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Abstract 

The kernel approach has been applied using the adaptive kernel density estimation, to 
inference on the generalized gamma distribution parameters, based on the generalized order 
statistics (GOS). For measuring the performance of this approach comparing to the 
Asymptotic Maximum likelihood estimation, the confidence intervals of the unknown 
parameters have been studied, via Monte Carlo simulations, based on their covering rates, 
standard errors and the average lengths. The simulation results indicated that the confidence 
intervals based on the kernel approach compete and outperform the classical ones. Finally, a 
numerical example is given to illustrate the proposed approaches developed in this paper. 
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1.  Introduction 
 

A random variable X is said to have generalized gamma distribution (GGD), if its  
probability density function (PDF) has the form:   
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where  ( )  is gamma function,  ,   and   are the shape,  scale and index 

parameters respectively. The corresponding cumulative distribution function (CDF) 
is given by: 
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1))/(,( ,  is the lower incomplete 

gamma function. 

Stacy (1962) introduced the GGD, which offers a highly flexible family of life 
testing models that includes a considerable number of distributions as special cases, 

namely, the exponential distribution )1(  , gamma distribution )1(   and 

Weibull distribution )1(  . The lognormal distribution is also obtained as a 

limiting distribution when  .    

The statistical analysis of the GGD based on complete as well as censored samples 
have been studied by many authors such as Stacy and Mihram (1965), Parr and 
Webter (1965), Harter (1967), Hager and Bain (1970), Prentice (1974), Lawless 
(1980), Di Ciccio (1987), Wingo (1987), Wong (1993), Cohen and Whitten (1988) 
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and Maswadah (1989, 1991). Hwang and Huang (2006) introduced a new moment 
estimation for the generalized gamma distribution parameters using its 
characterization. Dadpay et al. (2007) introduced some concepts of the GGD, via 
information theory. Gomes et al. (2008) used the ML method for estimating the 
parameters by justifying the model in terms of a simpler alternative form. Geng and 
Yuhlong (2009) proposed a new parameterization of the GGD to sustain the 
numerical stability for the maximum likelihood estimation based on the 
progressively type-II censored sample. Mukherjee et al. (2011) presented a Bayesian 
study for the generalized gamma model. 

In this paper, the kernel density estimation has been applied for deriving the 
confidence intervals for the unknown parameters of the GGD comparing to the 
asymptotic maximum likelihood estimator based on the GOS, that introduced by 
Kamps (1995) as a unified model that includes several models of ordered random 
variables, such as ordinary order statistics, type-II censored order statistics, 
progressively type-II censored order statistics, record values and sequential order 
statistics. For more details about the generalized order statistics, see Ahsanullah 
(1995, 2000). 

Let ),~,,(,),,~,,1( kmnnXkmnX  , ( 1~,1  mk  is a real number) be n 

generalized order statistics from a continuous population with CDF )(xF and PDF 

)(xf
 
, thus  their joint PDF has the form: 
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Particular cases from (2): 

1- Ordinary order statistics: for 1k  and  0~ m . 

2- Type II right censored order statistics: for 1k  and 0
i

m  ,  1,,2,1  ni  ,    

rn
n

m  . 

3- Type II progressive censored order statistics: for 0
i

m , 1,,2,1  ni  ,  

1 k
n

m . 

4- Record values for 1k  and 1~ m . 

 
 

2.   Main Results 
 

2.1.  Kernel Estimation 
 

In this section, we apply the unconditional approach for deriving the confidence 
intervals to the unknown parameters based on the adaptive kernel density estimation 
(AKDE), which is asymptotically converged to any density function depending only 
on a random sample, though the underlying distribution is not known. This approach 
has been applied for some distributions, see Maswadah (2006, 2007). In the 
univariate case, the adaptive kernel density estimation based on a random sample of 

size n from the random variable X with unknown probability density function )(xf

and support on ),0(  is given by:     
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where 
i

h
i

h  and 
i

 is a local bandwidth factor which narrows the bandwidth 

near the modes and widens it in the tails, which can be defined as: 
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where G  is the geometric mean of the )(ˆ
i

