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Abstract

In this note, we establish a law of iterated logarithm for a triangular array of a random number of indepen-
dent random variables and apply it to obtain laws of iterated logarithm for the sequential nonparametric
density estimators. We consider the case of Rosenblatt-Parzen kernel estimators and orthogonal polyno-
mial estimators. We point out that we obtain in the present paper sharp pointwise rates of the consistency.

Keywords: Nonparametric density estimator, iterated logarithm, Parzen-Rosenblatt estimator, orthogonal
polynomial estimator.

1. Introduction

In this paper, we investigate the problem related to the iterated logarithm law pertaining with the sequential
density estimation. Towards this objective, we establish in the first place a result for a statistic built upon a
triangular array which allows to deduce results for a number of estimators. In order to be more precise on the
matter, let consider, for any t ∈R+, a positive integer random variable Nt representing the number of observations
which we may record in time (0, t] as well as a sample X1,X2, . . . ,XNt drown from a real random variable X .
Denote by F the distribution function of X and by f its density function with respect to the Lebesgue measure.
Suppose that Nt is independent of observations.
The estimators we shall consider are of the type:

f̂t(x) = N−1
t

Nt

∑
i=1

Kr(Nt)(x;Xi),

where {Kr,r ∈ I} is an I−indexed set of ”kernel” functions and I an arbitrary real function index set. This
problem has been widely investigated and a number of properties have been studied. We refer to Deheuvels 1, 2

and Prakasa Rao 3, for an overview of results of the subject. The asymptotic properties of the estimate of density
function and probability distribution function, are investigated by Srivastava 4, the estimate of density function
is asymptotically unbiased, consistent and uniformly consistent. Carroll 5 obtains the asymptotic normality of
this estimate. In this note we investigate the problem related to the iterated logarithm law pertaining with the
sequential density estimation.
In the non sequential estimation case, iterated logarithm results have been obtained by Hall 6, Stute 7 and
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Deheuvels 8. Hall obtains rates of strong consistency by establishing laws of iterated logarithm for: Rosenblatt-
Parzen kernel estimators, trigonometric series estimators and orthogonal polynomial estimators, by making use
of the invariance principle due to Komlós et al. 9.

We begin by establishing a law of iterated logarithm for a general class of triangular arrays of independent
variables. This result is presented in section 2, we apply it to the Rosenblatt-Parzen kernel estimators in section
3 and to the orthogonal polynomial estimators in the section 4. These results are generalization of that given by
Hall by considering the random case.

2. A Law of the Iterated Logarithm for Triangular Arrays

Let X be a random variable, with distribution function F confined to the interval (a,b), where −∞ 6 a < b 6 ∞

and probability density function f . Also, let X1,X2, . . . ,XNt be independent observations on X , where Nt , for any
t > 0, be a non-negative integer-valued random variable, supposed to be independent of the observations.
Let {Kr,r ∈ I} be a sequence of univariate functions each of bounded variation on (a,b). And define, for any
x ∈ R, the following process

St(x) =
Nt

∑
i=1

[Kr(Nt)(x,Xi)−EKr(Nt)(x,Xi)], (1)

where E(X) stands as the mathematical expectation of X ,

σrs = cov[Kr(X1),Ks(X1)], σ
2
r = σrr

and

g(n) =
(

2nσ
2
r(n) log logn

)1/2
, n ∈ N∗. (2)

The following theorem involves the triangular array result,

Theorem 1. Suppose :

(H1) Nt
P→ ∞, as t→ ∞,

(H2) (logn)2
[∫
|dKr(n)(x)|

]2

/nσ
2
r(n) log logn ↘ 0, as n→ ∞,

and

(H3) lim
ε→∞

limsup
n→∞

sup
m

∣∣∣∣r(m)

r(n)
−1
∣∣∣∣= 0,

where the inner supremum is taken over values of m with |m−n|6 εn. Then

limsup
t→∞

±g−1(Nt)St(x) = 1, in probability.

