growing 

status in Panjin wetland is necessary. In present study, based 

on Landsat7 ETM+ imagery, we use univariate and 

multivariate statistic methods to establish the Phragmites 

australis LAI estimate model, then map the spatial pattern of 

LAI, which aims to provide scientific guidance for wetland 

management.  

II. STUDY AREA AND METHODS  

2.1 Study area 

Panjin, located between 121°25'E-122°31'E and 40°39'N-

41°27' N, lies in the southern part of Liaohe River Plain and 

middle of Liaohe River Delta (Fig.1). It has relative warm and 

wet climate, of which the annual average temperature is 8.4℃ 

and the annual precipitation is 611.6mm. The types of soil in 

Panjin can be divided into saline soil, meadow soil, tidal flat 

soil, swamp soil, and so on. Panjin has rich wetland resources. 

Main vegetation types in Panjin wetland are natural wetland 

vegetation communities such as Phragmites australis, suaeda, 

and artificial wetland such as rice field. Panjin wetland, which 

is abundant in bird resources, is the second largest Phragmites 

australis wetland in Asia. Both in terms of the area and 

multifunction of this wetland, it is representative in 

Phragmites australis wetlands, whether in China or in the 

world.  
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Fig.1 Location of the study area  

2.2
 
Methods 

2.2.1
 
Data collection and processing  

The study area can be covered with two single Landsat 7 

ETM+ scenes (path120/ row 31, path120/ row 32). A seasonal 

time series of images were acquired on 28 May, 16 August 19 

October in 2012. These date had been selected based on 

vegetation phenology and seasonal water management of the 

wetland. Cloud-free images in 16 August 2012 were used to 

LAI retrieval. The software of ENVI 4.8 was applied to 

remove the strip band and conduct radiometric calibration and 

atmospheric correction using 6S radiative transfer model. 

Remote sensing images were geo-rectified to 1: 100,000 

topographic maps using ground control points (GCPs). Each 

image had at least 20 evenly distributed GCPs.  

The distribution of Phragmites australis was extracted by 

object-oriented multi-season classification method
[10]

 on 

eCognition software platform. In addition to ETM+ images in 

May, August and October, filed survey records were regarded 

as the auxiliary data. Meanwhile, unsupervised classification 

was carried out using the interactive self-organizing data 

analysis (ISODATA) algorithm to identify spectral clusters in 

the images in order to extract the residential land and water 

body. Finally, the classification accuracy was assessed using 

the 195 verification points acquired from field investigation in 

2012 and Google Earth online software, and the overall 

classification accuracy was 89.5%. 

LAI measurements were performed in early August, 2012. 

A ground-based optical instrument, LAI-2000, was used to 

measure canopy LAI under clear diffuse skies at low solar 

elevationclear and usually at the same local time each day. We 

conducted field surveys at 65 plots (30 m × 30 m), and a 

handheld GPS was used to locate their centers’ positions in the 

field. Three subplots (1 m × 1 m) randomly selected within 

each plot were identified. The average value of the three 

subplots’ measured LAI values was considered to represent 

LAI value of each plot. As a result, measured LAI values of 65 

plots were produced, in which 61 plots’ measured LAI values 

were remained after removing the outliers. Then measured 

LAI values of 46 plots were randomly selected for modeling 

and the other 15 plots were used for validation. 

2.2.2
 

Correlation and regression analyses of LAI with 

spectral variables  

Correlation and regression analyses were applied in 

establishing the estimate model for Phragmites australis LAI. 

In this paper, 10 spectral variables were selected, including six 

single ETM+ band reflectances (Band1–5 and Band7), four 

VIs
[11]

(table 1). Arcgis 9.3 software was used to extract the 

mean value of each variables from the imagery at each sample 

site on a pixel-by-pixel basis. Correlation analysis between 

ground-measured LAI values and 10 variables were performed 

using the SPSS software, then the variables which were 

significantly related to the LAI were selected. After that, 

univariate regression linear or non-linear analysis was proceed 

using the selected single variables as the independent variables 

and in situ LAI as the dependent variable. In multivariate 

regression modeling, because there is much redundant 

information among the ETM+ single band reflectances and 

four VIs, the stepwise regression method
[8]

 was used in order 

to select independent variables and eliminate the 

multicollinearity phenomenon.  

