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In this study, we propose a simple robust test for the mean of an exponential distribution by using the simplified 
version of “Forward Search” (FS) method. The FS method is a powerful general method for identifying outliers and 
their effects on inferences about the hypothesized model. The simulation studies indicate robustness of the testing 
method and the ability of the procedure to capture the structure of data. Results are presented through the plots 
which are powerful in revealing the structure of the data. 
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1. Introduction 

The exponential distribution has an essential role in a variety of applications in reliability engineering and life testing 
problems. The exponential hazard rate is constant and the estimation and test theory can easily be detailed for the 
exponential model, therefore, the mean of this distribution is an important characteristic that is often of interest to an 
experimenter. 

We should pay attention to outliers because a small departure from the assumed model can have negative effects on 
the efficiency of classical estimators. The Forward Search (FS) approach is a powerful general method that provides 
diagnostic plots for finding outliers and discovering their underlying effects on models fitted to the data and for assessing 
the adequacy of the model. Atkinson and Riani ([1], [2], [3]) developed the FS procedure for regression modeling and 
multivariate analysis frameworks. The FS method starts from a small, robustly chosen subset of the data. The method 
increases the subset size by using some measure of closeness to the fitted model until finally all the data are fitted. The 
outliers enter the model in the last steps and the entrance point of the outliers can be revealed by monitoring some 
statistics of interest during the process. Recently the FS method is implemented in wide applications, e.g. ANOVA 
framework [5] and testing normality [6]. For further results see [4]. 

The purpose of this article is to adopt the simplified version of FS method in testing the mean of an exponential 
distribution. The most popular test for the mean of exponential distribution is based on a Chi-square distribution, but 
presence of outliers influences this test strongly. In this paper we try to determine how many and which observations 
agree with the null hypothesis about the mean of an exponential distribution. 

The paper is organized as follows. In Section 2 we briefly introduce testing the mean of an exponential distribution. 
Section 3 presents the proposed forward search algorithm in testing the mean of an exponential distribution. In Section 4, 
the performance of the method is illustrated with simulated data and the behavior of our procedure is analyzed. Finally 
concluding remarks are provided in Section 5. 
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2. Testing the Mean of an Exponential Distribution 

Historically, the exponential distribution was the first widely discussed lifetime distribution. The probability density 
function (pdf) of a random variable ~ ( )X Exp  , which represents the lifetime variable of interest, is given by 

   1| exp ,   0.f tt t          (2.1) 

The positive parameter   is the mean lifetime and 1   is the hazard rate. 
Let 1 2, , , nX X X  be a random sample of size n  taken from the exponential distribution given in (2.1). The MLE 

of   is given by 

 ˆ ,X         (2.2) 

where X  denotes the sample mean. The pivotal quantity 2Q Xn   which follows a Chi-square distribution with 
2df n  can be used for testing the null hypothesis 0   against the alternative hypothesis 0  . The null 

hypothesis is rejected with a test of size   if  
2

0 0 2 , 22 nQ Xn     or  
2

0 0 2 ,1 22 nXQ n     . Here  
2

, p  denotes 
the p-th quantile of a Chi-square distribution with   degrees of freedom. The sample mean is not a robust statistic, hence 
testing the mean of exponential distribution is strongly affected by presence of outliers. 

3. Forward Search in Testing the Mean of an Exponential Distribution 

The FS method is useful not only to detect and investigate observations that differ from the bulk of data, but also to 
analyse the effect of outliers on the estimation of parameters and other inferences about the model of interest. The FS 
method has three steps: the first step is choosing an outlier free subset of all observations, the second step presents the 
plan for progressing in FS and the last step is monitoring statistics during the search. In this paper we are inspired by 
quantile-quantile (QQ) plot to choose the initial subset and also add observations during the search according to their 
closeness to appropriate quantiles of standard exponential distribution. In the following subsections we address these 
three points separately. 

3.1.  Step 1: Choice of the initial subset 

Starting point of the FS procedure is choosing an outlier free subset of observations robustly. A QQ plot is a common 
and basic technique used for finding a suitable model to data. When comparing observed data to a hypothesized 
distribution, the plot of the ordered observations versus the appropriate quantiles of assumed distribution, should look 
approximately linear. For more details about QQ plot see [7]. 