In the proof of theorem (1) we use the following Lemma due to Srivastava 4.
Lemma
Let {Yn} be a sequence of random variables that is independent of the random variable Nt , for any t with Nt

P→∞

as t→ ∞. If Yn
P→ θ as n→ ∞, then

YNt

P→ θ as t→ ∞.

Here, θ is a constant.
Proof. We see that it suffices to consider the case where each Xi is uniform on (0,1). In this case a = 0 and
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b = 1. Let Ft denote the empiric distribution function of X1,X2, . . . ,XNt . So, Ft(x) = N−1
t ∑

Nt
i=1 1{Xi6x}.

Using the result given in theorem 4 of 9 on a rich enough probability space and the relation (H1) it is easy to
obtain that:

Nt [Ft(x)− x] =
Nt

∑
i=1

W i(x)+ et(x), 0 6 x 6 1, t ∈ R in probability.

Where W i, i > 1 are independent Brownian bridges and there exist positive absolute constants C1,C2 and λ such
that the error en(x) verify :

P
(

sup
06x61

|en(x)|> (C1 logn+ x) logn
)
<C2e−λx, (3)

for all x and n. Therefore, the process defined in (1) can be written as:

St(x) =
Nt

∑
i=1

[Kr(Nt)(x,Xi)−EKr(Nt)(x,Xi)]

= Nt

∫
Kr(Nt)(x)dFt(x)−NtE

(
Kr(Nt)(x,X1)

)
= −

Nt

∑
i=1

∫
W i(x)dKr(Nt)(x)−

∫
et(x)dKr(Nt)(x)+

Nt

∫ [
Kr(Nt)(x)−E(Kr(Nt)(x))

]
dF(x).

We have, ∀ε > 0,

P
(
(g(Nt))

−1
∣∣∣∣∫ et(x)dKr(Nt)(x)

∣∣∣∣> ε

)
= ∑

n
P
(

g−1(n)
∣∣∣∣∫ en(x)dKr(n)(x)

∣∣∣∣> ε

)
P(Nt = n)

and

P
(

g−1(n)
∣∣∣∣∫ en(x)dKr(n)(x)

∣∣∣∣> ε

)
6 P

(
sup

06x61
|en(x)|> εg(n)/

∫
|dKr(n)(x))|

)
= P

(
sup

06x61
|en(x)|> ε logn[2nσ

2
r(n) log logn/ log2 n{

∫
|dKr(n)(x)|}2]1/2

)
6 C2 exp

(
−δ [nσ

2
r(n) log logn/ log2 n{

∫
|dKr(n)(x)|}2]1/2

)
−→ 0 as n→ ∞,

using the relation (3) and (H2), where δ > 0 does not depend on n.

So, by lemma, we have,

lim
t→∞

g−1(Nt)
∫

et(x)dKr(Nt)(x) = 0, in probability.

In other side, for all ε ′ > 0 we have

P
(

Nt(g(Nt))
−1
∣∣∣∣∫ (Kr(Nt)(x)−EKr(Nt)(x)

)
dF(x)

∣∣∣∣> ε
′
)
=

P
(

Nt(g(Nt))
−1
∣∣∣∣∑

n

∫ (
Kr(Nt)(x)−Kr(n)(x)

)
dF(x)P(Nt = n)

∣∣∣∣> ε
′
)
=

P
(

Nt(g(Nt))
−1
∣∣∣∣∑

n

∫ (
Kr(Nt)(x)−EKr(n)(x,X1)

)
dF(x)P(Nt = n)

∣∣∣∣> ε
′
)

(4)
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By Markov inequality we have,

(4) 6
1
ε ′

E
[

Nt(g(Nt))
−1
∣∣∣∣∑

n

∫ (
Kr(Nt)(x)−EKr(n)(x,X1)

)
dF(x)P(Nt = n)

∣∣∣∣]
6

1
ε ′∑m

∑
n

mg−1(m)

∣∣∣∣∫ (Kr(m)(x)−EKr(n)(x,X1)
)

dF(x)
∣∣∣∣P(Nt = n)P(Nt = m)

=
1
ε ′∑m

∑
n

mg−1(m)
∣∣E (Kr(m)−Kr(n)

)
(x,X1)

∣∣P(Nt = n)P(Nt = m) (5)

using (H3) we obtain that for t→ ∞ we have m,n→ ∞ and (5) tends to zero. So,

lim
t→∞

Ntg−1(Nt)
∫ (

Kr(Nt)(x)−EKr(Nt)(x)
)

dF(x) = 0, in probability.

