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Abstract—In this paper, a macroscopic crowd model is 

developed to simulate pedestrian flow characteristics and 

walking behaviors in a facility scattered with an obstacle. 

Pedestrians are assumed to walk towards a desired destination 

deviating from the path of shortest travel time according to the 

environmental factors. Some preliminary numerical results 

demonstrate reasonable path choice strategy for pedestrians can 

reduce the chance of traffic congestion occurring.  

Index Terms—Pedestrian flow; macroscopic model; path 

choice strategy; obstacle.  

I. INTRODUCTION  

Crowd dynamics is investigated generally by microscopic 

and macroscopic modeling methods. The microscopic 

modeling approach focuses on details of features of crowd 

movement and the behavior characteristics of each individual 

in a crowd. Models of this category, such as social force 

models [1,2] and cellular automaton models [3,4], increase 

computational complexity with the increase of the scale of 

individuals. However, they can reproduce individual 

behaviour observed in real emergency evacuation situation [1]. 

The macroscopic modeling approach emphasizes the global 

crowd movement pattern and reduces complexity to 

fundamental principles of pedestrian flow. Models of this 

category, such as hydrodynamic models [5-10] described as a 

set of differential equations, are very useful in the simulation 

of physical movement of large scale crowds. 

In this paper, a macroscopic crowd model is developed to 

simulate pedestrian flow walking in a facility scattered with an 

obstacle. Pedestrian walking behaviors and flow 

characteristics are formulated by the fundamental aspects as 

follows. First of all, pedestrians have a strong desire to 

continue their intended path of travel, e.g., the path of least 

time based on experience, which determines the main 

direction of pedestrian motion; secondly, they have an 

incentive to avoid environmental borders (e.g., walls and 

obstacles) in the moving process; thirdly, they tend to avoid 

the risk of collision, which introduces interactions among 

individuals. Therefore, pedestrians move towards the desired 

destination deviating from the path of least time according to 

the environmental factors.  

The framework of the modeling algorithm is based on a 

cell-centered high-resolution finite volume discretization on 

an orthogonal grid and a total variation diminishing Runge-

Kutta method for the time integration of semi-discrete 

equations [8]. Numerical simulation is carried out to 

investigate pedestrian flow characteristics and walking 

behaviors at the macroscopic level. 

II. PEDESTRIAN  DYNAMIC  MODEL 

We consider a crowd of pedestrians moving in a walking 

facility, 2R (in m
2
). The sections of solid wall, entrance, 

exit are denoted by w , i , and o , respectively. Based on 

continuum dynamics, the conservation law for pedestrian flow 

is defined as follows.  
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where ( , )t x (in ped/m
2
) and ( , ) et Uv x υ  (in m/s) are the 

density and velocity of pedestrian flow, respectively. Here,  

1 2( ( , ), ( , ))t t υ x x is a unit vector representing the 

actual walking direction of pedestrians, and = ( )e eU U   is the 

magnitude of velocity or the speed-density relationship. 

The description of direction of pedestrian motion, υ , is 

based on the following assumptions.  

1.  Pedestrians always try to reach the desired goal along  the 

path of shortest travel time, which determines the main 

direction of pedestrian motion, in a familiar walking 

environment. Let ( ) x be the minimum travel cost from 

x  to 
0 ox (the exit) and the main direction of 

pedestrian motion,
1( )υ x , is expressed as 
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where ( ) x  satisfies the Eikonal equation [5,6] 
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Here, maxU  is the maximum walking speed of pedestrians. 

2.   Pedestrians display a tendency to avoid collisions with 

the environment (e.g., building walls and obstructions) while 

advancing towards their goal. The degree of tendency 

decreases if the distance to the pedestrian environment and 

the local pedestrian density increases. The vector normal to 

the environment, pointing inward, is 2 2 2

1 2( ) ( ( ), ( )) υ x x x  

with intensity  
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Here, maxd is the safe distance that pedestrians prefer to keep 

from the environment, ( )d x is the distance from x to the 

borders of walls and obstacles, and ( ) ( )H z z R  is the 

Heaviside step function (i.e. ( ) 0H z  where 0z  , and 

( ) 1H z  where 0z  ).  

3.  Pedestrians tend to avoid the risk of collision among   

individuals, and then choose the less congested routes in order 

to feel comfortable. Therefore, they evaluate the crowd 

density by looking around within a certain visibility zone, and 

adjust the original direction of motion. The field of vision is 

defined as 
0 0( ) [ , ]R       x [7], where  is the 

maximum visibility angle of pedestrians (in average), and 
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is the angle that identifies the direction of the quickest 

path,
1( )υ x at location x . Let 

                      { (cos( ),sin( )) | ( )}I R     μ x   

be the vector set of the main direction of pedestrian motion. 