Let       (.) 1 2, , , nx x x x  be the vector of ordered observations from an exponential distribution with mean  . 
Then its p-quantile, defined by  pP X x p  , is 

 (1 )px ln p        (3.1) 

Thus px  is a linear function of ln(1 )i ip    . Also for appropriate ( 0.5) /ip i n   one can view the i-th 
ordered sample  ix  as a good approximation for pi

x . Therefore, the plot of  ix  against i  should look approximately 
linear (a line without intercept). Thus we can estimate the unknown parameters   by writing the following regression 
model 

   i iix          (3.2) 

The unknown parameter   of model (3.2) can be estimated using robust regression estimation, for example Least 
Median of Squares (LMS), proposed by Rousseeuw [8]. Here we only discuss the LMS regression briefly. If pβ R  
denotes the vector of parameters in the classical linear regression model 

 , 1, 2, , ,i i iy i n   x β     (3.3) 

where , p
i iy  xR R  and i  is the error term, then the LMS estimator for β  is defined as 
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2
LMS ˆmin  ˆ ,imed e

β
β       (3.4) 

where ie  denotes the i-th residual 

 ,    ˆ 1, 2, , .i i ie y i n   x β     (3.5) 

The resulting estimator has a 50% breakdown point. For an exhaustive account about this estimator see [9]. 
After estimating the parameter of model (3.2) by LMS estimation method, the estimated expected value for  ix  is of 

the form  
   ˆ  ,    ˆ 1, 2, , .Si LM i i nx         (3.6) 

Let    ˆ
i i ir x x  , the i-th absolute residual resulting from (3.6). The elements of    (.) ( )1 2( , , , )nx x x x  are 

reordered based on the values of ir , and this new vector of reordered observations is denoted by (LMS)x . 
To start the FS approach, the size of initial subset must be specified. The breakdown point of (3.4) is 50%, hence we 

start the process with the first   1 2n   observations of (LMS)x . Denote this subset by  *S  that involved   1 2n   
observations ix  that correspond to the smallest of    ˆ ;  1,2, ,i i ir x x i n    . 

The error terms of (3.2) are not independently and identically distributed. However no inferences are presented for 
the model or the parameter of (3.2), but the LMS estimator maybe have not a good performance for small data size. 
Hence, based on the asymptotic theory it is better we use the proposed method for large enough data sizes. 

3.2.  Step 2: Adding observations during the FS 

At each step, the procedure adds to the subset the observation that is closest to the previously fitted model. Since we use 
a robust method for estimating the parameter of (3.2), it is not necessary to refit the model and reorder the observations 

(LMS)x  at each step of the search. It means we just estimate the parameter of (3.2) based on the all observations and this 
parameter would not change during the search, hence we call this method as simplified version of FS method. Therefore 
in the   1 2nn  remaining steps we add the next observation of (LMS)x  to the previously chosen subset. Let  mS  be 
the subset of the first m observations of (LMS)x . Thus  mS  involved m  observations ix  that correspond to the smallest 
of    ˆ ;  1, 2, ,i i ir x x i n    . 

3.3.  Step 3: Monitoring the search 

To guide the researcher in outlier detection and in the analysis of their effect on model inference, some statistics of 
interest must be monitored during the search. According to the Section 2, for testing the null hypothesis 0   we must 
obtain Q  statistic under the null hypothesis 0 02Q nX  . In the forward search version of this test, in each step of the 
search we obtain this statistic for each subset of the search. The forward search version of the test for the mean of an 
exponential distribution, FSQ , is defined as a collections of Q  statistics computed for the subset  mS  during the FS 
procedure under the null hypothesis as  

       * , , , ,m nFS S S S
Q Q Q  Q     (3.7) 

where   ( ) 02 /mm SS
Q mX   and ( )mS

X  is the sample mean of the subset  mS . 
It is obvious that the size of (3.7) is dependent to the data size n . The quantiles of the test statistic (3.7) can be 

estimated by simulation in all steps of the procedure by generating numerous samples in size n from a standard 
exponential distribution. By simulating 10000 samples from the null hypothesis (or without lack of generality we can 
suppose 0 1  ) and then by applying the FS method, we can obtain (3.7) for each sample. Now we have 10000 values 
for FSQ  under the null hypothesis, therefore the -th  quantile of  mS

Q  is (10000 )-th  value of sort  mS
Q . We denote 

the empirical -th  quantile of Q  for the subset  mS  by  ,
ˆ

mq  . In any search steps the acceptance region lies between 
the chosen estimated quantiles, for example  , 0.025

ˆ
mq    and  , 0.975

ˆ
mq   . Hence it is possible to determine from which 

observation onwards the null hypothesis is rejected. 
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4. Simulation Study 

To evaluate the proposed statistic (3.7), we conduct simulation studies that aim to consider the behavior of this statistic 
in the presence of outliers and ability of FS to detect them. Table 1 reports the 2.5% and 97.5% empirical quantiles of Q  
at each step of the search estimated by generating 10000 samples from a standard exponential distribution with 
size 100n  . 

