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This paper proposes a moment-based approximation to the distribution of quadratic forms in gamma random
variables. Quadratic forms in order statistics from an exponential population are considered as well. Actually,
several test statistics can be expressed in terms of the latter. The density approximants are expressible as the
product of a gamma type distributed base density function and a polynomial adjustment. Several illustrative
examples are provided.
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1. Introduction

Suppose that Y1 < · · ·<Yn are order statistics from an exponential distribution with mean θ . Several
tests of fit with respect to the exponential distribution are based on certain quadratic forms in the
Yi’s divided by an estimate of the scaling parameter. These tests based on correlations involving the
Yi’s are considered in [4, 5, 7]. Some distributional limit theorems such as those that are discussed
in [1] in connection with a certain empirical quantile process, involve quadratic forms in exponen-
tial random variables. Moreover, three test statistics that can be expressed as quadratic forms in
exponential random variables, are described in [2].

A representation of quadratic forms in gamma random variables as well as a derivation of their
moments are provided in Section 2. A closed form representation of the moments of quadratic
forms in order statistics from an exponential population is determined in Section 3. Five numerical
examples illustrate the results.
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2. Quadratic forms in gamma random variables

Let X = (X1, . . . ,Xn)
′ denote a random vector whose components are independently distributed

gamma random variables with parameters α and β whose density function is given by

ψ(x) =
xα−1e−x/β

Γ(α)β α IR+(x) , α > 0 , β > 0 , (2.1)

where IR+(x) denotes the indicator function on the set of positive real numbers. Consider the
quadratic form

Q(X) = Q(X1, . . . ,Xn) = X′AX =
n

∑
i=1

n

∑
j=1

ai jXiX j ,

where A = (ai j) is an n× n symmetric matrix and X′ denotes the transpose of X. We note that if
A is not symmetric, it suffices to replace it by (A+A′)/2. Letting ∏n

i, j denote the double product
∏n

i=1 ∏n
j=1, it follows from the multinomial expansion that

Q(X)m =

( n

∑
i=1

n

∑
j=1

ai jXiX j

)m

= ∑
(m)

m!
( n

∏
i, j

ami j
i j

mi j!

) n

∏
ℓ=1

Xδℓ
ℓ , m = 0,1,2, . . . , (2.2)

where ∑(m) denotes the sum over all the partitions of m into n2 terms such that m11 +m12 + · · ·+
mnn = m with 0 ≤ mi j ≤ m, the mi j’s being nonnegative integers, and δℓ = ∑n

j=0(mℓ j +m jℓ). We
note that the following identity is useful for computing sums over partitions:

∑
(p)

φ(p1, . . . , pr) =
p

∑
p1=0

p−p1

∑
p2=0

· · ·
p−p1−···−pr−2

∑
pr−1=0

φ
(

p1, p2, . . . , pr−1, p−
r−1

∑
i=1

pi

)
,

where the pi’s are such that p1 + · · ·+ pr = p, pi = 0,1, . . . , p ; i = 1,2, . . . ,r.
Alternatively, symbolic computational packages such as Mathematica can readily generate the

required partitions as well as expressing Q(X)m as a sum of products of powers of Xℓ’s. Then,
assuming that the Xℓ’s are independently distributed with respective density functions fXℓ

(xℓ), one
can determine the mth moment of Q(X) as follows:

E(Q(X)m) =

∫ ∞

0

∫ ∞

0
· · ·
∫ ∞

0
Q(x)m fX1,...,Xn(x1, . . . ,xn)dx1 . . .dxn

=
∫ ∞

0

∫ ∞

0
· · ·
∫ ∞

0

( n

∑
i=1

n

∑
j=1

ai jxix j

)m n

∏
ℓ=1

fXℓ
(xℓ)dx1 . . .dxn

= ∑
(m)

m!
[ n

∏
i, j

ami j
i j

mi j!

]∫ ∞

0

∫ ∞

0
· · ·
∫ ∞

0

( n

∏
ℓ=1

xδℓ
ℓ fXℓ

(xℓ)
)

dx1 . . .dxn

= ∑
(m)

m!
[ n

∏
i, j

ami j
i j

mi j!

