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Abstract—Spatialization of attribute data is a way to output 

grid data products from vector data. It is beneficial to integrated 

analysis of geosciences data from various sources and in different 

formats. However it is also a process companied with errors, and 

the errors are closely related to density of data sources, 

spatializing models and resolution of grid cells. In this paper, 

seven levels of density of meteorological stations, five spatializing 

models and nineteen levels of resolutions of grid cells were used 

to analyze the relationships between the errors for spatialization 

of air temperature and these factors. It was found that reduction 

of density of meteorological stations led to increasing of errors. 

Of the five models, Adjusted IDW, Regression and ANUSPIN 

had higher accuracy than IDW and Kriging. And the accuracy 

generally decreases with increasing of size of grid cells. Of the 

three factors affecting accuracy of spatialization, the models had 

the greatest impact on the accuracy, the resolution of grid cells 

second and the density of meteorological stations the lowest. 

Index Terms—Air temperature, data, spatialization, errors, 

impact factors 

I. INTRODUCTION 

Attribute data, vector data and raster data are three basic 

data types in geosciences. With development and application of 

technologies of remote sensing, geographical information 

system (GIS), data integration and data confusion in the field 

of geosciences, conversions between various data types have 

become routine activities for geosciences data processing. It 

has become more and more often and necessary for scientists 

to produce new data sets in format of raster using observed 

data from observatories or statistical data based on 

administrative divisions, which are in format of vector. This 

process is called Spatialization of Attribute Data (SOAD). 

SOAD was defined as a process through which the attribute 

data for point, linear or polygonal objects, such as precipitation 

from meteorological stations or population at county level, 

were converted to regular grid cells (for example one kilometer 

by one kilometer ) from tabular structure in light of relevant 

models or formulas [1]. 

SOAD are mainly employed to meet the demands of 

multiple-type data based integrated analysis, interpolation of 

data in places without observatories and enhance of spatial 

resolutions of data in the field of geosciences. GIS based 

spatial analysis and modeling often use data in grid format [2-

3]. Landscape, regional and global ecosystem models for 

global change, for example MT-CLIM [4] and FOREST-BGC 

[5] need spatialized air temperature, precipitation and solar 

radiation as input parameters. In China, there are more than 

two thousand meteorological stations. However, only data from 

more than six hundred stations can be shared in China and 

those from about two hundred stations can be exchanged 

internationally. Most of data from other stations cannot be 

shared. This also raises the demand of spatialization of 

observed data based on sites.   

Over the last decade, many national and global grid 

meteorological databases were established unceasingly and 

related computer software was developed. The main grid 

meteorological databases include PRISM based spatial 

meteorological data information systems for United States, 

Canada, China, Mongolia and Europe [6], ANUSPLIN based 

systems for Australia and South Africa [7-8], and  DAYMET 

based United States biological meteorological data information 

system [9]. In the meantime, some regional grid climate data 

sets at various resolutions were developed one after another. 

They include biological climate data sets at 30 meters 

resolution for Catalonian, Spain [10], data sets for Karnataka, 

India, data sets for VIC model in United States and Canada, 

and data sets for Vegetation-Ecosystem Modeling and Analysis 

Project [11]. 

In China, studies on spatialization of climate data have also 

been carried out extensively. Liao et al. spatialized 30-year 

mean air temperature (1951-1980) by means of multi-

dimension regression plus interpolation of residual [12], made 

comparisons between different interpolation methods including 

IDW, Kriging, Spline and Trend [13], and discussed zoning on 

spatialization of accumulated air temperature [14]. Cai [15] and 

Peng [16] also conducted researches on spatialization of air 

temperature in nation-wide and Xinjiang respectively. Yu et al., 

Liu et al. and He et al. have made intensive researches into 

spatialization of air temperature, precipitation and solar 

radiation [17-19]. 

Spatialization of air temperature is a process companied 

with errors, and value of the errors depends on density of 

observatories, spatializing methods and size of grid cells. 

Different density of observatories, spatializing methods or size 

of grid cells result in different error values. Therefore, it is 
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significant to study scale effect of errors for spatialization to 

improve accuracy of spatialization. So far little study on scale 

effect of errors for spatialization has been carried out. However, 

some methodologies used in study on scale effect of errors for 

rasterization of land use data can be referenced [20-21]. 

