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Abstract

The kernel approach has been applied using the adaptive kernel density estimation, to
inference on the generalized gamma distribution parameters, based on the generalized order
statistics (GOS). For measuring the performance of this approach comparing to the
Asymptotic Maximum likelihood estimation, the confidence intervals of the unknown
parameters have been studied, via Monte Carlo simulations, based on their covering rates,
standard errors and the average lengths. The simulation results indicated that the confidence
intervals based on the kernel approach compete and outperform the classical ones. Finally, a
numerical example is given to illustrate the proposed approaches developed in this paper.
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1. Introduction

A random variable X is said to have generalized gamma distribution (GGD), if its
probability density function (PDF) has the form:

f(X;a,ﬂ,/l)=ﬁﬂ_a’1xa/l_lexp[—(x/ﬂ)“} x>0 a,B,A>0 @
where T'(A) is gamma function, &, £ and A are the shape, scale and index

parameters respectively. The corresponding cumulative distribution function (CDF)
is given by:

F(Xa,fB,4) = 'G(’I’r(g)ﬁ)a) , x>0,
(x/ g)*
where 1G(A,(x/ B)%) = ) tﬂ“_le_tdt, is the lower incomplete
0

gamma function.

Stacy (1962) introduced the GGD, which offers a highly flexible family of life
testing models that includes a considerable number of distributions as special cases,
namely, the exponential distribution (1=a=1), gamma distribution ( =1) and

Weibull distribution (A4 =1). The lognormal distribution is also obtained as a

limiting distribution when 4 — 0.

The statistical analysis of the GGD based on complete as well as censored samples
have been studied by many authors such as Stacy and Mihram (1965), Parr and
Webter (1965), Harter (1967), Hager and Bain (1970), Prentice (1974), Lawless
(1980), Di Ciccio (1987), Wingo (1987), Wong (1993), Cohen and Whitten (1988)
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and Maswadah (1989, 1991). Hwang and Huang (2006) introduced a hew moment
estimation for the generalized gamma distribution parameters using its
characterization. Dadpay et al. (2007) introduced some concepts of the GGD, via
information theory. Gomes et al. (2008) used the ML method for estimating the
parameters by justifying the model in terms of a simpler alternative form. Geng and
Yuhlong (2009) proposed a new parameterization of the GGD to sustain the
numerical stability for the maximum likelihood estimation based on the
progressively type-Il censored sample. Mukherjee et al. (2011) presented a Bayesian
study for the generalized gamma model.

In this paper, the kernel density estimation has been applied for deriving the
confidence intervals for the unknown parameters of the GGD comparing to the
asymptotic maximum likelihood estimator based on the GOS, that introduced by
Kamps (1995) as a unified model that includes several models of ordered random
variables, such as ordinary order statistics, type-11 censored order statistics,
progressively type-11 censored order statistics, record values and sequential order
statistics. For more details about the generalized order statistics, see Ahsanullah
(1995, 2000).

Let X (4,n,m,k),..., X(n,n,m,k), (k>1,m>-1 is a real number) be n
generalized order statistics from a continuous population with CDF F (X) and PDF

f (X) , thus their joint PDF has the form:

n-— m.
_ |
F k) X (o k) KX %) = k_];[lyi FOGIR=F O]

- F oo T, @

on the cone F_1(0)<X1<...< X < F_l(l)of RN,

where

Published by Atlantis Press
Copyright: the authors
154



M. Ahsanullah, M. Maswadah and Seham Ali M.

...,m Rn_l,}/,=k+(n—r)+Mr>O,such that

n—l)e

M, = m j,yn:4<>o,

j=r
Particular cases from (2):

1- Ordinary order statistics: for K=1and m=0

2- Type 11 right censored order statistics: for k=1 and m =0, i=12..,n-1,
m =n-r

n .
3- Type Il progressive censored order statistics: for mi #0,1=12,...,n-1,
m =k-1.

n

4- Record values for k =] and m= -1,

2. Main Results

2.1. Kernel Estimation

In this section, we apply the unconditional approach for deriving the confidence
intervals to the unknown parameters based on the adaptive kernel density estimation
(AKDE), which is asymptotically converged to any density function depending only
on a random sample, though the underlying distribution is not known. This approach
has been applied for some distributions, see Maswadah (2006, 2007). In the
univariate case, the adaptive kernel density estimation based on a random sample of

size n from the random variable X with unknown probability density function f (X)

and support on (0, 0) is given by:

Published by Atlantis Press
Copyright: the authors
155



Kernel Inference on the Generalized Gamma Distribution

i
K _ ®3)

where hi = hﬂi and ;ti is a local bandwidth factor which narrows the bandwidth

near the modes and widens it in the tails, which can be defined as:

0.5
A =| =G , @)
I f(xi)
where G is the geometric mean of the f(Xi), i=12,...,n and h is a fixed

(pilot) bandwidth. We can see that our estimate f(x) is bin-independent regardless

of our choice of K, where the role of K is to spread out the contribution of each
data point in our estimate of the parent distribution, that controls the shape. The most
important part in the kernel estimation method is to select the bandwidth (scaling) or
the smoothing parameter, thus its selection has been studied by many authors, see
Abramson (1982) and Guillamon et al. (1998) based on minimizing the mean square

errors, however, the optimal choice in most cases is h =1.059 -S-n" 0'2,

where S is the sample standard deviation and we will consider it as the pilot

bandwidth. However, it must be mentioned that the optimal choice h can’t
possibly be optimal in every application, and its choice is really depended on the
application under consideration to different bandwidths. Though, there is a variety of
kernel functions with different properties have been used in literature, however, the
obvious and natural choice of the kernel functions is the standard Gaussian kernel,
for its continuity, differentiability, and locality properties.

The kernel approach depending on finding the kernel density estimation for pivotal
random variables, that depending on the unknown parameters and whose
distributions are free of wunknown parameters. For the GGD (1),

(Xi /ﬂ)a,...,(xn 1 )% be a sample of size n from the gamma distribution

G(4,1), thusif & and ﬁA’ are the MLEs of « and S respectively, then
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A A . NPT z
04/ 8% = ATV =LB1 A1 BT =Tz, ]
for 1 =1,2,...,n, are independent of the unknown parameters & and S when A

is known. Therefore, Z, = a/a and 22 =(,5’/ﬂ)aare pivotal quantities and

1

ai =(Xi /ﬂ)a, i=12,...,n form a set of ancillary statistics. Note that the

ancillary statistics satisfy the maximum likelihood equations, therefore, any N —2

of a;'S, say al""’an—2

ancillary statistics. For utilizing the kernel function for estimating the probability
density function (PDF) of a pivotal, we can summarize the method in the following
algorithm:

form a set of N—2 functionally independent

1- Let (Xl, .,Xn) be a random sample of size n from the random

X2,..
variable X , with PDF f(X;8), where & represents the unknown

parameter with support on (0, ) .

*
2- Bootstrapping with replacement n samples Xi of size n from the parent

* * * * -
sample in step 1,whereXi = (Xl’xl""’xn)’ 1=12..,n

3- For each sample in step 2, calculate a consistent estimator as the MLE for
the parameter and calculate the pivotal quantity Z based on the unknown
parameter and its MLE. Thus, we have an objective and informative random

sample from the pivotal quantities Z = (Zl’ Zl""’ Zn)of size n, which

constitute the sampling distribution for the pivotal Z .

4-  Finally, based on the informative sample in step 3, we can use the AKDE
for estimating g(Z) at any given value forZ and thus the confidence
interval of the unknown parameter can be derived fiducially.
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of order p, for Z can

Utilizing the above algorithm, the AKDE of the quantile Z

be derived as:
Z Z
G(z))= [9()dz== % | =K dz=p. (5)
p n.—= h. h.
— o0 I=1-0'i I
Z —17.
n
p I
Thus _ 2 | h np, (6)
1=1 i
X
where I(X): IK(y)dy.
—00
For deriving the value of the quantile estimator Z 0’ equation (6) can be solved
recurrently as the limit to the sequence{Z~1 Z~2, ~3,...}, that defined by the
formulas:
~ n
Z, =1 ¥ 2
1 . I
Nj-1
- - n (Z -z,
Z =Z +Clnp- Y { r 'J r=123,... @)
r . h.
i=1 i
2h.