The law of iterated logarithm will be then obtained on the following process

Tt(x) =
Nt

∑
i=1

∫
W i(x)dKr(Nt)(x).

When Nt take a value n, we can consider Tn(x) = n1/2 ∫W (x)dKr(n)(x), for a Brownian bridge W . So, Tn(x) y
N (0,nσ2

r(n)).
In view of the lemma and the usual approximation to the tail of the normal distribution, for all ε > 0

P(Tn(x)> (1+ ε)g(n))6 (2π)−1/2exp{−(1+ ε)2 log logn},(−→ 0 as n→ ∞).

Therefore,

P
(
g−1(Nt)Tt(x)> (1+ ε)

)
= ∑

n
P(Tn(x)> (1+ ε)g(n))P(Nt = n)−→ 0 as t→ ∞.

In other side, P(Tn(x)< (1− ε)g(n))−→ 0 as n→ ∞ see theorem 1 in 6, which implies that,

P
(
g−1(Nt)Tt(x)< (1− ε)

)
= ∑

n
P(Tn(x)< (1− ε)g(n))P(Nt = n)−→ 0 as t→ ∞.

So,
limsup

t→∞

±g−1(Nt)Tt(x) = 1 in probability

and theorem (1) holds.

3. Rosenblatt-Parzen kernel Estimators

Let K be a function of bounded variation on (−∞,+∞) satisfying

zK(z)−→ 0 as |z| −→ ∞ and
∫

R
K2(z)dz < ∞.

Let X1,X2, . . . ,XNt be independent random variables whose common distribution function F has a derivative
F ′(x) = f (x) 6= 0 at x. Where Nt , for any t > 0, be a non-negative integer valued random variable, independent
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of the observations.
A kernel estimators of f (x) is defined , in the random case following Parzen 10, by :

f̂t(x) = (Nth(Nt))
−1

Nt

∑
i=1

Kht (Xi),

where Kht (Xi) = K
(

x−Xi
h(Nt)

)
.

We shall assume in addition that F satisfies a Lipshitz condition of order one in a neighborhood of x; that

lim
ε→0

limsup
n→∞

sup
m:|m−n|6nε

∣∣∣∣ h(n)
h(m)

−1
∣∣∣∣= 0, (6)

where h = h(n) is a sequence of positive constants converging to zero; and that

log2 n/nh log logn−→ 0. (7)

Conditions (6) and (7) would be satisfied in practice, since it is usual to take h(n) ∼ an−b for positive numbers
a and b with b < 1.
From theorem (1) we obtain

Theorem 2.
Suppose Nt

P−→ ∞ as t→ ∞. Under the conditions above,

limsup
t→∞

±
{

Nth2(Nt)

2Eh(Nt) log logNt

}1/2 [
f̂t(x)−E f̂t(x)

]
=

[
f (x)

∫
K2(z)dz

]1/2

in probability.

Proof. Let St(x) = ∑
Nt
i=1 [Kht (x,Xi)−EKht (x,Xi)] and Aht (x) = Nt

{
EKht (x,X1)−h(Nt)E f̂t(x)

}
. We can write,

Nth(Nt)
[

f̂t(x)−E f̂t(x)
]
= St(x)+Aht (x)

Also we have, using Markov inequality, for all ε > 0,

P
(
(g(Nt))

−1|Aht (x)|> ε
)

6
1
ε

E
[
(g(Nt))

−1|Aht (x)|
]

6
1
ε

∑
m

∑
n

mg−1(m)

∣∣∣∣(1− h(m)

h(n)

)
E
[
Kh(n)(x,X1)

]∣∣∣∣×
P(Nt = n)P(Nt = m).