] n

∏
ℓ=1

(∫ ∞

0
xδℓ
ℓ fXℓ

(xℓ)dxℓ

)
.
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Quadratic Forms in Gamma Random Variables

Thus, when the Xℓ’s constitute a simple random sample from a gamma distribution with parameters
α and β , one has

E(Q(X)m) = m!∑
(m)

[ n

∏
i, j

ami j
i j

mi j!

] n

∏
ℓ=1

(∫ ∞

0

xδℓ+α−1
ℓ e−xℓ/β

Γ(α)β α

)
dx1 . . .dxn

= m!Γ(α)−n ∑
(m)

[ n

∏
i, j

ami j
i j

mi j!

]
β ∑n

ℓ=1 δℓ
n

∏
ℓ=1

Γ(α +δℓ)

≡ µm . (2.3)

Accordingly, when the components of the random vector X are exponentially distributed with
parameter β and density function

f (x) =
1
β

e−x/β IR+(x) , β > 0 , (2.4)

the mth moment of Q(X) is

E(Q(X)m) = m!∑
(m)

[ n

∏
i, j

ami j
i j

mi j!

]
β ∑n

ℓ=1 δℓ
n

∏
ℓ=1

Γ(1+δℓ) . (2.5)

Given the moments of such quadratic forms, approximations to their distribution can be obtained
by making use of the methodologies discussed in [8]. A polynomially-adjusted density approxima-
tion, which is described in the Appendix A, is seen to provide accurate percentiles.

Example 2.1. Consider the quadratic form Q1(X) = X′AX where X = (X1, . . . ,X5), and

A =


4 3 2 1 0
3 0 2 0 1
2 2 0 3 2
1 0 3 1 0
0 1 2 0 6

 ,

the Xi’s being independently and exponentially distributed with parameter β = 3.
Since the exponential distribution has a semi-infinite support and all the elements of A are non-

negative, a generalized gamma distribution can be used as base density to determine an approximate
distribution for Q1(X). The proposed methodology comprises the following steps:

• The moments of Q1(X) are determined from Equation (2.3) wherein in this case n = 5 and
β = 3.

• Consider the following generalized gamma density function as a base density:

ψ(z) =
γ

β α γΓ(α)
zα γ−1e−(z/β )γ

I(0,∞)(z) , α > 0, β > 0, γ > 0. (2.6)
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• The parameters α , β and γ are determined by solving simultaneously the following nonlin-
ear equations

µ j = m j for j = 1,2,3,

where

m j =
β j Γ(α + j/γ)

Γ(α)
, j = 0,1, . . .

are the moments associated with a generalized gamma density function and µ j can be deter-
mined from Equation (2.3).

• A polynomial adjustment of degree d can be made as explained in the Appendix A. The
resulting density approximation is

fd(z) = φ(z)
d

∑
j=0

ξ jz j ;

in this case, we set d = 7.

Table 1. Approximate cdf of Q1(X) corresponding to
certain percentiles obtained by simulation (Sim%).

CDF Sim% G. Gam. Poly
0.01 0.2562 0.008006
0.05 0.6255 0.045688
0.50 3.8274 0.501751
0.95 16.261 0.949537
0.99 27.589 0.989890

5 10 15 20 25 30

0.2

0.4

0.6

0.8

1.0

Fig. 1. Simulated cdf of Q1(X) and 7th degree polynomially adjusted generalized gamma cdf approximation (dots).

Certain values of the resulting approximate distribution function of Q1(X) are displayed in
Table 1 where G. Gam. Poly denotes the cdf obtained from the polynomially adjusted generalized
gamma density function. The percentiles were determined by simulation on the basis of 1,000,000
replications. The plots shown in Figure 1 confirm that the polynomially adjusted generalized gamma
distribution provides a very accurate approximation to the distribution of Q1(X).
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Quadratic Forms in Gamma Random Variables

Remark 2.1. Referring to Equation (2.1), when αi = νi/2, i = 1,2, . . . ,n and β = 2, the ith compo-
nent of the random vector X = (X1, . . . ,Xn)

′ has a chi-square distribution with νi degrees of freedom
and the representation of the mth moment of Q(X) given in Equation (2.3) applies.