The convergence of (7) is guaranteed by the condition,0 < C <—L1, where

Ll =k(0), see Kulczycki (1999).
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For censored samples, we have to introduce another form to the kernel density
estimation function which is the weighted kernel density estimation function and is
defined as:

~ r 1 X—Xi
f(x)= 3 K| | ®
izlhia i
r
r_ 1
where &; —_Z r—m +1
I=1 [

In this case, the kernel function can be taken as the truncated normal distribution
which is defined as:

2
;exp —{Xﬂ(ij ifm=0 i=l..r-1, m=n-r-1
o harie( +9¢) | 2N ! L@
- 2
1 [ X5 ] :
i !
, X
where @(z) = 2 dx , see Bordes (2004).

1
NI

2.2. Asymptotic Maximum Likelihood Estimation

The MLE is a popular statistical method used for deriving the classical confidence
interval for the distribution parameters. It provides statistically studies for the
parameters and can be regarded as reference technique as in our study. For purpose
of comparison, we obtain the confidence intervals for the parameters, thus the
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asymptotic variance-covariance matrix of the MLEs can be derived, which is the
inversion of the Fisher information matrix whose elements are the negative of the
expected values of the second order partial derivatives of the logarithm of the
likelihood function.

The likelihood function based on the first n GOS for the generalized gamma
distribution in (1) can be derived as:

InL(a, B, 2) cnlnae—naldln g+ (a/l—l)_glln(xi )— _gl(xi 1 B)*
i= i=

+i§1mi In[C(2)-1G(4,(x / /)], m =k-1. ao)

The maximum likelihood estimators ¢ and /3 are the solutions to the system of
equations obtained by equating to zero the first partial derivatives of the natural
logarithm of the likelihood function with respect to & and 5 when A is known.

Thus, the ML estimators ¢ and f for arand [ respectively, can be obtained from
the solution of the following normal equations:

olnL ; ;
%:%—n/ﬂnﬂq%i zlln X; —El(xi 1B)* In(x; / B)

o G A expl=(x 1 A)TIn(x; 1 B)
()= 16 (4,06 1 5)%)

0, (11)

in expression (11) and later expressions, we use for convenience the summation
notation:
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A
8IOQ- na/l a Z (X /ﬂ)a ay *( /ﬂ)a eXp[—(Xi /ﬂ)a]zo, (12)

B AT s I -16(4, %/ %)

Equations (11) and (12) can’t be solved analytically; statistical software can be used
to solve these equations numerically. The Fisher information matrix I (&) can be

constructed by differentiating (10) with respect to & and f respectively when a

and ,é are known. Thus, the elements of I (#) have been derived as follows:

2
5/ A expE (1 /) Nlogts; 1)

o2logl , N « “
=-C =4 3 (% A llogl | AT +3
a2 25 " () -16(2,(x / /%)
C 1 )™ expl—(x. 1 B)*Tlog(x; | AN[A— (1 A)*]
(D)= 16(4.(x 1 5)*)
A
|ﬂﬂ=—62L2L=—na2/l+a(a+1) Z 15 2 | (% /% exp[—(Xi/ﬂ)“]
op B p? B [(2) = 1G(4.(x; 18)%)

[21

2
2 | 01 % expbix | A4+ (x, 1 5] {(xi 9% expl(x /ﬂ)“]]

52 I(A) - 16(4 (x, 1 /%) F(A)-16(4 04 A%)
and

| __82L09L__/1_g g x. | A% In(x. / B) -+ E (x18)*
o oa0f P P | Aicy !
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*% (% 1™ exp((x; / §) )L~ a(x; | /) log(, / ) +arlogx, / B)]

T(A) = 1G4 (% / A)%)

L% 1 B exp(-(x, | /)™ ))? log(x; | )

_y*B 5 (13)
(T(A) = 1G(4, (%, /)
Therefore, the asymptotic Fisher's information matrix can be written as:
laa 1,
F= (14)

'"pa ' (@.8)=(a.5)

In relation to the asymptotic variance-covariance matrix of the ML estimators of the
parameters, it can be approximated numerically by inverting the above Fisher's

information matrix F. The approximate 100(1— )% two- sided confidence

intervals for & and £ can be, respectively, obtained as

A~

Q+Z,,6(@adf +2,,6(f)

where Z ,, is the upper (y/ 2)™ percentile of a standard distribution, and &(c&),

() are, respectively, the standard deviations of the ML estimators of the

parameters & and /3.