xf ,  ni ,,2,1   and h  is a fixed 

(pilot) bandwidth. We can see that our estimate )(ˆ xf is bin-independent regardless 

of our choice of K , where the role of K  is to spread out the contribution of each 
data point in our estimate of the parent distribution, that controls the shape. The most 
important part in the kernel estimation method is to select the bandwidth (scaling) or 
the smoothing parameter, thus its selection has been studied by many authors, see 
Abramson (1982) and Guillamon et al. (1998) based on minimizing the mean square 

errors, however, the optimal choice in most cases is 2.0059.1  nSh , 

where S  is the sample standard deviation and we will consider it as the pilot 

bandwidth. However, it must be mentioned that the optimal choice h  can’t 
possibly be optimal in every application, and its choice is really depended on the 
application under consideration to different bandwidths. Though, there is a variety of 
kernel functions with different properties have been used in literature, however, the 
obvious and natural choice of the kernel functions is the standard Gaussian kernel, 
for its continuity, differentiability, and locality properties.  

The kernel approach depending on finding the kernel density estimation for pivotal 
random variables, that depending on the unknown parameters and whose 
distributions are free of unknown parameters. For the GGD (1), 

 )/(,,)/(
n

x
i

x   be a sample of size n from the gamma distribution 

)1,(G , thus if ̂  and ̂  are the MLEs of  and   respectively, then  
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for ni ,,2,1  , are independent of the unknown parameters   and   when   

is known. Therefore,  ˆ/
1
Z  and  ˆ)/ˆ(

2
Z are pivotal quantities and

 
 ˆ)ˆ/(

i
x

i
a  , ni ,,2,1   form a set of ancillary statistics. Note that the 

ancillary statistics satisfy the maximum likelihood equations, therefore, any 2n  

of sai ' , say  
2

,,
1 n

aa   form  a set of 2n  functionally independent 

ancillary statistics. For utilizing the kernel function for estimating the probability 
density function (PDF) of a pivotal, we can summarize the method in the following 
algorithm: 

1- Let ),,
2

,
1

(
n

xxx   be a random sample of size n from the random 

variable X , with PDF );( xf , where   represents the unknown 

parameter with support on ),0(  .   

2- Bootstrapping with replacement n samples *
i

X of size n from the parent 

sample in step 1, where )*,,*
1

,*
1

(*
n

xxx
i

X  , ni ,,2,1  . 

3- For each sample in step 2, calculate a consistent estimator as the MLE for 

the parameter and calculate the pivotal quantity Z based on the unknown 
parameter and its MLE. Thus, we have an objective and informative random 

sample from the pivotal quantities ),,
1

,
1

(
n

zzzZ  of size n, which 

constitute the sampling distribution for the pivotal Z . 
4- Finally, based on the informative sample in step 3, we can use the AKDE 

for estimating )(zg  at any given value for Z and thus the confidence 

interval of the unknown parameter can be derived fiducially.    
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Utilizing the above algorithm, the AKDE of the quantile
p

Z of order p, for Z  can 

be derived as:   
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The convergence of (7) is guaranteed by the condition,

1

2
0

nL
i

h
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kL  ,  see Kulczycki  (1999). 
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For censored samples, we have to introduce another form to the kernel density 
estimation function which is the weighted kernel density estimation function and is 
defined as:   
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In this case, the kernel function can be taken as the truncated normal distribution 
which is defined as: 
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z x
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1)( , see Bordes (2004). 

 

2.2.  Asymptotic Maximum Likelihood  Estimation 
 

The MLE is a popular statistical method used for deriving the classical confidence 
interval for the distribution parameters. It provides statistically studies for the 
parameters and can be regarded as reference technique as in our study. For purpose 
of comparison, we obtain the confidence intervals for the parameters, thus the 
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asymptotic variance-covariance matrix of the MLEs can be derived, which is the 
inversion of the Fisher information matrix whose elements are the negative of the 
expected values of the second order partial derivatives of the logarithm of the 
likelihood function.  

The likelihood function based on the first n GOS for the generalized gamma 
distribution in (1) can be derived as: 
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The maximum likelihood estimators ̂ and ̂  are the solutions to the system of 

equations obtained by equating to zero the first partial derivatives of the natural 

logarithm of the likelihood function with respect to  and   when   is known. 