Remark 2.2. When the matrix A in the quadratic form Q(X) = X′AX contains negative elements,
one can utilize the density function of the difference of two gamma random variables as base density
in order to determine an approximation to the distribution of Q(X). Such a density function can be
determined as follows.

Let Y1 and Y2 be independently distributed random variables with parameters α1 ,β1 and α2 ,β2,
respectively. By making use of binomial expansion of (Y1 −Y2)

h, h = 1,2,3,4, one can determine
the first four raw moments of Y1 −Y2, which are

E(Y1 −Y2) = α1 β1 −α2 β2

E(Y1 −Y2)
2 = α1 (1+α1)β 2

1 −2α1 α2 β1 β2 +α2 (1+α2)β 2
2

E(Y1 −Y2)
3 = α1 (1+α1)(2+α1)β 3

1 −α2 β2 (3α1 (1+α1)β 2
1 −3α1 (1+α2)β1 β2

+(1+α2)(2+α2)β 2
2 )

E(Y1 −Y2)
4 = α1 (1+α1)(2+α1)(3+α1)β 4

1 +α2 (1+α2)(2+α2)(3+α2)β 4
2

−2α1 α2 β1 β2 (2(1+α1)(2+α1)β 2
1 −3(1+α1)(1+α2)β1 β2

+2(1+α2)(2+α2)β 2
2 ) (2.7)

Now, on equating these moments to those obtained from (2.3), one can solve the resulting system of
equations for α1 ,β1,α2 and β2, which can be achieved by making use of symbolic computational
packages such as Maple and Mathematica.

It follows from the results derived in [9] that the density function of Q = Y1 −Y2 where Y1

and Y2 are independently distributed gamma random variables with parameters α1 ,β1 and α2 ,β2,
respectively, can be expressed as

hn(q)I(−∞ ,0)(q)+hp(q)I[0 ,∞)(q) (2.8)

with

hn(q) =
∫ ∞

0
f1(y) f2(y−q)dy

=
β−α1

1 β−α2
2

Γ(α2)
eq/β2 ϑ−(α1+α2)/2 e−ϑ q/2 (−q)(α1+α2−2)/2

×W(α2−α1)/2,(1−α1−α2)/2(−ϑq)

and

hp(q) =
∫ ∞

q
f1(y) f2(y−q)dy

=
β−α1

1 β−α2
2

Γ(α1)
eq/β2 ϑ−(α1+α2)/2 e−ϑ q/2 q(α1+α2−2)/2

×W(α1−α2)/2,(1−α1−α2)/2(ϑq)

where ϑ = (β1+β2)/(β1β2), ϑq ̸= 0, α1 > 0, α2 > 0, β1 > 0, β2 > 0, (1−α1−α2) is not a negative
integer or zero and W (·) denotes the Whittaker function, which on making use of some identities
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given in Sections 9.220 and 9.210.1 of [3], is seen to have the following representation:

Wl,µ(z) =
Γ(−2µ)

Γ(1
2 −µ − l)

zµ+ 1
2 e−z/2

1F1

(
µ − l +

1
2

;2µ +1;z
)

+
Γ(2µ)

Γ(1
2 +µ − l)

z−µ+ 1
2 e−z/2

1F1

(
−µ − l +

1
2

;−2µ +1;z
)

where 1F1(a,b,z) = ∑∞
k=0

Γ(a+k)Γ(b)zk

Γ(a)Γ(b+k)k! .

Example 2.2. Consider the quadratic form Q2(X) = X′AX where X = (X1,X2,X3)
′ is a vector

of independently distributed chi-square random variables having 4, 3 and 5 degrees of freedom,
respectively, and

A =

 4 1 −2
1 0 2

−2 2 −4

 .