 TABLEⅠ. Vegetation Indices 

Vegetation 

Index 
Formula 

 

NDVI 
NIR R

NIR R

 

 





 

 

EVI 
2.5( )

6.0 7.5 1

NIR R

NIR R R

 

  



  

 

 

RVI 
NIR

R





 

 

MSAVI 20.5 [2 1 (2 1) 8( )]NIR NIR NIR R          

Notes: ρNIR and ρR in expressions, denoted as reflectances in red (B3) and near-infrared (B4), 

respectively. 

2.2.3
 
Accuracy assessment criteria 

The retrieved LAI results would be compared to field 

measured LAI. Coefficient of determination (R
2
), root mean 

squared error (RMSE) and accuracy
[8]

 were selected to assess 

the estimation accuracy of the models. The calculating 

formulas were as followed. 
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  1 / 100%Accuracy RMSE Y    (2) 

Where iY (i = 1, 2, . . . , n) are actual LAI measurements;
'

iY (i 

= 1, 2, . . . , n) are LAI values estimated by a model (univaria- 

te model or multivariate model); N  is the number of samples 

(either training or test samples). 

III. RESULTS  

3.1 Developing and accuracy validation forPhragmites 

australis LAI estimate model  

Correlation analysis between ground-measured LAI values 

and each of 10 variables (six single ETM+ band reflectances 

and four VIs) was performed using 46 samples. Through 

correlation analysis, the correlation coefficients between 

variables and measured LAI are showed in fig.2. The 

correlation between 7 variables (RVI, NDVI, EVI, MSAVI, 

547



 

B4, B3 and B5) and LAI is significantly correlated at 0.01 

confidence level.  

 
Fig. 2. Map of correlation coefficient 

Considering the 7 spectral variables as independent 

variables and LAI as the dependent variable, the univariate 

regression optimal model was achieved. Regarding all 10 

spectral variables as independent variables and LAI as the 

dependent variable, multivariate linear regression model was 

established. The optimal univariate and multivariate linear 

regression expressions of the spectral variables with LAI, in 

association with R
2 
and RMSE values, are presented in table 2 

and table 3. All models in the tables have been approved by 

significance testing at the 0.01 confidence level.  

As we can see from table 2 and table 3, the regression 

model, which takes RVI as independent variables, gets the 

optimal fitting result with the maximum R
2
 and the least 

RMSE in various univariate regression models. Compared 

with the univariate regression optimal model, which takes RVI 

as independent variables, the multivariate linear regression 

model with B5, B7, and RVI as independent variables has the 

larger R
2 
and the smaller RMSE. The tolerance of multivariate 

linear regression model is 0.2. Hence there is no multicollinea- 

rity phenomenon existed in this model. Obviously, the 

multivariate linear regression model is the optimal estimate 

model of Phragmites australis LAI and its structural formula 

is as followed:  

LAI = 16.09Band5 – 24.85Band7 + 0.51RVI + 0.98  (3) 

TABLE Ⅱ. One element regression model of Phragmites australis LAI 

variables Regression models R2 RMSE Sig 

RVI y = 2.39ln(x) + 0.54 0.687 0.459 0.000 

NDVI y = 6.23x + 0.10 0.683 0.461 0.000 

MSAVI2  y = 1.69ln(x) + 5.98 0.643 0.490 0.000 

EVI y = 1.71ln(x) + 5.73 0.636 0.495 0.000 

Band4 y = 12.47x + 0.97 0.425 0.622 0.000 

Band3 y = -31.69x + 4.92 0.186 0.740 0.002 

Band5 y = 9.31x + 1.67 0.162 0.750 0.004 
Notes: x and y in expressions represent LAI measurements and spectral 

variables, respectively.  