Table 1. Empirical quantiles of Q  statistics at each step of the search for 100n  . 

m   , 0.025
ˆ

mq     , 0.975
ˆ

mq    m   , 0.025
ˆ

mq     , 0.975
ˆ

mq    m   , 0.025
ˆ

mq     , 0.975
ˆ

mq    

50 56.85 183.55 67 76.47 176.13 84 108.58 184.45 
51 57.01 182.23 68 77.86 176.33 85 111.00 186.10 
52 57.70 182.30 69 79.45 176.11 86 113.17 187.73 
53 58.52 181.58 70 80.83 176.03 87 116.07 189.33 
54 59.43 181.23 71 82.37 176.25 88 118.39 191.57 
55 60.54 180.42 72 84.30 176.22 89 121.53 193.70 
56 61.35 179.53 73 86.03 177.10 90 124.23 196.30 
57 62.54 179.00 74 88.01 177.63 91 127.26 199.00 
58 63.77 178.74 75 90.07 177.95 92 130.20 201.62 
59 65.03 178.19 76 92.20 178.60 93 133.17 204.71
60 66.15 177.65 77 94.10 179.08 94 136.63 208.07 
61 67.49 176.92 78 96.06 179.65 95 139.92 211.93 
62 69.03 176.68 79 97.94 180.16 96 144.08 215.81 
63 70.39 176.31 80 99.70 181.15 97 148.13 220.47 
64 71.76 176.49 81 102.15 181.82 98 152.33 225.70 
65 73.51 176.33 82 104.27 182.97 99 157.18 231.43 
66 75.03 176.31 83 106.34 183.66 100 163.57 240.11 

Now consider four samples which are generated in the following way: 
 Sample A: 100 observations are generated from an ( 1)Exp   . 
 Sample B: 95 observations are generated from an ( 1)Exp    and for contamination 5 observations are generated 

from a 2( 10, 1)N    . 
 Sample C: 90 observations are generated from an ( 1)Exp    and for contamination 10 observations are 

generated from a ( 5, 6)Uniform a b   . 
 Sample D: 90 observations are generated from an ( 1)Exp    and for contamination 10 observations are 

generated from an ( 5)Exp   . 
For each sample, the proposal is to test the null hypothesis μ 1  against the alternative hypothesis μ 1 . In Fig.1, 

values of FSQ  during the search are plotted for samples A-D and compared with corresponding 2.5% and 97.5% 
quantiles (dashed lines) of its distribution obtained from the simulation study with clean data. The null hypothesis is 
accepted in each step of the search for clean sample A, but it is rejected after entrance of outliers in the last steps for 
contaminated samples B, C. In case D the null hypothesis is rejected just from step 96 onwards, may be this is due to the 
similarity between the clean data distribution and contaminated data distribution. 

4.1.  Empirical power of FSQ  

In this subsection, our interest is to evaluate the empirical power of our approach. Consider testing the null hypothesis 
1   against the alternative hypothesis μ 1 . Fig.2 shows the empirical power of FSQ  against following alternative 

hypotheses by generating 10000 samples of size 100. 
(a) ( 0.7)Exp    
(b) ( 0.5)Exp    
(c) ( 1.3)Exp    
(d) ( 1.5)Exp    
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Fig.1. Forward plots of FSQ  during the search for samples A-D. 

 

Fig.2. Empirical power of FSQ  versus alternative distributions (a-d). 

Due to our aim is to find the largest subset of observations that can be distributed as the null hypothesis, the power of 
our proposed procedure in the first steps of the search is low. It means in the first step, procure choose the best subset of 
observations that can be generated from the null hypothesis although all dataset is generated from an alternative 
distribution. Thus the minimum power is always in the first step and it is increasing as the subset size increase. 
Therefore, the larger sample size provides safer procedure to detect and investigate the effect of outliers. 
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5. Concluding Remarks 

In this paper, a new robust method for testing the mean of an exponential distribution has been presented. The approach 
gives information about the mean of majority of the data and the percentage of contamination. At every step of the FS, 
the proposed statistic is computed and with a graphical approach a cut-off point divides the group of outliers from the 
other observations. In order to illustrate the application and the advantage of the FS approach we used some artificial 
examples. 
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