In light of Remark 2.2, one can determine an approximation to the distribution function of
Q2(X) by following the steps described in Example 2.1, the base density being given by (2.8) in
this instance. In Figure 2, this approximation is superimposed on the simulated distribution function
which was determined from 1,000,000 replications.

-600 -400 -200 200 400 600

0.2

0.4

0.6

0.8

1.0

Fig. 2. Simulated cdf of Q2(X) and cdf approximation obtained from the difference of two gamma random variables
(dots).

3. Quadratic forms in order statistics from an exponential population

In this section, we derive the moments of the quadratic form Q(X) = X
′
AX where X is a vector

of order statistics X1 = Yr1:n, X2 = Yr1+r2:n and Xk = Yr1+···+rk:n obtained from a simple random
sample of n observations generated from a standard exponential distribution (with density g(y) =
e−y IR+(x)).

In this case, the joint density of X1, . . . ,Xk is

f (x1, . . . ,xk) =
Γ(n+1)

∑k+1
j=1 Γ(r j)

( k

∏
j=1

e−x j
)(

1− e−x1
)r1−1

×
k

∏
i=2

(
e−xi−1 − e−xi

)ri−1(
e−xk

)rk+1−1 (3.1)
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whenever 0 < x1 < .. . < xk < ∞ with rk+1 = n+1−∑k
j=1 r j, and 0, otherwise.

Consider the transformation z1 = 1− ex1 and z j = e−x j−1 − e−x j for j = 2, . . . ,k. The inverse
transformation is then

x j =− ln(1− z1 −·· ·− z j)

for j = 1, . . . ,k, and its Jacobian is

k

∏
j=1

(1− z1 −·· ·− z j)
−1 =

k

∏
j=1

ex j > 0 . (3.2)

Noting that e−xk = 1− z1 −·· ·− zk, the joint density of Z1, . . . ,Zk is seen to be

h(z1, . . . ,zk) =
Γ(n+1)

∏k+1
j=1 Γ(r j)

( k

∏
j=1

zr j−1
j

)
(1− z1 −·· ·− zk)

rk+1−1 (3.3)

whenever 0 < z j < 1, i = 1, . . . ,k, and ∑k
i=1 zi ≤ 1, and 0 otherwise. Thus the random vector Z =

(Z1, . . . ,Zk)
′ has a type-one Dirichlet distribution with parameters r1,r2, . . . ,rk+1.

In view of (3.2), the joint moment-generating function of U = (−X1, . . . ,−Xk)
′ evaluated at the

point t = (t1, . . . , tk) can be expressed as

MU(t) = E
(

et1 ln(1−Z1)+···+tk ln(1−Z1−···−Zk)
)
= E

(
(1−Z1)

t1 · · ·(1−Z1 −·· ·−Zk)
tk
)

=
Γ(n+1)

∏k+1
j=1 Γ(r j)

∫
· · ·
∫
(1− z1)

t1(1− z1 − z2)
t2 · · ·(1− z1 −·· ·− zk)

tk

×zr1−1
1 zr2−1

2 · · ·zrk+1−1
k dzk · · ·dz2 dz1 (3.4)

where the domain of integration is 0 < zi < 1, i = 1, . . . ,k, with ∑k
i=1 zi ≤ 1. Integrating out zk and

making the change of variables w = zk/(1− z1 −·· ·− zk−1) yields

∫ 1−z1−···−zk−1

0
zrk−1

k (1− z1 −·· ·− zk)
rk+1+rk−1dzk

= (1− z1 −·· ·− zk−1)
rk+rk+1+tk−1

∫ 1

0
wrk−1(1−w)rk+1+tk−1dw

= (1− z1 −·· ·− zk−1)
rk+rk+1+tk−1 Γ(rk)Γ(rk+1 + tk)

Γ(rk)+ rk+1 + tk
.

