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Abstract—Remote sensing provides multiscale image data to 

monitoring the earth surface. The spatial heterogeneity of the 

surface is a function of image scales. It is also affected by various 

remote sensing variables. This work uses variogram to assess the 

abilities of NDVI (normalized difference vegetation index) and 

DVI (difference vegetation index) to exploit the surface spatial 

heterogeneity. The decay of spatial heterogeneity as pixel size 

increases is measured and the spatial variability within coarse 

spatial resolution pixel is calculated. The results show that: 1) 

NDVI and DVI display a similar ability in detecting the spatial 

structure. NDVI variogram modeling outperforms DVI modeling 

in characterizing the spatial variability of the surface; 2)the 

spatial variability and the spatial structure both follow 

logarithmic relationships with stronger fits as the spatial 

resolution decreases; 3) the loss of spatial variability within pixel 

increases as spatial resolution decreases. Simple aggregation of 

fine resolution pixels to a coarse resolution engenders loss of 

image variability. 

Index Terms—Spatial heterogeneity, variogram, spatial 

resolution, NDVI, DVI. 

I.  INTRODUCTION 

Spatial heterogeneity describes the variability of the 
observed surface properties in space [1]. It can be defined 
through two parts: the spatial variability of the surface property 
and the spatial structures related to objects or patches over the 
observed scene [2]. The methods of detecting spatial 
heterogeneity are mainly empirical approaches and 
probabilistic approaches. The former lacks of theoretical 
framework such as local variance [3]. The latter relies on 
stationarity hypothesis such as fractal, multifractal and 
variogram [4], [5]. The modeling of variogram has been widely 
used to quantify the spatial variability and the spatial structures 
[2], [6]. NDVI is a good indicator of vegetation amount and 
growth [7], which is frequently used to describe the surface 
spatial heterogeneity [8], [9]. Other variables like red and near 
red reflectance, LAI (leaf area index) are also employed [10], 
[11]. The radiometric characteristics of variables response to 
the landscapes influence the detection of the spatial 
heterogeneity.  So when exploiting the spatial heterogeneity 
of various landscapes (e.g. forest, crop, wetland and water), the 
characteristic of the variable used deserves consideration. In 
this paper, the spatial heterogeneity is quantified by NDVI and 
DVI and the difference of between these two variables in 
describing spatial heterogeneity is evaluated using variogram 
modeling. 

The spatial heterogeneity of the observed surface is scale 
dependent [12]. Changes of scale may even lead to alternation 
between heterogeneity and homogeneity. Coarse resolution 
sensors (e.g. Terra-Aqua MODIS) provide relatively high 
revisit frequency observations with relatively large pixel size. 
Since the landcover viewed by sensors are often smaller than 
coarse resolution pixels, intra-pixel spatial heterogeneity 
information may be not captured at coarse spatial resolution 
[13]. A strategy to quantify the spatial heterogeneity of a coarse 
resolution pixel is to use high spatial resolution pixels (e.g. 
Landsat TM) [7]. Here, the variogram is applied to 
multiresolution NDVI and DVI dataset simply aggregated from 
TM 30 m images to understand the loss of spatial information 
as spatial resolution decreases. This paper first attempts to use 
variograms of Landsat TM NDVI and DVI images to describe 
the spatial heterogeneity of two contrasted vegetation covers. 
The ability of NDVI and DVI variables to express spatial 
heterogeneity is compared through sill and range of the 
variograms. The decay of spatial heterogeneity as a function of 
spatial resolution is analyzed and the coarse resolution pixel 
heterogeneity is investigated with fine resolution pixels. Then, 
we close with a conclusion. 

II. MATERIAL AND METHODS 

A. Data description 

Optical satellite imageries of Landsat-5 TM in SMEX04 

project are selected in this study [18]. These images are not 

contaminated by clouds and are preprogressed. The red and 

near infrared band are used to calculated NDVI and DVI, 

which are used to describe the spatial variability of the 

vegetation cover over the image domain. DVI is linearly 

related red and near infrared reflectances, while NDVI is not.  

TABLE I.  CHARACTERISTIC OF TWO STUDY SITES 

Site Date Size(m2) mNDVI NDVI
  mDVI  DVI 

Site1 August 

30 
8000×
9000 

0.33 0.15 0.19 0.07 

Site2 
August 

30 
8000×
9000 

0.20 0.04 0.10 0.02 

B. Variogram modeling of spatial heterogeneity 

The regionalized variable z(x) is modeled as one among all 

possible realizations of Z(x) [14]. The theoretical variogram of 

Z(x) is calculated by the following expression: 
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   A linear model of regionalization [15] accounting for the 

multiscale spatial structures of the data is defined as a linear  

combination of two or more functions as follows [2]:  
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)(h is the modeled variogram, c is the overall sill, 
k

b is the 

fraction of overall sill related to each range
k

r , 
k

g denotes 

each elementary function and n is the numbers of functions 

regionalized (Fig.1).  

