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In this article, we consider a measure of inaccuracy between distributions of the i th order statistics and par-

ent random variable. It is shown that the inaccuracy measure characterizes the distribution function of parent

random variable uniquely. We also discuss some properties of the proposed measure.
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1. Introduction

In information theory, entropy is a measure of the uncertainty associated with a random variable.

This concept was introduced by Shannon [2]. Shannon entropy represents an absolute limit on the

best lossless compression of any communication. Shannon entropy of a discrete random variable X

with possible values {x1,x2, . . . ,xn} and probability mass function p is defined as

H(X) =−
n

∑
i=1

p(xi) log p(xi). (1.1)

In case of continuous sample, Shannon entropy is given by

H( f ) =−

∫ ∞

0
f (x) log f (x)dx. (1.2)

Shannon entropy has been used as a major tool in information theory on in almost every branch

of science and engineering. Let X and Y be two non-negative random variables with p.d.f. f (x)

and g(x), respectively. Let F(x) = P(X 6 x) and G(y) = P(Y 6 y) be their distribution functions.

The Kullback-Leibler [10] measure of discrimination of X about Y and Kerridge [3] measure of
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inaccuracy are given by

H( f | g) =
∫ ∞

0
f (x) log

f (x)

g(x)
dx (1.3)

H( f ,g) =−
∫ ∞

0
f (x) log g(x)dx (1.4)

respectively. Note that

H( f | g)+H( f ) = H( f ,g).

In this article, we assume X to be a positive continuous random variable.

Suppose that X1, X2, . . . ,Xn are independent and identically distributed observations from

cdf F(x) and p.d.f. f (x). The order statistics of the sample is defined by the arrangement of

X1, X2, . . . ,Xn from the smallest to the largest, denoted as X1:n 6 X2:n 6 · · · 6 Xn:n. These statistics

have been used in a wide range of problems like detection of outliers, characterizations of proba-

bility distributions, quality control and strength of materials; for more details [1, 4, 6]. In reliability

theory, order statistics are used for statistical modeling. The k th order statistics in a sample of size n

represents the life lengths of a (n− k+1)-out-of-n system.

Several authors have studied the information theoretic properties of an ordered data. Wong and

Chen [5] showed that the difference between the average entropy of order statistics and the entropy

of parent distribution is a constant. Park [11] obtained some recurrence relations for the entropy

of order statistics. Ebrahimi et al. [8] explored some properties of the Shannon entropy of order

statistics and showed that the Kullback-Leibler information functions involving order statistics are

distribution free. We continue this line of research by deriving a measure of inaccuracy in order

statistics and exploring some of it’s properties.

Shannon’s measure of uncertainty associated with i th order statistics Xi:n is given by

H(Xi:n) =−
∫ ∞

0
fi:n(x) log fi:n(x)dx, (1.5)

where

fi:n(x) =
1

B(i,n− i+1)
(F(x))i−1(1−F(x))n−i f (x) (1.6)

is p.d.f. of i th order statistics, for i = 1,2, . . . ,n. Here

B(a,b) =

∫ 1

0
xa−1(1− x)b−1dx, a > 0, b > 0, (1.7)

is beta function with parameters a and b, [1].

Note that for n = 1, (1.5) reduces to (1.2). Using probability integral transformation U = F(X),

where U follows standard uniform distribution, the entropy of i th order statistics is given by

H(Xi:n) = Hn(Wi)−Egi

[

log( f (F−1(Wi)))
]

, (1.8)

where

Hn(Wi) = log B(i,n− i+1)− (i−1)[ψ(i)−ψ(n+1)]− (n− i)[ψ(n− i+1)−ψ(n+1)], (1.9)
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denotes entropy of i th order statistics from standard uniform distribution whose p.d.f. is given by

gi(w) =
1

B(i,n− i+1)
wi−1(1−w)n−i

, 0 < w < 1, (1.10)

and ψ(z) = d log Γ(z)
dz

is the digamma function (for details [8]).

In this communication, we study a measure of inaccuracy in order statistics. In Section 2, we

propose a measure of inaccuracy between distributions of i th order statistics and parent random

variable X and study a characterization result based on this measure. In Section 3, we find bounds

for inaccuracy measure and calculate the average of inaccuracy measure.