Thus, the ML estimators ̂ and ̂  for  and   respectively, can be obtained from 

the solution of the following normal equations: 
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in expression (11) and later expressions, we use for convenience the summation  
notation: 
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Equations (11) and (12) can’t be solved analytically; statistical software can be used 

to solve these equations numerically. The Fisher information matrix ( )I  can be 

constructed by differentiating (10) with respect to  and   respectively when ̂

and ̂  are known. Thus, the elements of ( )I   have been derived as follows: 
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Therefore, the asymptotic Fisher's information matrix can be written as:  
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In relation to the asymptotic variance-covariance matrix of the ML estimators of the 
parameters, it can be approximated numerically by inverting the above Fisher's 

information matrix F. The approximate )%1(100   two- sided confidence 

intervals for   and   can be, respectively, obtained as 

)ˆ(ˆˆ 2/  Z and )ˆ(ˆˆ
2/  Z  

where 2/Z  is the upper th)2/( percentile of a standard distribution, and )ˆ(ˆ  ,  

)ˆ(ˆ   are, respectively, the standard deviations of the ML estimators of the 

parameters   and  . 

 
 

3.   Simulation Study and Comparisons 
 

To assess the performance of the confidence intervals based on the kernel 
approach comparing to those based on the asymptotic maximum likelihood 
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estimation approach, Monte Carlo simulations are carried out,  in terms of the 
following criteria: 
 
i)   Covering percentage (CP), which is defined as the fraction of times the 

confidence interval covers the true value of the parameter in repeated sampling.   
ii)  The mean length of intervals (MLI). 
iii) The standard error of the covering percentage (SDE), which is defined for the 

nominal level %100)1(  by 
M

SDE
)ˆ1(ˆ

)ˆ(
 

 where %100)ˆ1( 

denote the corresponding Monte Carlo estimate and M is the number of Monte 
Carlo trials. Thus, for the nominal level  95% and  1000 simulation trails, say, 
the standard error of the covering percentage is 0.0049, which is approximately 

1% . Therefore, we say the procedure is adequate if the SDE is within 2%  

error for the nominal level 95%. 
The results, based on 1000 Monte Carlo simulations are given for samples of sizes n 

= 20, 40 and 80, which have been generated for true values of the scale parameter 
= 2, 3 , shape parameter =1, 2 and λ =1, 2 based on the complete, the type-II 

censored  and type-II progressive censored samples with binomial random removals 
at P=0.5 and uncensored levels r equals  [n/2] and [3n/4]. From the simulation study, 
we summarized some of the interesting features in the following points:  
1-  The results in Tables (2-3) indicated that, as the sample size increases, the values 

of MLIs getting decrease and the values of CPs increase, while the values of 

SDEs decrease for all values of 
 , for the two approaches, based on the 

complete, type-II censored  and type-II progressive censored samples. 

2-  The mean length of intervals for the parameter  increase as the shape parameter 

increases as would be expected. On the contrary, for the parameter  , the 

values of MLIs decrease as the shape parameter   increases for the complete, 

type-II censored and type-II progressive censored samples, based on the AML 
approach. However, the values of MLIs, CPs and SDEs, based on the kernel 

approach, are fixed for increasing the values of   based on the complete, type-

II censored  and type-II progressive censored samples.  
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3-   As the true value λ  increases the values of MLIs decrease, and the CPs mostly 

increase and the values of SDEs decrease based on the complete, type-II 
censored and type-II progressive censored samples. 

4-   The kernel approach is conservative for estimating the parameters  and   

because the covering percentages are much greater than the nominal level for 
those based on the classical inference for all sample sizes. On the contrary, the 

classical approach is anti-conservative for estimating   and almost 

conservative for  , when the sample size is greater than 20. 

5-   It is worthwhile to note that, the mean length and the values of SDEs based on 
the type-II progressive censored samples are less than those based on type-II 
censored samples. Moreover, the values of CPs for type-II progressive censored 
samples are greater  than those based on type-II censored samples.  

6-   Finally, both the two procedures are adequate because the values of  SDEs are 

less than  2  for the nominal level 95%. 
 