3. Simulation Study and Comparisons

To assess the performance of the confidence intervals based on the kernel
approach comparing to those based on the asymptotic maximum likelihood
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estimation approach, Monte Carlo simulations are carried out, in terms of the
following criteria:

i)  Covering percentage (CP), which is defined as the fraction of times the
confidence interval covers the true value of the parameter in repeated sampling.

ii) The mean length of intervals (MLI).

iii) The standard error of the covering percentage (SDE), which is defined for the
nominal level (1-)100%by  SDE(a) = % where (1- )100%
denote the corresponding Monte Carlo estimate and M is the number of Monte
Carlo trials. Thus, for the nominal level 95% and 1000 simulation trails, say,
the standard error of the covering percentage is 0.0049, which is approximately
+1%. Therefore, we say the procedure is adequate if the SDE is within 2%
error for the nominal level 95%.

The results, based on 1000 Monte Carlo simulations are given for samples of sizes n

= 20, 40 and 80, which have been generated for true values of the scale parameter

= 2, 3, shape parameter (X=1, 2 and A=1, 2 based on the complete, the type-II

censored and type-I1 progressive censored samples with binomial random removals

at P=0.5 and uncensored levels r equals [n/2] and [3n/4]. From the simulation study,
we summarized some of the interesting features in the following points:

1- The results in Tables (2-3) indicated that, as the sample size increases, the values
of MLIs getting decrease and the values of CPs increase, while the values of
SDEs decrease for all values of &, for the two approaches, based on the
complete, type-1l censored and type-Il progressive censored samples.

2- The mean length of intervals for the parameter X increase as the shape parameter

increases as would be expected. On the contrary, for the parameter [, the

values of MLIs decrease as the shape parameter (X increases for the complete,
type-11 censored and type-Il progressive censored samples, based on the AML
approach. However, the values of MLIs, CPs and SDEs, based on the kernel
approach, are fixed for increasing the values of & based on the complete, type-
I censored and type-11 progressive censored samples.
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3- As the true value A increases the values of MLIs decrease, and the CPs mostly
increase and the values of SDEs decrease based on the complete, type-Il
censored and type-I1 progressive censored samples.

4-  The kernel approach is conservative for estimating the parameters & and [
because the covering percentages are much greater than the nominal level for
those based on the classical inference for all sample sizes. On the contrary, the
classical approach is anti-conservative for estimating & and almost
conservative for £, when the sample size is greater than 20.

5- It is worthwhile to note that, the mean length and the values of SDEs based on
the type-1l progressive censored samples are less than those based on type-II
censored samples. Moreover, the values of CPs for type-1l progressive censored
samples are greater than those based on type-Il censored samples.

6- Finally, both the two procedures are adequate because the values of SDEs are
less than +2 for the nominal level 95%.

4. Anillustrative Example

Consider the results of tests, the endurance of deep groove ball bearings. The data
are quoted from Lawless (1980) consist of a complete sample of size n=23, that
represent the results of the test, in millions of revolutions before failures are:

17.88, 28.92, 33.00, 41.52, 41.12, 45.60, 48.48, 51.84, 51.96, 54.12, 55.56, 67.80,
68.64, 68.64, 68.88, 84.12, 93.12, 98.64, 105.12, 105.84, 127.92, 128.04, 173.40.
Thus, for the purpose of comparison, the 95% Cls for the parameters X
and S are derived based on the two approaches, based on complete, type-II
censored and type-1l progressive censored samples with binomial removals
at P=0.5 and uncensored levels r equal to [n/2] and [3n/4] for A =1, 2.

The results in Table 1 have been indicated that the length of intervals for
& and [ based on the kernel approach are shorter than those based on the
classical inference. Furthermore, clearly, the length of intervals decrease
when the true value of A increases. Finally, it is worthwhile to note that,
the length of intervals based on the type-1l progressive censored samples

are smaller than those based on type-Il censored samples, which ensure the
simulation results.

Published by Atlantis Press
Copyright: the authors
164



M. Ahsanullah, M. Maswadah and Seham Ali M.

Table 1: The Lower (LL) and the Upper limits (UL), Maximum likelihood estimates (MLE),
and the lengths of the 95% confidence intervals (Cl) for the parameters for & and ,B using

the kernel and AMLs approaches based on GOS based on the data.