Then, integrating the terms involving zk−1 from 0 to 1− z1 −·· ·− zk−2, one has

(1− z1 −·· ·− zk−2)
rk+1+rk+rk−1+tk+tk−1−1 Γ(rk−1)Γ(rk+1 + rk + tk + tk−1)

Γ(rk+1 + rk + rk−1 + tk + tk−1)

and integrating successively the terms involving zk−2, . . . ,z2 and z1, one obtains

MU(t) =
Γ(n+1)
Γ(rk+1)

k

∏
j=1

Γ(rk+1 + · · ·+ r j+1 + tk + · · ·+ t j)

Γ(rk+1 + · · ·+ r j + tk + · · ·+ t j)
. (3.5)
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Accordingly,

E(Xδ1
1 Xδ2

2 · · ·Xδk
k ) = (−1)δ1+δ2+···+δk

∂ δ1+δ2+···+δk MU(t)
∂ δ1t1∂ δ2t2 . . .∂ δktk

∣∣∣
t=0

, (3.6)

and in light of Equations (2.2), (3.5) and (3.6), the mth moment of the quadratic form Q(X) can be
evaluated as follows:

E(Q(X)m) = ∑
(m)

m!
[ k

∏
i, j

ami j
i j

mi j!

]
(−1)δ1+δ2+···+δk

∂ δ1+δ2+···+δk MU(t)
∂ δ1t1∂ δ2t2 . . .∂ δktk

∣∣∣
t=0

≡ µ∗
m .

(3.7)

For computational purposes, it is simpler to make use of the joint cumulant generating function
of U = (−X1, . . . ,−Xk)

′, which is

C∗
U(t) = ln[Γ(n+1)]− ln[Γ(rk+1)]+

k

∑
i=1

{ln(rk+1 + · · ·+ r j+1 + tk

+ · · ·+ t j)− ln(rk+1 + · · ·+ r j + tk + · · ·+ t j)}. (3.8)

The joint cumulants of −X1, . . . ,−Xk of orders ξ1, . . . ,ξk are then given by

κ∗
U(ξ1, . . . ,ξk) =

∂ ξ1+···+ξk

∂ ξ1t1 · · ·∂ ξktk
C∗

U(t) |t=0 = p!
ν−1

∑
ℓ=0

(−1/(x+ ℓ))p+1 (3.9)

where ν =∑λ
j=1 r j, λ is the position of the first non null component in ξ =(ξ1, . . . ,ξk)

′, x= n+1−ν
and p = (∑k

j=1 ξ j)−1. On making use of a recursive relationship given in [11], which can also be
deduced for instance from Theorem 3.2b.2 in [6], one can determine the mth moment of Q(X) as
follows:

µ∗
m =

m−1

∑
i=0

(m−1)!
(m−1− i)! i!

κ∗
U(m− i)µ∗

i , (3.10)

where κ∗
U(m− i) is as specified by (3.9).

Example 3.1. Let the order statistics X1 ≤ ·· · ≤ X5 be obtained from a random sample of size
5 from an exponential distribution with parameter 1. Consider the quadratic form Q3(X) = X′AX
where X = (X1, . . . ,X5)

′ and

A =


1 1 1 3 0
1 0 2 0 1
1 2 0 4 2
3 0 4 1 0
0 1 2 0 2

 . (3.11)

In this example, we approximate the distribution of Q3(X) whose support is non-negative by
making use of a generalized gamma distribution. The moments of Q3(X) can be determined from
Equation (3.7) or (3.10). The steps described in Example 2.1 were followed. The results included in
Table 2 indicate that the generalized gamma density function provides an accurate approximation to
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Table 2. Approximate cdf of Q3(X) obtained from a gener-
alized gamma (G. Gamma) density function corresponding
to certain percentiles obtained by simulation (Sim%).

CDF Sim% G. Gamma
0.01 0.1337 0.009585
0.05 0.3183 0.049363
0.50 1.8023 0.500105
0.95 6.9692 0.949828
0.99 11.218 0.989847
0.999 18.358 0.998990

50 100 150 200

0.2

0.4

0.6

0.8

1.0

Fig. 3. Simulated cdf of Q3(X) and 7th degree polynomially adjusted generalized gamma cdf approximation (dots).

the distribution of Q3(X). The generalized gamma was adjusted with a seventh degree polynomial
in order to determine the cdf plotted in Figure 3.