4.    An illustrative Example 
 

Consider the results of tests, the endurance of deep groove ball bearings. The data 
are quoted from Lawless (1980) consist of a complete sample of size n=23, that 
represent the results of the test, in millions of revolutions before failures are:  
17.88, 28.92, 33.00, 41.52, 41.12, 45.60, 48.48, 51.84, 51.96, 54.12, 55.56, 67.80, 
68.64, 68.64, 68.88, 84.12, 93.12, 98.64, 105.12, 105.84, 127.92, 128.04, 173.40.  

Thus, for the purpose of comparison, the 95% CIs for the parameters   

and  are derived based on the two approaches, based on complete, type-II 

censored and type-II progressive censored samples with binomial removals 

at P=0.5 and uncensored levels r equal to  [n/2] and [3n/4]  for  =1, 2 .  

The results in Table 1 have been indicated that the length of intervals for 

  and   based on the kernel approach are shorter than those based on the 

classical inference. Furthermore, clearly, the length of intervals decrease 

when the true value of  increases. Finally, it is worthwhile to note that, 

the length of intervals based on the type-II progressive censored samples 
are smaller than those based on type-II censored samples, which ensure the 
simulation results. 
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Table 1: The Lower (LL) and the Upper limits (UL), Maximum likelihood estimates (MLE), 

and the lengths of the 95% confidence intervals (CI) for the parameters for   and   using 

the kernel and AMLs approaches based on GOS based on the data. 

Approaches Kernel AMLs 

CI 95% 95% 

Par. S n r λ  MLE LL UL LL UL 

 
 
 
 
 
 

  

 
 

Type-II 
censored 

sample 

        
23 11 1 4.8410 1.3999 (4.0361) 5.4360 1.6503 (4.8486) 5.7799 

  2 2.9515 0.8424 (2.3094) 3.1518 1.5281  (2.8469) 4.3750 

 17 1 3.1493 0.8195 (1.8297) 2.6492 1.3622 (2.3036) 3.2237 

  2 2.0903 0.5672 (1.1459) 1.7131 1.3448  (1.4909) 2.8357 

 23 1 2.1021 1.3975 (1.1594) 2.5569 1.4578 (1.2885) 2.7463 

  2 1.4378 1.0002 (0.7596) 1.7598 1.0075 (0.8607) 1.8682 

 
Type-II 
progressive 
censored 

sample 

        

 11 1 3.7153 1.1876 (4.0274) 5.2150 1.6503 (4.1296) 5.7799 

  2 2.1852 2.2245 (2.0860) 4.3105 1.0276 (2.3151) 3.3427 

 17 1 2.2926 1.1725 (2.6022) 3.7747 1.3622 (1.8615) 3.2237 

  2 1.4862 1.5660 (1.3660) 2.9320 0.9077 (1.1570) 2.0647 

 
 
 
 
 
 
 
 

  

 
Type-II 
censored 
sample 

        

23 11 1 62.9426 60.1484 (38.7903) 98.9387 51.4351 (23.0159) 74.4510 

  2 45.3160 36.2246 (24.0632) 60.2878 36.7370 (17.1580) 53.8950 

 17 1 79.4376 71.5374 (57.5415) 129.0789 62.9614 (32.9544) 95.9158 

  2 47.1196 32.3249 (23.0072) 55.3321 34.2310 (25.7772) 60.0082 

 23 1 81.8783 59.9192 (52.4844) 112.4036 65.0215 (33.7137) 98.7352 

  2 46.9838 29.6682 (32.0680) 61.7362 33.8571 (26.2534) 60.1105 

 
Type-II 
progressive 

censored 
sample 

        

23 11 1 46.9182 45.2633 (13.7753) 59.0386 41.0428 (11.7507) 52.7935 

  2 35.8730 31.8807 (13.5430) 45.4237 28.8399 (14.0662) 42.9061 

 17 1 60.6451 58.1276 (28.7593) 86.8869 51.0865 (19.1172) 70.2037 

   2 41.4204 33.7310 (17.4136) 51.1446 32.3111 (18.2186) 50.5297 
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Table 2. The (MLIs), (CPs) and (SDEs) for the kernel and the AMLs approaches when the nominal 

   level is 95% for the parameter   with (    ) for the censored levels ( 50% and 75%).  