The overall sill c describes the degree of spatial variability 

[16]. The ranges 
k

r and the
k

b are summarized in a single 

parameter: the integral rang A [17], which is computed 

as
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r  for the spherical functions. The mean length 

scale Dc is the square root of A. It is related to the mean extent 

of the image spatial structures [2]. 

The variogram sill c and the mean length scale Dc are 

applied to characterize the decay of spatial variability for 

NDVI and DVI images with various spatial resolutions 

generated through simple spatial aggregation of the 30 m TM 

scenes. 

 

 

 

 

 

 

    

 

 

 

 
Fig.1. NDVI and DVI variograms of two contrasted sites. The dash lines 

are the experimental variograms. The solid lines represent the fitted 

theoretical variogram models. 

C. Scales of pixel’s spatial heterogeneity 

In the previous sections, the variogram is used to quantify 

the overall spatial variability of the image. A pixel of coarse 

spatial resolution simply averaged from fine spatial resolution 

pixels is regarded as a combination of several fine resolution 

pixels. The heterogeneity occupied by a coarse pixel w can be 

quantified by n fine resolution pixels xi. The variability at 

coarse spatial resolution is described by the dispersion 

variance [2].  

The average dispersion variance of the n fine resolution 

pixels values within the coarse resolution pixel,          
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z is the spatial average of z(x) over wj, m is the 

number of w. As shown in Fig. 4, the variability within the 

pixel increases as the size of w increases. )|(2 wxs  is used to 

quantify the loss of image variability when fine resolution is 

aggregated to coarse resolution. The )|(2 wxs  was calculated 

at pixel size w ranging from 90 to 900 m with an interval of 30 

m. 

II. RESULTS AND ANALYSIS 

A. Spatial heterogeneity of two constrasted lanscapes  

The empirical variograms (Fig.1) illustrate that the sill c 

consistently increases as distance increases and then levels off. 

The spatial variability characterized through the sill increases 

considerably from site 2 to site1. For site 2 the spatial 

heterogeneities of NDVI and DVI are much lower than those 

of site 1. The relative homogeneity of site 2 is denoted by less 

vegetation types which limit the variability of the vegetation 

cover. The high variability of site 1 is explained by the mosaic 

of various vegetation types with high values and water fields 

with low values in red and near infrared bands (Fig.2). For 

both sites the variability of NDVI is larger than that of DVI. 

The NDVI variogram seems to provide a more robust 

characterization of spatial variability of the vegetation cover 

than DVI. 
The variograms of Fig. 1 have been modeled using a linear 

combination of exponential and spherical models (Table 2). 
Both NDVI and DVI variograms increase rapidly and reach 
almost the whole image variances at short ranges (r1NDVI=200 
m; r1DVI=220 m). The short range results from length scale of 
vegetation and the presence of objects in the site (rivers, 
roads…). The second ranges of NDVI and DVI are both 3000 
m and the fractions explain low parts of the spatial variability 
(less than 34%). Concerning site 1, the values of r1 (421 m) and 
b1 (73.67 %) calculated from NDVI variable image are close to 
that of r1 (371 m) and b1 (76.49 %) obtained from DVI image. 
The larger range of NDVI (r2=1123 m) and DVI (r2=963 m) 
are probably related to the spatial structure within the shrub 
area and subtropical wood area. NDVI and DVI have similar 
abilities to describe the spatial structure of the landscape. As 
shown on these two sites, NDVI is better than DVI at 
describing the spatial variability of the vegetation. They have 
similar ability to quantify the spatial structure. 

 

 

 

 

 

 

 

 

Fig.2. Landcover classification of site 1 (left) and site 2 (right) [18]. 
 

 

 
 

 

 

610



TABLE II.  VARIOGRAM MODEL PARAMETERS FOR THE TWO SITES 

NDVI 

data 
c g1(r1)           b1 g2(r2)         b2 

Site1 
0.0203 Exp(421)    73.67 Sph(1123)  26.32 

Site2 
0.0013 Exp(200)    82.41 Sph(3000)  17.59 

DVI data    

Site1 
0.0045 Exp(371)    76.49 Sph(963)   23.51 

Site2 
0.0003 Exp(220)    66.21 Sph(3000)  33.79 

c—variogram sills; r1，r2—variogram ranges, in meter; b1，b2—fractions of total variance. Exp: 

exponential model; Sph: spherical model. 

B. The decay of spatial variability as a function of spatial 

resolution  

This part is applied to characterize the decay of spatial 

variability of site 1 NDVI and DVI products with various 

spatial resolutions aggregated from the 30 m TM original 

scenes (Table 3). The overall sill and the mean length scale 

were used to evaluate spatial variability in relation to spatial 

resolution. Fig. 3a illustrates the loss of spatial information for 

various spatial resolution images. Assuming the 30 m image 

approximates the overall spatial variability, the rate of sill 

decrease relative to the sill of the 30 m image characterizes the 

loss of spatial heterogeneity as spatial resolution decreases. 