TABLE Ⅲ. Multiple linear regression model of Phragmites australis LAI 

Variables Regression model R2 RMSE Sig 

Band5 

Band7 

RVI 

LAI = 16.09Band5  
– 24.85Band7+ 

    0 .51RVI + 0.98 

0.711 0.437 0.001 
0.017 

0.025 

Comparing the measured values with the estimated values, 

the results are shown in figure 3. There is a good linear 

correlation between measured LAI values and simulated LAI 

values. RMSE is 0.465 and model estimates accuracy is 85.8%. 

 
Fig. 3. Comparison between measured LAI and estimated LAI 

3.2 Mapping and spatial pattern analysis about Phragmites 

australis LAI  

According to the extracting method, the distribution 

information of three land use types (Phragmites australis, 

residential land and water body) was extracted. In view of the 

statistics, the area of Phragmites australis in Panjin in 2012 is 

58,393ha, accounting for 16.0% of the total area of Panjin .  

Applying the established optimal estimate model 

(calculating formula (3)) for Phragmites australis LAI 

estimate, Phragmites australis LAI map is achieved. From 

Fig.4, it is known that Phragmites australis is predominantly 

distributed in the west of Panjin. The Phragmites australis 

LAI in Panjin wetland has an evident spatial difference, and 

basically decreases from northeast to southwest of the wetland. 

LAI is higher in Shuangtaizi River Basin, and lower in the 

southwest of Panjin wetland .  

 
Fig.4. Mapping of Phragmites australis LAI in Panjin wetland  

IV. DISCUSSION  

4.1 The feasibility of the LAI estimate model 

With the advent of high spatial resolution and multi-spectral 

sensors, remote sensing technique have become particularly 

attractive for assessing vegetation biophysical parameters, 

such as LAI. The simple regression equation is intended for 

rapid prediction of LAI in a straightforward way
[7-9,12]

. Using 

VIs as independent variables to develop LAI estimate model 

and LAI retrieval, is one of the most commonly used methods. 
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Several studies have showed that the best vegetation index 

used for estimating vegetable LAI was the RVI 

(Band4/Band3)
[7,12]

. In this study, it is also found that among all 

developed univariate regression models, the model with four 

kinds of VIs has higher R
2
 and smaller RMSE. And, the model 

with RVI as independent variables achieved the optimal fitting 

result with a estimate accuracy of 81.7%. This is reasonable 

because all four VIs were constructed with reflectances in red 

(Band3) and near-infrared (Band4), which efficiently combine 

the characteristics of wetland vegetation with high absorption 

in the Red region for photosynthesis and high reflectivity in the 

near-infrared band. However, the multivariate linear model in 

this paper performed better than all the univariate regression 

models, with higher estimate accuracy (85.8%), which could 

be due to the applying of abundant spectral information of two 

mid-infrared spectral bands (Band5 and Band7).  

4.2 Possible impacts of climate and human activities 

The differences in the natural environment and human 

activities could be the primary reasons that caused notable 

spatial differences of Phragmites australis LAI in Panjin 

wetland. Adequate water supply might contribute to the well 

growth of Phragmites australis in Shuangtaizi River Basin. On 

the contrary, a lack of water resource caused by a warm and 

dry climate in the southwest of Panjin wetland may be the 

main reason for wetland degradation. Meanwhile, with a large 

amount of oil fields and roads distributed in the southwest of 

the wetland (fig.4), serious water pollution caused by 

excessive oil exploration and the expansion of industry and 

agriculture is another important factor seriously restraining the 

growth of Phragmites australis
[13]

. 

V. CONCLUSIONS  

In this study, based on Landsat7 ETM+ imagery and 

ground-measured LAI data, a multivariate linear regression 

model with B5, B7, and RVI as independent variables was 

finally selected to be the optimal estimate model for LAI. The 

multivariate linear regression model, making full use of the 

rich spectral band information of remote sensing imagery, 

improved performance by more than 4% of estimate accuracy 

than the univariate linear regression models. Based on the 

multivariate linear regression model, we successfully retrieved 

the Phragmites australis LAI in Panjin weland and found that 

it had an evident spatial difference, which might be caused by 

differences in natural environment and human activities in 

different regions. The conclusions should be beneficial for 

making governmental policies that encourage reasonable 

utilization and protection on wetland resources. 
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