2. A Measure of Inaccuracy

Kullback-Leibler [10] measure of relative information between distribution of i th order statistics

and data distribution is given by

Kn( fi:n, fX) =

∫ ∞

0
fi:n(y) log

(

fi:n(y)

fX(y)

)

dy (2.1)

Using probability integral transformation U = F(X), this becomes

Kn( fi:n, fX ) = Kn(gi,U) =

∫ ∞

0
gi(w) log gi(w)dw =−Hn(Wi), (2.2)

where fX(y) is the p.d.f. of parent random variable X , fi:n is p.d.f. of i th order statistics, gi is the

beta distribution (1.10) and U is the uniform distribution (for details [8]).

Adding (1.5) and (2.1), we get

H(Xi:n)+Kn( fi:n, fX ) =−
∫ ∞

0
fi:n(y) log fi:n(y)dy+

∫ ∞

0
fi:n(y) log

(

fi:n(y)

fX(y)

)

dy

=−

∫ ∞

0
fi:n(y) log fX(y)dy. (2.3)

Using probability integral transformation U = F(X), (2.3) reduces to −Egi

[

log( f (F−1(Wi)))
]

. Fur-

ther, adding (1.8) and (2.2), we obtain

H(Xi:n)+Kn( fi:n, fX ) =−Egi

[

log( f (F−1(Wi)))
]

,

which is in confirmation with the result already obtained.

We define the measure

In( fi:n, f ) =−

∫ ∞

0
fi:n(x) log f (x)dx =−Egi

[

log( f (F−1(Wi)))
]

(2.4)

as a measure of inaccuracy associated with distribution of i th order statistics and parent distribution

function f (x), analogous to the Kerridge measure of inaccuracy between two density functions f

and g given by (1.4).

Next, we show that the inaccuracy measure defined above characterizes the distribution function

of parent random variable X uniquely. To prove this characterization result we use the following

lemma [12].
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Lemma 2.1. For any increasing sequence of positive integers {n j, j > 1}, the sequence of polyno-

mials {xn j} is complete in L(0,1), if and only if ∑∞
j=1 n−1

j is infinite.

Here, L(0,1) is the set of all Lebesgue integrable functions on the interval (0,1).

Theorem 2.1. Let X and Y be two positive random variables with p.d.f. f (x) and g(x) and abso-

lutely continuous c.d.f. F(x) and G(x), respectively. Then, F and G belong to same family of distri-

butions but for change in location if and only if

In( fi:n, f ) = In(gi:n,g), 1 6 i 6 n

for n = n j, j > 1 such that ∑∞
j=1 n−1

j is infinite.

Proof. The necessary part is obvious. We only need to prove the sufficiency part. If for all n = n j,

j > 1 such that ∑∞
j=1 n−1

j is infinite and

In( fi:n, f ) = In(gi:n,g)−
∫ ∞

0
fi:n(x) log f (x)dx

=−

∫ ∞

0
gi:n(y) log g(y)dy−

∫ ∞

0

F(x)i−1(1−F(x))n−i f (x) log f (x)dx

B(i,n− i+1)

=−
∫ ∞

0

G(y)i−1(1−G(y))n−ig(y) log g(y)dy

B(i,n− i+1)
.

Put u = 1−F(x) and u = 1−G(y) and take n− i = k, then

∫ 1

0
(1−u)i−1

[

log( f (F−1(1−u)))− log(g(G−1(1−u)))
]

ukdu = 0, ∀k > 0.

Using Lemma 2.1, we have

f (F−1(1−u)) = g(G−1(1−u))

Take 1−u = ν , then

f (F−1(ν)) = g(G−1(ν)), ∀ν ∈ (0,1).

As,

d(F−1(ν))

dν
=

1

f (F−1(ν))
.

Therefore, we have

F−1
′

(ν) = G−1
′

(ν), ∀ν ∈ (0,1)

F−1(ν) = G−1(ν)+ c

where c is a constant and hence concludes the proof.
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3. Properties of Inaccuracy Measure

In this section, we find the bounds of inaccuracy measure (2.3) for order statistics in terms of entropy

(1.2). Also, we find the average value of the derived measure.

Theorem 3.1. For any random variable X with entropy H(X)< ∞.

(i) If Bi is the i th term of the binomial probability B(n−1, pi), pi =
i−1
n−1

, then

nBi(H(X)+ I(A))6 In( fi:n, f )6 nBi[H(X)+ I(Ā)] (3.1)

where I(A) =
∫

A f (x) log f (x)dx and A = {x; f (x) 6 1}, Ā = {x; f (x) > 1}.

(ii) If M = f (m)< ∞, where m is the mode of the distribution, then

− logM 6 In( fi:n, f )6 nBi[H(X)+ logM]− logM . (3.2)

Proof. The entropy H(Xi:n) of i th order statistics is bounded as, [8].