For the NDVI image, the decay rate of spatial variability at 

600 m spatial resolution is 73.89% and the spatial variability is 

almost lost at 900 m (Table 3, column 4). The decay rate of 

the DVI spatial variability is faster than that of NDVI. As the 

weighted average of the different ranges, Dc identifies the 

typical length scales within the image. It increases as the pixel 

size increases (Fig.3b). For the NDVI and DVI shows 

different spatial properties, the choice of the optimal spatial 

resolution is related to the remote sensing variable to be 

inversed.  

The sill and the mean length scale followed logarithmic 

relationships with stronger fits as a function of pixel size. For 

NDVI, the R
2 

of the sill is 0.9761, the R
2 

of the mean length 

scale is 0.9411.  

TABLE III. PARTIAL PARAMETERS OF VARIOGRAM MODELS FOR THE 

SPATIALLY AGGREGATED 30-M TM VEGETATION INDICES DATA. 

Vegetation 

indices 

Spatial 

resolution  

(m) 

Spatial 

 variability 

Decay rate 

of spatial 

variability 

(%)* 

Mean 

length 

scale Dc 

(m) 

NDVI 30
※
 

150 
300 

600 

900 

0.0203 

0.0138 

0.0099 
0.0053 

0.0037 

-- 

32.02 

51.23 
73.89 

81.77 

545.96 

633.1 

748.65 
839.93 

1451.31 

DVI 30
※
 

150 

300 
600 

900 

0.0045 
0.0026 

0.0018 

0.0009 
0.0007 

-- 
42.22 

60 

80 
84.44 

457.31 
537.93 

663.28 

1012.88 
1451.34 

*Source for aggregated datasets; *relative to the sill of TM 30m. 
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（b） 

Fig. 3 The spatial variance (a) and the mean length scale (b) as functions of 
spatial resolution. 

C. The loss of spatial variability within a coarse resolution 

pixel  

)|(2 wxs quantifies the degree of spatial heterogeneity 

within w of the image. It generally exhibits an increasing trend 

as a function of spatial resolution (Fig.4).The size of w ranges 

from 90m to 900m. The aggregated pixel variability of NDVI 

is larger than that of DVI. This also indicates that the spatial 

heterogeneity of NDVI is larger than that of DVI. The 

breakpoints of NDVI are 360 m 540 m, 630 m, 720 m, 750 m, 

810 m and 840 m. The DVI has the same decreased points. 

These points indicate that the spatial variability within these 

pixels is relatively lower. The aggregation of the pixels to a 

coarse resolution engenders loss of image variability. 

 
Fig. 4 Pixel heterogeneity as a function of spatial resolution.  
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III. DISCUSSIONS 

Both NDVI and DVI combine red and near infrared 

variables in one synthetic variable. DVI, defined as the 

subtraction of near infrared and red reflectance variables, 

increases linearly with near infrared band. NDVI saturates 

when the sensed surface is covered by dense vegetation. As 

the red reflectance is sensitive to soil, NDVI and DVI both 

carry the spatial information of soil. But the ratio operation of 

NDVI reduces more soil interference than DVI. As mentioned 

in Section 3.1, NDVI variogram modeling appears to be more 

efficient than DVI modeling to characterize the spatial 

variability of the vegetation cover under this study. The 

surface spatial heterogeneity is strongly dependent on the 

radiometric variable used to characterize it [19]. The choice of 

an appropriate variable or several variables to detect the 

properties of different types of landscapes deserves more 

attention. 
The mean length scale assesses the length scale differences 

and the effect of pixel size on spatial variability. This 
information may be used to define a sufficient spatial 
resolution at which the landscape spatial variability is fully 
described [2]. The dispersion variance quantifies the loss of 
image variability when aggregating the high resolution pixels 
to a coarse resolution. Simple aggregation to rescale the image 
is essentially an average of the existing measurements, without 
considering the effect of PSF that occurs in a real imaging 
system. Simple average gives equivalent weight to every pixel. 
Distinct transitions or contrasting edges apparent at finer 
spatial resolution are submerged or lost at coarse spatial 
resolutions [11], which leads to a change in spatial variability 
and spatial structure. 

IV. CONCLUSIONS 

This work used variogram to model TM 30 m NDVI and 
DVI data and showed that NDVI and DVI can characterize and 
quantify the spatial heterogeneity of vegetation covers. Results 
showed that NDVI and DVI which had similar ranges 
exhibited similar ability to investigate the spatial structures of 
the sites. NDVI was more robust to evaluate the spatial 
variability of the two sites. Moreover, we discussed the 
relationship of the decay of spatial heterogeneity as spatial 
resolution decreased. The overall sill and the mean length scale 
followed logarithmic relationships with stronger fits as a 
function of pixel size. 

Simple aggregation failed to consider the effect of spatial 

heterogeneity of the surface in the process of rescaling that 

may bring in discrepancy of images to be rescaled and 

compared. A method which considers the spatial heterogeneity 

in rescaling is well worth research. 
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