Where g is the function defined in (2). So that under condition (6),

g−1(Nt)Aht (x)−→ 0, as t→ ∞ in probability.

Therefore, the law of the Iterated Logarithm is established on St(x) process.

Let σ2
t =Var (Kht (x,X1)) . We have (see 6), that

EKh(n)(x,X1)' o(h1/2(n))−→ 0, as n→ ∞ and EK2
h(n)(X)' f (x)h(n)

∫
K2(z)dz. It follows from lemma that,

EKht (x,X1) = ∑
n

E
[
Kh(n)(x,X1)

]
P(Nt = n)−→ 0, as t→ ∞
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and

σ
2
t ' EK2

ht
(x,X1) = ∑

n
f (x)h(n)

∫
K2(z)dz P(Nt = n)

= f (x)E[h(Nt)]
∫

K2(z)dz.

Condition (H2) now follow from (7), condition (H3) follow from (6) and theorem (2) is then established from
theorem (1).

4. Orthogonal Polynomial Estimators

We consider only the case of an estimate based on the Legendre polynomials.
Let X1,X2, . . . ,XNt be independent random variables of distribution with unknown density f having its support
confined to (−1,1), and Nt , for any t > 0 a non-negative integer-valued random variable, supposed to be indepen-
dent of observations. Suppose that f is continuous at x, x ∈ (−1,1) and of bounded variation in a neighborhood
of x, and f (x) 6= 0. We assume in addition that (1− y2)−1/4 f (y) is integrable on (−1,1).
The orthogonal Legendre system is defined by

pi(z) =
[

1
2
(2i+1)

]1/2

qi(z), i > 0, (8)

where the functions qi(z) are the Legendre polynomials. An estimator of f (x) is given by

f̂t(x) =
m(t)

∑
i=0

âi,t(x)pi(x),

where m(t) = m(Nt) is a sequence of integers tending to infinity, when Nt take a value n, and

âi,t(x) = N−1
t

Nt

∑
j=1

pi(X j).

Assume that,
lim
ε→0

limsup
n→∞

sup
k
|m(k)/m(n)−1|= 0, (9)

where the inner supremum is taken over integers k with |k−n|6 nε , and

m3(logn)2/n log logn−→ 0. (10)

Theorem 3.
Suppose Nt

P−→ ∞ as t→ ∞. Under the conditions above,

limsup
t→∞

±
[

Nt

2E(m(t)) log logNt

]1/2 [
f̂t(x)−E f̂t(x)

]
=

[
f (x)

π(1− x2)1/2

]1/2

, in probability.

Proof. Using the relation (8), we can write
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f̂t(x) = N−1
t

Nt

∑
j=1

Km(t)(x,X j),

where Km(t)(x,X j) = ∑
m(t)
i=0 pi(X j)pi(x). So, we can easily obtain that,

Nt{ f̂t(x)−E f̂t(x)}=
Nt

∑
j=1

[
Km(t)(x,X j)−E(Km(t)(x,X j))

]
and the law of the iterated logarithm is established on the random process

(
Nt{ f̂t(x)−E f̂t(x)}

)
t
.

Let σ2
t =Var(Km(t)(x,X)). We have that E[Km(n)(x,X)]−→ 0, as n→ ∞ and E[K2

m(n)(x,X)]'m(n) f (x)/π(1−
x2)1/2 (see 6).
It follows from lemma and the conditions imposed on f that,

EKm(t)(x,X) = ∑
n

E[Km(n)(x,X)]P(Nt = n)−→ 0, as t→ ∞

and

σ
2
t ' EK2

m(t)(x,X) = ∑
n

[
m(n) f (x)/π(1− x2)1/2

]
P(Nt = n)

=
f (x)

π(1− x2)1/2 E(m(Nt)).

Condition (H2) now follow from (10), (H3) follow from (9) and the theorem (3) is then established from theorem
(1).
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