App. Kernel AMLs 

   MLI ,   MLI ,   

n r   1.0 2.0 3.0 CP SDE 1.0 2.0 3.0 CP SDE 

Complete and type-II censored samples 

20 10 1 1.7687 3.5373 5.3060 0.945 0.0072 1.3914 2.7828 4.1742 0.960 0.0062 

 15  1.1243 2.2486 3.3728 0.944 0.0073   0.9890 1.9780 2.9669 0.958 0.0063 

 20  0.8344 1.6688 2.5032 0.943 0.0073 0.7415 1.4831 2.2246 0.958 0.0063 

 10 2 1.7914 3.5816 5.3743 0.946 0.0071   1.2913 2.5826 3.8738 0.961 0.0061 

 15  1.1173 2.2345 3.3518 0.945 0.0072   0.9356 1.8712 2.8067 0.947 0.0071 

 20  0.7889 1.5779 2.3668 0.932 0.008 0.7118 1.4236 2.1354 0.931 0.0080 

40 20 1 0.9884 1.9768 2.9653 0.938 0.0076   0.8964 1.7928 2.6892 0.950 0.0069 

 30  0.8203 1.6405 2.4608 0.953 0.0067   0.6608 1.3217 1.9825 0.953 0.0067 

 40  0.5600 1.1200 1.6800 0.956 0.0065 0.5032 1.0063 1.5095 0.955 0.0066 

 20 2 0.9179 1.8358 2.7537 0.948 0.0070   0.8453 1.6905 2.5358 0.951 0.0068 

 30  0.7299 1.4598 2.1897 0.951 0.0068   0.6282 1.2563 1.8845 0.949 0.0070 

 40  0.5365 1.0730 1.6095 0.942 0.0074 0.4832 0.9665 1.4497 0.939 0.0076 

80 40 1 0.7057 1.4114 2.1171 0.952 0.0068   0.6007 1.2015 1.8022 0.951 0.0068 

 60  0.5128 1.0255 1.5383 0.955 0.0066   0.4561 0.9122 1.3682 0.952 0.0068 

 80  0.3831 0.7662 1.1493 0.957 0.0064   0.3486 0.6973 1.0459 0.955 0.0066 

 40 2 0.6828 1.3657 2.0485 0.958 0.0063   0.5701 1.1402 1.7103 0.962 0.0060 

 60  0.4982 0.9964 1.4946 0.955 0.0066   0.4307 0.8615 1.2922 0.955 0.0066 

 80  0.3667 0.7333 1.1000 0.951 0.0068   0.3334 0.6668 1.0002 0.945 0.0072 
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Table2. (Continued) 

App. Kernel AMLs 

   MLI ,   MLI ,   

n r   1.0 2.0 3.0 CP SDE 1.0 2.0 3.0 CP SDE 

Type-II progressive censored samples 

20 10 1 1.4774 2.9549 4.4323 0.972 0.0052   1.1495 2.2990 3.4485 0.940 0.0075    

 15  1.0995 2.1991 3.2986 0.960 0.0062   0.8865 1.7725 2.6594 0.959 0.0063    

 10 2 1.2121 2.4242 3.6364 0.958 0.0063   1.1073 2.2145 3.3218 0.951 0.0068    

 15  1.0708 2.1416 3.2124 0.958 0.0063   0.8482 1.6965 2.5447 0.952 0.0068    

40 20 1 1.0580 2.1159 3.1739 0.978 0.0046   0.7396 1.4792 2.2188 0.949 0.0070    

 30  0.7852 1.5703 2.3555 0.983 0.0041   0.5915 1.1831 1.7746 0.944 0.0073    

 20 2 0.8418 1.6835 2.5253 0.971 0.0053   0.7087 1.4174 2.1261 0.939 0.0076    

 30  0.7615 1.5231 2.2846 0.980 0.0044   0.5668 1.1336 1.7004 0.935 0.0078    

80 40 1 0.7147 1.4295 2.1442 0.959 0.0063   0.5053 1.0105 1.5158 0.950 0.0069 

 60  0.6544 1.3088 1.9632 0.975 0.0049 0.4036 0.8073 1.2110 0.962 0.0060    

 40 2 0.6970 1.3940 2.0911 0.976 0.0048   0.4785 0.9570 1.4355 0.959 0.0063    

 60  0.6479 1.2958 1.9437 0.971 0.0053   0.3877 0.7754 1.1631 0.955 0.0066    

 
 