II. DATA USED FOR THIS STUDY 

The data used in this study included: 

(a) 30-year average air temperature data (1971-2000) from 

698 meteorological stations in mainland of China, which were 

obtained from China Meteorological Administration. See Fig.1. 

(b) Air temperature data of Hong Kong and Macao (1971-

2000), and those from 98 meteorological stations in Taiwan 

province and the countries surrounding China (1961-1990), 

which came from Hong Kong Observatory, 

http://www.hko.gov.hk/wxinfo/climat/world/chi/asia/asia_c.ht

m.  

(c) DEM of China at 30-second resolution, which came 

from Earth Resources Observation and Science (EROS) Center, 

http://edc.usgs.gov/products/elevation/gtopo30/gtopo30.html. 

(d) Administrative division map of China at scale of 1 to 

4,000,000, which came from State Bureau of Surveying and 

Mapping of China, http://sms.webmap.cn/. 

(e) Air temperature data from 56 meteorological stations 

which distribute evenly in nation-wide. The data were used to 

assess errors of spatialization and therefore were not used in 

process of spatialization. 

Fig. 1.   Distribution of meteorological stations in China and its surrounding 

areas 

III. DATA ANALYSIS 

A. Settings for Analysis 

1) Number of meteorological stations: The number of 

meteorological stations was set to seven levels in light of 

principle of evenly decreasing to analyze influence of density 

of meteorological stations on spatialization accuracy. They 

were level 1 with 743 stations, level 2 with 593, level 3 with 

493, level 4 with 393, level 5 with 293, level 6 with 193 and 

level 7 with 93.  

2) Size of grid cells: The size of grid cells was set to 

nineteen levels to analyze influence of size of grid cells on 

spatialization accuracy. They were level 1 at a resolution of 

1km by 1km, level 2 at 2km by 2km, level 3 at 3km by 3km, 

level 4 at 4km by 4km, level 5 at 5km by 5km, level 6 at 6km 

by 6km, level 7 at 7km by 7km, level 8 at 8km by 8km, level 9 

at 9km by 9km, level 10 at 10km by 10km, level 11 at 20km 

by 20km, level 12 at 30km by 30km, level 13 at 40km by 

40km, level 14 at 50km by 50km, level 15 at 60km by 60km, 

level 16 at 70km by 70km, level 17 at 80km by 80km, level 18 

at 90km by 90km and level 19 at 100km by 100km. 

3) Selection of spatializing methods: Five methods were 

selected to spatialize air temperature data to analyze influence 

of the methods on spatialization accuracy. They were IDW, 

Kriging, Adjusted IDW, Regression and ANUSPLIN. 

B. Results from Analysis 

1) The relation between errors and density of 

meteorological stations: In this study, average absolute errors 

(AAE) based on 56 verification stations were taken as 

accuracy assessment index. Data from the verification stations 

were not used for spatialization to enhance credibility of 

verification. For each level of number of meteorological 

stations, each level of size of grid cells and each spatializing 

method, an AAE could be got. Figure. 2 shows the 

relationship between the AAEs and densities of 

meteorological stations in the case of the grid resolution of 

1km by 1km. 

It can be seen from Fig. 2 that AAEs increase generally 

while the number of meteorological stations used for 

spatialization decreases though the increasing trend is not 

significant. 

2) The relation between errors and resolutions of grid 

cells: Figure. 3 shows the variation of AAEs with resolutions 

of grid cells for five methods in the case that data from 743 

meteorological stations were used for spatialization. 

It shows that variation of resolution of grid cells did not 

lead to significant change of AAEs for IDW and Kriging, 

which means resolution of grid cells did not have obvious 

affection for accuracy of spatialization for the two methods. 

However, the errors increased obviously when size of grid cells 

became larger and larger for Adjusted IDW, Regression and 

ANUSPLIN. For example the errors were larger than 1℃ when 

the resolution of grid cells exceeded 20 km. 

3) Quantitative relation between errors, resolution of 

grid cells and density of observatories: It could be seen from 

Fig. 2 and Fig. 3 that Adjusted IDW had least errors in five 

interpolation methods. This paper focused on errors and their 

scale effect. So we only chose Adjusted IDW to calculate 

AAEs in all cases of different size of grid cells and different 

number of meteorological stations. The results were shown in 

Table I. 