Approaches Kernel AMLs
Cl 95% 95%
Par. S n r 1 MLE LL uL LL uL
23 11 1 48410  1.3999 (4.0361) 5.4360 1.6503 (4.8486) 5.7799
Type-ll 2 29515  0.8424 (2.3094) 3.1518 15281 (2.8469) 4.3750
Cez;;r;fe 17 1 31493  0.8195 (1.8297) 2.6492 1.3622 (2.3036) 3.2237
2 20003  0.5672(1.1459) 1.7131 1.3448 (1.4909) 2.8357
a 23 1 21021  1.3975 (1.1594) 2.5569 1.4578 (1.2885) 2.7463
2 14378  1.0002 (0.7596) 1.7598 1.0075 (0.8607) 1.8682
Type-ll- 11 1 37153  1.1876 (4.0274) 5.2150 1.6503 (4.1296) 5.7799
progressive
censored 2 21852  2.2245(2.0860) 4.3105 1.0276 (2.3151) 3.3427
sample 17 1 22926 1.1725(2.6022) 3.7747 1.3622 (1.8615) 3.2237
2 1.4862 1.5660 (1.3660) 2.9320 0.9077 (1.1570) 2.0647
Type-ll 93 11 1 629426 60.1484 (38.7903) 98.9387  51.4351 (23.0159) 74.4510
C::;c;)rlzd 2 453160 36.2246 (24.0632) 60.2878  36.7370 (17.1580) 53.8950
17 1 79.4376 715374 (57.5415) 129.0789 62.9614 (32.9544) 95.9158
2 47.1196 32.3249 (23.0072) 55.3321  34.2310 (25.7772) 60.0082
23 1 818783 59.9192 (52.4844) 112.4036 65.0215 (33.7137) 98.7352
B 2 469838 29.6682 (32.0680) 61.7362  33.8571 (26.2534) 60.1105
Type-ll 23 11 1 469182  45.2633 (13.7753) 59.0386  41.0428 (11.7507) 52.7935
p[;%rs?i:j’e 2 358730 31.8807 (13.5430) 45.4237  28.8399 (14.0662) 42.9061
sample 17 1 606451 58.1276 (28.7593) 86.8869  51.0865 (19.1172) 70.2037
2 414204 33.7310 (17.4136) 51.1446  32.3111 (18.2186) 50.5297

Published by Atlantis Press
Copyright: the authors

165



Table 2. The (MLIs), (CPs) and (SDEs) for the kernel and the AMLs approaches when the nominal

Kernel Inference on the Generalized Gamma Distribution

level is 95% for the parameter & with (,3 = 2, 3 ) for the censored levels ( 50% and 75%).

App. Kernel AMLs
MLI, & MLI, &
n r 1.0 2.0 3.0 CcpP SDE 1.0 2.0 3.0 CP SDE
Complete and type-11 censored samples

20 10 1.7687 3.5373 5.3060 0.945 0.0072 1.3914 2.7828 4.1742 0.960 0.0062
15 11243 2.2486 3.3728 0.944 0.0073 0.9890 19780 2.9669 0.958 0.0063
20 0.8344 16688 25032 0.943 0.0073 0.7415 1.4831 22246 0.958 0.0063
10 17914 35816 5.3743 0.946 0.0071 12913 25826 3.8738 0.961 0.0061
15 11173 2.2345 3.3518 0.945 0.0072 0.9356 1.8712 2.8067 0.947 0.0071
20 0.7889 15779 23668 0932 0.008 0.7118 1.4236 2.1354 0.931 0.0080

40 20 0.9884 19768 29653 0.938 0.0076 0.8964 1.7928 2.6892 0.950 0.0069
30 0.8203 1.6405 2.4608 0.953 0.0067 0.6608 1.3217 1.9825 0.953 0.0067
40 0.5600 1.1200 1.6800 0.956 0.0065 0.5032 1.0063 1.5095 0.955 0.0066
20 0.9179 1.8358 2.7537 0.948 0.0070 0.8453 1.6905 2.5358 0.951 0.0068
30 0.7299 1.4598 2.1897 0.951 0.0068 0.6282 1.2563 1.8845 0.949 0.0070
40 0.5365 1.0730 1.6095 0.942 0.0074 0.4832 0.9665 1.4497 0.939 0.0076