5.     Conclusions 
The kernel estimation technique constitutes a strong basis for statistical inference, 
and it has a number of benefits relative to the usual classical procedure. First, it is 
easy to be implemented, and it doesn't need tedious work as the classical inference. 
Second, it can perform quite well even when the number of bootstraps is extremely 
small up to 20 replications. Finally, it is uniquely determined based on the 
information content in the pivotal quantities and thus, we can consider it as an 
alternative and reliable technique for estimation stronger than the classical inference.  
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Table 3. The (MLIs), (CPs) and (SDEs) for the kernel and the AMLs approaches when the nominal level is 

95% for the parameter   based on the complete, type-II censored and type-II progressive censored 

samples with censored levels ( 50% and 75%). 

App. Kernel AMLs 

n r λ    α  MLI CP SDE MLI CP SDE 

Complete and type-II censored samples

20 10 1 2 1 6.7292 0.841 0.0116     2.5376 0.797 0.0127 
    2 3.5565 0.841 0.0116     1.2487 0.827 0.0120 
   3 1 11.0938 0.841 0.0116     3.8064 0.797 0.0127 
    2 5.3348 0.841 0.0116     1.8730 0.827 0.0120 
 15  2 1 3.2168 0.947 0.0071     1.8998 0.893 0.0098     
    2 1.4051 0.947 0.0071     0.9473 0.908 0.0091     
   3 1 4.8251 0.947 0.0071     2.8497 0.893 0.0098     
    2 2.1076 0.947 0.0071     1.4209 0.908 0.0091     
 20  2 1 2.5416 0.957 0.0064 1.7691 0.925 0.0083 
    2 1.1738 0.957 0.0064 0.8816 0.925 0.0083 
   3 1 3.8124 0.957 0.0064 2.6537 0.925 0.0083 
    2 1.7607 0.957 0.0064 1.3223 0.925 0.0083 

20 10 2 2 1 2.0419 0.933 0.0079     1.6267 0.894 0.0097 
    2 1.0072 0.933 0.0079     0.8080 0.891 0.0099 
   3 1 3.0628 0.933 0.0079     2.4401 0.894 0.0097 
    2 1.5108 0.933 0.0079     1.2120 0.891 0.0099 
 15  2 1 1.9159 0.933 0.0079 1.6751 0.918 0.0087 
    2 0.9302 0.933 0.0079     0.8289 0.914 0.0089 
   3 1 2.8738 0.933 0.0079 2.5127 0.918 0.0087 
    2 1.3953 0.933 0.0079     1.2434 0.914 0.0089 
 20  2 1 1.8545 0.914 0.0089     1.6911 0.926 0.0083 
    2 0.9292 0.914 0.0089     0.8340 0.923 0.0084 
   3 1 2.7817 0.914 0.0089     2.5367 0.926 0.0083 
    2 1.3939 0.914 0.0089     1.2511 0.923 0.0084 
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Table3. (Continued) 

Complete and type-II censored samples 

40 20 1 2 1 4.1061 0.961 0.0061   1.8354 0.876 0.0104 
    2 1.6157 0.961 0.0061   0.9176 0.897 0.0096   
   3 1 6.1592 0.961 0.0061   2.7531 0.876 0.0104 
    2 2.4236 0.961 0.0061   1.3764 0.897 0.0096   