Thus, the direction of the minimum directional 

derivative,
3( , )tυ x , is obtained as 0 ( , )tμ x , where  0 ( , )tμ x  

and the parameter   are defined respectively as  
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Here,   increases with the increasing local density, 0  

reflects the “comfort level” and max  is the jam density. 

 

According to the above hypotheses, the direction of 

pedestrian motion, ( , )tυ x , at position x  at time t,  is 

obtained as  
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III. NUMERICAL SIMULATION AND RESULTS 

The model is solved by a cell-centered high-resolution 

finite volume method for spatial discretization and a third-

order fast sweeping method for an Eikonal equation on an 

orthogonal grid. A third-order total variation diminishing 

Runge-Kutta method is utilized for the time integration of the 

semi-discrete equation. See [8] for the detailed numerical 

algorithm. 

The area of the walking facility is 100m×50m and its 

vertex on the underneath left side is taken as the coordinate 

origin. A square obstacle with sides of 20m is located at (50m, 

20m). The entrance and exit are set at 0x m  

for [0 ,50 ]y m m  and 100x m for [10 ,40 ]y m m , 

respectively. At the initial time, the facility is empty, 

i.e.
0 ( ) 0 x . The flux ( , ) ( , ) ( , )t t tF x x v x  at entrance i  is 

given by 

( / 30,0),0 60,

( , ) (4- /30),0),60 120,

(0,0),120 240,

t t

t t t

t
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and ( , ) 0t F x  at the solid walls 
w . At exit 0 , the 

maximum outflow condition [9] is applied. The speed-density 

function is taken as 
2

max( )

max( )eU U e
   

 [10], with the 

parameters 
max 1.34U m s , 2

max 10 ped m  , and 7.5  . The 

critical density that divides the uncongested and congested 

density regions is 2

max / 2 2.58 /c ped m    . The maximum 

visibility angle of pedestrians,  , and the safe distance, 

maxd , are set as 75
0
 and 1.6m, respectively. 

Figure 1 shows the density distributions and flux vectors at 

different time steps for the dissipation of the crowd in four 

phases with the parameter 0 1  . In the first phase, the 

pedestrian flow is divided into two streams by the square 

obstacle and a triangular vacuum region is formed on the left 

side of the obstacle (see Fig. 1 (a)). In the second phase, two 

high-density regions that correspond to the traffic congestion 

(i.e. c  ) appear before the obstacle (see Fig. 1 (b)), 

because the width of the facility is reduced and pedestrians 

soon accumulate around the obstacle. At this time, small parts 

of the two streams merge on the right-hand side of the 

obstacle, leaving another triangular vacuum region in their 

wake, and some of the pedestrians have left the facility 

through the exit. In the third phase, the first triangular region 
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disappears into a large empty region left by the departing 

crowd and pile-up phenomena caused by the crowd gathering 

and the relatively narrow exit can be seen at each end of the 

exit (see Fig. 1 (c)). In the fourth phase (see Fig. 1 (d)), most 

pedestrians have left the facility and others queue up around 

the exit due to its limited capacity.  

To further illustrate the path-choice behaviors of 

pedestrians walking in the facility scattered an obstacle, 

various values of the “comfort level”,
0 , are taken into 

account. In Fig. 2, we plot the pedestrian density along the 

lines, 35 ,x m  95 ,x m 5y m and 35y m at time 120t s , 

with 
0 0, 0.5, 1, 2, 5  , respectively. It is observed that the 

densities become smooth, when 
0  increases (see Fig. 2 (a)-

(d)). The “seeking comfort” behavior of pedestrians can 

prevent them from overly gathering around the obstacle and 

the exit. Therefore, this can significantly reduce the chance of 

traffic congestion occurring.  

 

 

 

 

 

 

 

 

 

 

 

(a) t=60s 
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(c) t=180s  

 

 

 

 

 

 

 

 

 

 

(d) t=210s  

Fig. 1. Pedestrian density   and flux F  at different times 

with 0 1  . 

 

 

 

 

 

 

 

 

 

 

 

(a)  x=35m 

 

 

 

 

 

 

 

 

 

 

 

 

(b)  x=95m 

 

 

 

 

 

 

 

 

 

 

 

 

(c)  y=5m 
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(d)  y=35m 

Fig. 2. Pedestrian density   along different lines at time t = 120s, with 

0 0,0.5,1,2,5  ,  respectively. 

IV. CONCLUSIONS 

In this work, a macroscopic crowd model is developed to 

study pedestrian flow walking in a facility scattered with a 

square obstacle. Numerical results demonstrate that this model 

can reproduce some typical pedestrian flow characteristics and 

walking behaviors [5,6], e.g. density distribution and pile-up 

phenomena. Further more, collision avoidance or “seeking 

comfort” behavior of pedestrians can significantly reduce the 

chance of traffic congestion occurring. 
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