Example 3.2. Referring to Example 3.1, suppose that A is the matrix


−5 1 1 3 0

1 0 −2 0 −4
1 −2 0 4 2
3 0 4 1 0
0 −4 2 0 −2

 .

In this case, a base density such as the one given in (2.8) is appropriate. Then, on following the steps
described in Example 2.1, one can determine an approximation for Q4(X). Figure 4 suggests that
the approximated cdf is quite accurate.

-50 50

0.2

0.4

0.6

0.8

1.0

Fig. 4. Simulated cdf of Q4(X) and cdf approximation (dots).
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Remark 3.1. More generally, when the order statistics X1 ≤ ·· · ≤ Xn are generated from an
Exponential(β ) random variable whose density function is as specified by Equation (2.4), one
can represent Q(X) = X′AX as Q(Y) = β 2 (Y1, . . . ,Yn)A(Y1 , . . . ,Yn)

′ where the Yi’s are order
statistics from an Exponential(1) random variable. Once an approximate density is obtained for
(Y1, . . . ,Yn)A(Y1 , . . . ,Yn)

′, a simple change of variables will yield the density function of Q(X).

Example 3.3. Suppose that the order statistics X1 ≤ ·· · ≤ X5 are generated from a random sample
of size 5 from an exponential distribution with parameter 4 and let Q5 denote the quadratic form
X′AX with A as given in (3.11). Then, proceeding as in Example 3.1 and reexpressing the quadratic
form in terms of Exponential(1) random variables as explained in Remark 3.1, one can approxi-
mate the density function of Q5(X) by making use of a polynomially-adjusted generalized gamma
distribution. The results presented in Table 3 and Figure 5 indicate that approximate distribution is
in close agreement with the simulated distribution which was determined on the basis of 1,000,000
replications.

Table 3. Approximate cdf of Q5(X) corresponding to
certain percentiles obtained by simulation (Sim%).

CDF Sim% G. Gamma
0.01 0.1179 0.009580
0.05 0.2797 0.049251
0.50 1.5857 0.500469
0.95 6.1811 0.500469
0.99 10.054 0.990157
0.999 16.615 0.999056

2 4 6 8 10 12

0.2

0.4

0.6

0.8

1.0

Fig. 5. Simulated cdf of Q5(X) and polynomially-adjusted generalized gamma cdf approximation (dots).
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Appendix A. Polynomially adjusted density functions

As explained in [10], an initial density approximation can be adjusted by means of a polynomial
whose coefficients are such that the first d moments of the approximation coincide with those of a
target distribution.

For instance, on the basis of the first d moments of a positive definite quadratic form Q(X), a
density approximation of the following form can be assumed for Q(X):

fd(x) = φ(x)
d

∑
j=0

ξ j x j

where φ(x) is an initial density approximant referred to as base density function, which could be
for instance a gamma density.

The polynomial coefficients, ξ j, are determined by equating the hth moment of Q(X) denoted
by µh to the hth moment of the approximate distribution specified by fd(x) for h = 0,1, . . . ,d, that
is,

µh =

∫ q

p
xhφ(x)

d

∑
j=0

ξ j x jdx =
d

∑
j=0

ξ j

∫ q

p
xh+ jφ(x)dx

=
d

∑
j=0

ξ j mh+ j, h = 0,1, . . . ,d,

where mh+ j is the (h+ j)th moment determined from φ(x). This leads to a linear system of (d +1)
equations in (d +1) unknowns whose solution is
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ξ0

ξ1
...

ξd

=


m0 m1 · · · md

m1 m2 · · · md+1

· · · · · · · · · · · ·
md md+1 · · · m2d


−1

µ0

µ1
...

µd

 .

The resulting representation of the density function of Q(X) is referred to as a dth degree poly-
nomially adjusted density approximant. As long as higher moments are available and the calcula-
tions can be carried out with sufficient precision, more accurate approximations can be obtained by
making use of additional moments.
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