 30  2 1 1.6999 0.967 0.0056 1.3803 0.940 0.0075    

    2 0.8184 0.967 0.0056 0.6909 0.944 0.0073    

   3 1 2.5499 0.967 0.0056 2.0704 0.940 0.0075    

    2 1.2276 0.967 0.0056 1.0364 0.944 0.0073    

 40  2 1 1.6590 0.974 0.0050   1.2692 0.954 0.0066 

    2 0.8032 0.974 0.0050   0.6351 0.946 0.0071 

   3 1 2.4885 0.974 0.0050   1.9038 0.954 0.0066 

    2 1.2048 0.974 0.0050   0.9527 0.946 0.0071 

40 20 2 2 1 1.4617 0.947 0.0071   1.1938 0.914 0.0089 

    2 0.7161 0.947 0.0071   0.5938 0.914 0.0089 

   3 1 2.1926 0.947 0.0071   1.7907 0.914 0.0089 

    2 1.0742 0.947 0.0071   0.8906 0.914 0.0089 

 30  2 1 1.3103 0.951 0.0068   1.2116 0.930 0.0081 

    2 0.6598 0.951 0.0068   0.6012 0.926 0.0083 

   3 1 1.9654 0.951 0.0068   1.8175 0.930 0.0081 

    2 0.9896 0.951 0.0068   0.9018 0.926 0.0083 

 40  2 1 1.4950 0.957 0.0064   1.2114 0.941 0.0075 

    2 0.7377 0.957 0.0064   0.6004 0.937 0.0077 

   3 1 2.2425 0.957 0.0064   1.8171 0.941 0.0075 

    2 1.1065 0.957 0.0064   0.9007 0.937 0.0077 

 

Published by Atlantis Press 
Copyright: the authors 

169



 
Kernel Inference on the Generalized Gamma Distribution 

Type-II progressive censored samples 

20 10 1 2 1 3.7357 0.945 0.0072 2.3476 0.883 0.0102 
    2 1.6194 0.945 0.0072 1.1793 0.896 0.0097 
   3 1 5.6035 0.945 0.0072 3.5214 0.883 0.0102 
    2 2.4291 0.945 0.0072 1.7689 0.896 0.0097 
 15  2 1 2.5122 0.958 0.0063 1.9795 0.893 0.0098 
    2 1.2250 0.958 0.0063 0.9894 0.904 0.0093 
   3 1 3.7683 0.958 0.0063 2.9692 0.893 0.0098 
    2 1.8375 0.958 0.0063 1.4842 0.904 0.0093 
 10 2 2 1 2.9915 0.917 0.0087 2.3464 0.903 0.0094 
    2 1.3663 0.917 0.0087 1.1332 0.892 0.0098 
   3 1 4.4872 0.917 0.0087 3.5196 0.903 0.0094 
    2 2.0495 0.917 0.0087 1.6997 0.892 0.0098 
 15  2 1 1.9672 0.945 0.0055 1.9515 0.933 0.0079 
    2 1.0085 0.945 0.0055 0.9511 0.927 0.0082 
   3 1 2.9508 0.945 0.0055 2.9273 0.933 0.0079 
    2 1.5127 0.945 0.0055 1.4266 0.927 0.0082 

40 20 1 2 1 2.2367 0.975 0.0049 1.7564 0.912 0.0090 
    2 1.1289 0.975 0.0049 0.8785 0.919 0.0086 
   3 1 3.3550 0.975 0.0049 2.6347 0.912 0.0090 
    2 1.6934 0.975 0.0049 1.3177 0.919 0.0086 
 30  2 1 1.5854 0.954 0.0066 1.4479 0.923 0.0084 
    2 0.7887 0.954 0.0066 0.7249 0.925 0.0083 
   3 1 2.3780 0.954 0.0066 2.1718 0.923 0.0084 
    2 1.1831 0.954 0.0066 1.0873 0.925 0.0083 
 20 2 2 1 1.9092 0.964 0.0059 1.7028 0.926 0.0083 
    2 0.9932 0.964 0.0059 0.8388 0.928 0.0082 
   3 1 2.8637 0.964 0.0059 2.5542 0.926 0.0083 
    2 1.4898 0.964 0.0059 1.2582 0.928 0.0082 
 30  2 1 1.5262 0.955 0.0066 1.3959 0.928 0.0082 
    2 0.7581 0.955 0.0066 0.6892 0.932 0.0080 
   3 1 2.2893 0.955 0.0066 2.0939 0.928 0.0082 
    2 1.1371 0.955 0.0066 1.0338 0.932 0.0080 
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