80 40 0.7057 14114 21171 0.952 0.0068 0.6007 1.2015 1.8022 0.951 0.0068
60 0.5128 1.0255 1.5383 0.955 0.0066 0.4561 0.9122 1.3682 0.952 0.0068
80 0.3831 0.7662 1.1493 0.957 0.0064 0.3486 0.6973 1.0459 0.955 0.0066
40 0.6828 1.3657 2.0485 0.958 0.0063 0.5701 1.1402 1.7103 0.962 0.0060
60 0.4982 0.9964 1.4946 0.955 0.0066 0.4307 0.8615 1.2922 0.955 0.0066
80 0.3667 0.7333 1.1000 0.951 0.0068 0.3334 0.6668 1.0002 0.945 0.0072
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Table2. (Continued)

App. Kernel AMLs
MLI, & MLI, &
n r A 10 2.0 3.0 CP SDE 1.0 2.0 3.0 CP SDE
Type-Il progressive censored samples

20 10 1 14774 29549 44323 0972 0.0052 1.1495 22990 3.4485 0.940 0.0075

15 1.0995 21991 3.2986 0.960 0.0062 0.8865 1.7725 2.6594 0.959 0.0063

10 2 12121 24242 3.6364 0.958 0.0063 11073 22145 3.3218 0.951 0.0068

15 1.0708 2.1416 3.2124 0.958 0.0063 0.8482 1.6965 2.5447 0.952 0.0068

40 20 1 10580 2.1159 3.1739 0978 0.0046 0.7396 1.4792 2.2188 0.949 0.0070

30 0.7852 15703 23555 0.983 0.0041 0.5915 1.1831 1.7746 0.944 0.0073

20 2 0.8418 1.6835 2.5253 0.971 0.0053 0.7087 1.4174 2.1261 0.939 0.0076

30 0.7615 15231 22846 0.980 0.0044 0.5668 1.1336 1.7004 0.935 0.0078

80 40 1 0.7147 14295 21442 0.959 0.0063 0.5053 1.0105 1.5158 0.950 0.0069

60 0.6544 13088 19632 0975 0.0049 0.4036 0.8073 1.2110 0.962 0.0060

40 2 0.6970 1.3940 2.0911 0.976 0.0048 0.4785 0.9570 1.4355 0.959 0.0063

60 0.6479 1.2958 19437 0.971 0.0053 0.3877 0.7754 1.1631 0.955 0.0066

5. Conclusions

The kernel estimation technique constitutes a strong basis for statistical inference,
and it has a number of benefits relative to the usual classical procedure. First, it is
easy to be implemented, and it doesn't need tedious work as the classical inference.
Second, it can perform quite well even when the number of bootstraps is extremely
small up to 20 replications. Finally, it is uniquely determined based on the
information content in the pivotal quantities and thus, we can consider it as an
alternative and reliable technique for estimation stronger than the classical inference.
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Table 3. The (MLIs), (CPs) and (SDEs) for the kernel and the AMLs approaches when the nominal level is
95% for the parameter ﬂ based on the complete, type-Il censored and type-Il progressive censored
samples with censored levels ( 50% and 75%).

App. Kernel AMLs
n r A B a MLI CP SDE MLI CP SDE

Complete and type-1I censored samples

6.7292  0.841  0.0116 25376  0.797 0.0127
3.5565 0.841  0.0116 1.2487 0.827 0.0120

20 10 1 2

3 11.0938 0.841  0.0116 3.8064 0.797 0.0127

53348 0.841  0.0116 1.8730 0.827 0.0120

15 2 3.2168  0.947  0.0071 1.8998 0.893 0.0098
14051 0.947  0.0071 0.9473  0.908 0.0091

3 48251 0.947 0.0071 2.8497  0.893 0.0098

21076  0.947  0.0071 1.4209 0.908 0.0091

20 2 25416  0.957  0.0064 1.7691 0.925 0.0083
11738 0957 0.0064 0.8816 0.925 0.0083

3 3.8124 0957  0.0064 2.6537  0.925 0.0083

1.7607 0957  0.0064  1.3223 0.925 0.0083

2.0419  0.933  0.0079 1.6267 0.894 0.0097
1.0072 0933 0.0079  0.8080 0.891 0.0099

20 10 2 2

3 3.0628 0.933  0.0079 24401 0.894 0.0097

15108 0.933  0.0079 1.2120 0.891 0.0099

15 2 19159 0933  0.0079 1.6751 0.918 0.0087
09302 0933  0.0079 0.8289 0.914 0.0089