Hn(Wi)+nBi(H(X)+ I(A))6 H(Xi:n)6 Hn(Wi)+nBi[H(X)+ I(Ā)] (3.3)

where Hn(Wi) is given by (1.9).

Adding (2.2) and (3.3), we get (3.1).

To prove (ii), we will use result due to Ebrahimi et al. (2004) given by

Hn(Wi)− logM 6 H(Xi:n)6 Hn(Wi)− logM+nBi[H(X)+ logM] . (3.4)

Adding (2.2) and (3.4), we get (3.2).

Example 3.1. Let X be a random variable following exponential distribution with p.d.f. f (x) =

θe−θ x, x > 0, θ > 0. Then, F(x) = 1− e−θ x.

For i = 1, that is the case of sample minima, we have

In( f1:n, f ) =−Eg1
[log( f (F−1(W1)))] =

1

n
− logθ . (3.5)

Note that

(i) For a fixed value of n, inaccuracy of sample minimum for exponential distribution decreases

with increasing value of θ . Figure 1 shows decrease in inaccuracy for different values of n.

(ii) Similarly, if we keep θ fixed then inaccuracy decreases with increase in sample size. Figure 2

shows decrease in inaccuracy for different values of θ .

For i = n, that is the case of sample maxima

In( fn:n, f ) =−Egn
[log( f (F−1(Wn)))] = γ +ψ(n)− logθ +

1

n
. (3.6)

where ψ(1) =−γ = 0.5772 is Euler’s constant and we use ψ(n+1) = ψ(n)+ 1
n
.

Note that

(i) For a fixed value of n, inaccuracy of sample maximum decreases with increasing value of

parameter θ .

(ii) In( fn:n, f )− In( f1:n, f ) = γ +ψ(n) > 0, equality holds when n = 1. Hence, for exponential

distribution we can conclude that inaccuracy about the maximum is always more than the

minimum.
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Remark 3.1. For exponential distribution with parameter θ we have M = θ and H(X) = 1− log θ .

Using (3.2), we have

− logθ 6 In( fi:n, f )6 nBi − logθ . (3.7)

For i = 1, (3.7) becomes

− logθ 6 In( f1:n, f )6 n− logθ . (3.8)

where as

In( f1:n, f ) =
1

n
− logθ . (3.9)

The difference between the actual value of In( f1:n, f ) and the lower bound calculated in (3.8) is
1
n

which tends to 0 as n → ∞. Therefore, for exponential distribution, lower bound is useful when

sample size is large.
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Theorem 3.2. The average value of inaccuracy measure is entropy of the parent random variable

X, that is

1

n

n

∑
i=1

In( fi:n, f ) = H(X). (3.10)

Proof. Consider

−
n

∑
i=1

∫

fi:n(y) log f (y)dy =−
n

∑
i=1

∫

1

B(i,n− i+1)
(F(y))i−1(1−F(y))n−i f (y) log f (y)dy

=−
n

∑
i=1

∫

gi(F(y)) f (y) log f (y)dy

=−
∫ n

∑
i=1

nqi−1 f (y) log f (y)dy

= nH(X),

where

gi(w) =
1

B(i,n− i+1)
wi−1(1−w)n−i

, 0 6 w 6 1,

is the p.d.f. of i th order statistics from standard uniform distribution, and qi−1 with ∑n
i=1 qi−1 = 1

denotes the (i−1) th term of B(n−1, p), the Binomial variate with parameters (n−1) and p = F(x).

Hence, the desired result (3.10) follows.

Example 3.2. Let X be a random variable having exponential distribution with p.d.f. f (x) = θ e−θ x,

θ > 0, x > 0. Then,

fi:n(y) =
1

B(i,n− i+1)
F(y)i−1(1−F(y))n−i f (y). (3.11)

For i = 1, 2 and n = 2, using (2.4)

I2( f1:2, f ) =− logθ −
1

2

and

I2( f2:2, f ) =− logθ +
3

2
.

Hence,

1

2
(I2( f1:2, f )+ I2( f2:2, f )) = 1− logθ . (3.12)

Also, using (1.2) we have

H(X) = 1− logθ . (3.13)

which is equal to average inaccuracy as calculated in (3.12).
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4. Conclusion

The proposed measure of inaccuracy between the i th order statistics and parent random variable

characterizes the distribution function of parent random variable uniquely and its average value is

the entropy of the parent random variable.
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