Binary linear regression was conducted with AAE as 

dependent variable, number of meteorological stations and size 

of grid cells as independent variables. A linear regression 

equation was established as (1). 
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Fig. 2.  The relationship between AAEs and number of meteorological 

stations 

 

Fig. 3.  The variation of AAEs with resolutions of grid cells 

21 008038.000046.0096.1' xxy                (1) 

Where x1 represents number of meteorological stations, x2 

represents size of grid cells (unit: km), and y’ represents 

AAE(unit: ℃).  

When predictive errors by the regression equation and 

actual errors were fitted, (2) was drawn. 

01.1)'ln(23.1  yy                             (2) 

Where y’ represents predictive AAE(unit: ℃) and y represents 

actual AAE(unit: ℃), ln() represents natural logarithm. The 

relation between y and y’ can be shown in Fig. 4. 

We could derive (3) by combining (1) and (2). It is a 

quantitative expression for the relation between errors, 

resolution of grid cells and density of meteorological stations.  

01.1)008038.000046.0096.1ln(23.1 21  xxy       (3) 

Where y, x1, x2 and ln() represent the same meanings as what 

they do in (1) and (2). 

A conclusion could be drawn by comparison of coefficients 

of x1 and x2 that an error for spatialization of air temperature 

was more sensitive to size of grid cells than to number of 

meteorological stations through it was affected by both of them. 

TABLE I.  AAES FOR DIFFERENT SIZE OF GRID CELLS AND DIFFERENT 

NUMBER OF METEOROLOGICAL STATIONS 

 

Fig. 4.  The relationship between predictive and actual AAEs 

IV. CONCLUSIONS 

In this paper, seven levels of densities of meteorological 

stations distribution, five spatialization models and nineteen 

levels of resolutions of grid cells were used to analyze the 

relations between errors resulting from spatialization and them. 

The following conclusions were drawn. 

(a) Density of meteorological stations had affection on 

spatialization accuracy to a certain extent. Reduction of density 

of meteorological stations led to increasing of errors, but the 

trend of increasing was not significant. 

(b) Models had significant influence on spatialization 

accuracy. The models in the study were classified into two 

groups in light of errors and their change trend. Adjusted IDW, 

Regression and ANUSPIN had higher accuracy than IDW and 

Kriging for the factors related to air temperature, for example 

altitude, were considered in the formers. 

(c) The resolution of grid cells also affected spatialization 

accuracy. Generally the accuracy decreased with increasing of 

size of grid cells.  

Average 

absolute 

errors(℃) 

Number of meteorological stations used for 

spatialization 

743 593 493 393 293  193 93 

S
iz

e 
o

f 
g

ri
d

 c
e
ll

s 
(k

m
 b

y
 k

m
) 

1 0.70 0.75 0.73 0.75 0.83 0.88  0.99 

2 0.71  0.77  0.75  0.78  0.87  0.91  1.05  

3 0.70  0.76  0.73  0.79  0.86  0.89  1.03  

4 0.74  0.80  0.77  0.81  0.91  0.97  1.12  

5 0.76  0.81  0.78  0.86  0.93  1.00  1.17  

6 0.78  0.86  0.82  0.91  0.99  1.04  1.19  

7 0.85  0.94  0.91  0.99  1.06  1.09  1.23  

8 0.81  0.90  0.88  0.94  1.06  1.11  1.26  

9 0.86  0.94  0.90  0.96  1.04  1.09  1.21  

10 0.91  1.00  0.96  1.04  1.14  1.17  1.30  

20 1.10  1.19 1.13  1.20  1.24  1.27  1.46  

30 1.16  1.23  1.20  1.22  1.24  1.28  1.38  

40 1.29  1.41 1.36  1.38  1.45  1.50  1.64  

50 1.31  1.38  1.30  1.31  1.28  1.38  1.59  

60 1.28  1.41  1.35  1.37  1.44  1.50  1.59  

70 1.33  1.40  1.39  1.40  1.45  1.47  1.63  

80 1.47  1.48 1.45  1.51  1.64  1.70  1.80  

90 1.48  1.51  1.46  1.49  1.54  1.55  1.72  

100 1.65 1.60  1.59  1.52  1.53  1.64  1.95  
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(d) Of the three factors mentioned above, the models had 

the greatest impact on the accuracy, the resolution of grid cells 

second and the density of meteorological stations the lowest. 

(e) Adjusted IDW, Regression or ANUSPLIN method 

should be used and the resolution of grid cells should not 

exceed ten kilometers in order to assure AAE of spatialized air 

temperature products lower than 1℃ in nation-wide of China. 
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