3 28738 0.933  0.0079 25127 0.918 0.0087

1.3953 0.933  0.0079 1.2434 0.914 0.0089

20 2 18545 0.914 0.0089 1.6911 0.926 0.0083
0.9292 0914 0.0089 0.8340  0.923 0.0084

3 2.7817  0.914 0.0089 2.5367 0.926 0.0083

NP NEFEPDNEFENEPENENEPINNMNEDNENMNEPEDNNEREDNNMNEDNDPRE

13939 0.914 0.0089 1.2511  0.923 0.0084
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Table3. (Continued)

Complete and type-1I censored samples

40 20 1 41061 0961 00061 1.8354 0.876 0.0104
2 16157 0961 00061 009176 0.897 0.0096

1 61592 0961 0.0061 27531 0.876 0.0104

2 24236 0961 00061 13764 0.897 0.0096

30 1 16999 0967 0.0056 1.3803 0940 00075
2 08184 0967 00056 0.6909 0944 0.0073

1 25499 0967 00056 2.0704 0.940 0.0075

2 12276 0967 00056 1.0364 0944 0.0073

40 1 16590 0974 0.0050 1.2692 0.954 0.0066
2 08032 0974 00050 06351 0.946 0.0071

1 24885 0974 0.0050 1.9038 0.954 0.0066

2 12048 0974 00050 009527 0946 0.0071

40 20 1 14617 0947 00071 1.1938 0.914 0.0089
2 07161 0947 00071 05938 0914 0.0089

1 21926 0947 00071 1.7907 0.914 0.0089

2 10742 0947 00071 0.8906 0914 0.0089

30 1 13103 0951 00068 1.2116 0.930 0.0081
2 06598 0951 00068 06012 00926 0.0083

1 19654 0951 0.0068 1.8175 0.930 0.0081

2 09896 0951 00068 009018 0.926 0.0083

40 1 14950 0957 0.0064 12114 0.941 0.0075
2 07377 0957 00064 06004 0937 0.0077

1 22425 0957 0.0064 18171 0.941 0.0075

2 11065 0957 00064 009007 0937 0.0077
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Type-Il progressive censored samples

20 10 1 3.7357 0.945 0.0072 2.3476 0.883 0.0102
2 1.6194 0945 0.0072 1.1793 0.896 0.0097

1 56035 0.945 0.0072 3.5214 0.883 0.0102

2 24291 0945 0.0072 1.7689 0.896 0.0097

15 1 25122 0.958 0.0063 19795 0.893 0.0098
2 12250 0.958 0.0063 0.9894 0.904 0.0093

1 3.7683 0.958 0.0063 2.9692 0.893 0.0098

2 1.8375 0.958 0.0063 1.4842 0.904 0.0093

10 1 29915 0917 0.0087 2.3464 0.903 0.0094
2 1.3663 0917 0.0087 1.1332 0.892 0.0098

1 44872 0.917 0.0087 3.5196 0.903 0.0094

2 2.0495 0917 0.0087 1.6997 0.892 0.0098

15 1 1.9672 0.945 0.0055 1.9515 0.933 0.0079
2 1.0085 0.945 0.0055 0.9511 0.927 0.0082

1 2.9508 0.945 0.0055 29273 0.933 0.0079

2 15127 0945 0.0055 1.4266 0.927 0.0082

40 20 1 2.2367 0.975 0.0049 1.7564 0.912 0.0090
2 11289 0975 0.0049 0.8785 0.919 0.0086

1 3.3550 0.975 0.0049 2.6347 0.912 0.0090

2 16934 0975 0.0049 13177 0.919 0.0086

30 1 15854 0954 0.0066 1.4479 0.923 0.0084
2 0.7887 0.954 0.0066 0.7249 0.925 0.0083

1 2.3780 0.954 0.0066 2.1718 0.923 0.0084

2 11831 0.954 0.0066 1.0873 0.925 0.0083

20 1 19092 0.964 0.0059 1.7028 0.926 0.0083
2 0.9932 0.964 0.0059 0.8388 0.928 0.0082

1 2.8637 0.964 0.0059 25542 0.926 0.0083

2 14898 0.964 0.0059 1.2582 0.928 0.0082

30 1 15262 0955 0.0066 1.3959 0.928 0.0082
2 0.7581 0.955 0.0066 0.6892 0.932 0.0080

1 2.2893 0.955 0.0066 2.0939 0.928 0.0082

2 11371 0.955 0.0066 1.0338 0.932 0.0080
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