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Searching frequent patterns in transactional databases is considered as one of the most important data mining 
problems and Apriori is one of the typical algorithms for this task. Developing fast and efficient algorithms that can 
handle large volumes of data becomes a challenging task due to the large databases. In this paper, we implement a 
parallel Apriori algorithm based on MapReduce, which is a framework for processing huge datasets on certain 
kinds of distributable problems using a large number of computers (nodes). The experimental results demonstrate 
that the proposed algorithm can scale well and efficiently process large datasets on commodity hardware. 
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1. Introduction 

Data Mining has attracted a great deal of attention in the 
information industry and in society as a whole in recent 
years. One of the important problems in data mining is 
discovering association rules from databases of 
transactions where each transaction consists of a set of 
items. Many algorithms have been proposed to find 
frequent item sets from a large database. However, there 

has not yet been published implementation performing 
the best under whatever conditions[1]. Apriori is one of 
the typical algorithms, which is a seminal algorithm 
proposed by R.Agrawal and R.Srikant in 1994 for mining 
frequent itemsets for Boolean association rules[2]. It 
aggressively prunes the set of potential candidates of size 
k by using the following observation: a candidate of size 
k can be frequent only if all of its subsets also meet the 
minimum threshold of support. Even with the pruning, 
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the task of finding all association rules requires a lot of 
computation power and memory. Parallel computing 
offers a potential solution to the computation requirement 
of this task, if the efficient and scalable parallel 
algorithms can be designed. 

MapReduce is a patented software framework introduced 
by Google in 2004. It is a programming model and an 
associated implementation for processing and generating 
large data sets in a massively parallel manner [3][4]. 
Some data preprocessing, clustering and classification 
algorithms have been implemented based on 
MapReduce[5][6][7].  

In this paper, we implemented the parallel Apriori 
algorithm based on MapReduce, which makes it 
applicable to mine association rules from large databases 
of transactions.  

The rest of the paper is organized as follows. In 
Section 2, we introduce the basic Apriori algorithm. 
Section 3 gives an overview of MapReduce. In Section 4, 
we present the details of the parallel implementation of 
Apriori algorithms based on MapReduce. Experimental 
results and evaluations are showed in Section 5 with 
respect to speedup, scaleup, and sizeup. Finally, Section 6 
concludes the paper. 

2. Apriori Algorithm  

2.1. Problem statement 

The problem of mining association rules over market 
basket analysis was introduced in [8]. It consists of 
finding associations between items or itemsets in 
transactional data [9]. 

As defined in [11], the problem can be formally stated 
as follows. Let 1 2{ , , , }mI i i i= …  be a set of literals, 
called items. Let D  be a set of transactions, where each 
transaction T  is a set of items such that T I⊆ . Each 
transaction has a unique identifier TID. A transaction T  
is said to contain X , a set of items in I , if X T⊆ . 
An association rule is an implication of the form 
“ X Y⇒ ”, where X I⊆ , Y I⊆  and 
X Y =∅∩ .  

Each itemset has an associated measure of statistical 
significance called support. For An itemset X , we say 
its support is s  if the fraction of transactions in D
containing X  equals s . The rule X Y⇒  has a 
support s  in the transaction set D  if s of the 
transactions in D  contain X Y∪ . The problem of 

discovering all association rules from a set of transactions 
D  consists of generating the rules that have a support 
and confidence greater than given thresholds. These rules 
are called strong rules. 

This association-mining task can be broken into two 
steps: 

Step1. The large or frequent itemsets which have 
support above the user specified minimum support are 
generated. 

Step2. Generate confident rules from the frequent 
itemsets. 

2.2. Apriori algorithm 

The name of the Apriori algorithm is based on the fact 
that the algorithm uses prior knowledge of frequent 
itemset property which is that all nonempty subsets of a 
frequent itemset must also be frequent [2]. The main idea 
is to find the frequent itemsets. 

The process of the algorithm is as follows. 
Step1. Set the minimum support and confidence 

according to the user definition.  
Step2. Construct the candidate 1-itemsets. And then 

generate the frequent 1-itemsets by pruning some 
candidate 1-itemsets if their support values are lower than 
the minimum support. 

Step3. Join the frequent 1-itemsets with each other to 
construct the candidate 2-itemsets and prune some 
infrequent itemsets from the candidate 2-itemsets to 
create the frequent 2-itemsets. 

Step4. Repeat the steps likewise step3 until no more 
candidate itemsets can be created. 

The main steps consist of join and prune actions and 
the process is followed. 
(i) The join step: To find kL , a set of candidate k

-itemsets is generated by joining ( 1)k − -itemsets. 
This set of candidates is denoted as kC . Let 1l and 

2l  be itemsets in 1kL − . The notation [ ]il j  refers 
to the j th item in il . The items within an itemset 
are sorted in lexicographic order. The join 1kL −

1kL − , is performed, where members 1l and 2l of 
1kL − are joinable if their first (k-2) items are in 

common. The resulting itemsets formed by joining 
1l and 2l is 
1 1 1 1 2[1], [2], , [ 2], [ 1], [ 1].l l l k l k l k− − −…  

(ii) The prune step: kC  is a superset of kL , its 
member may or may not be frequent. According to 
the Apriori property, any ( 1)k − -itemsets that is not 
frequent cannot be a subset of a frequent k -itemsets. 
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Hence, if any subset with length ( 1)k −  of a 
candidate k -itemsets is not in 1kL − , then the 
candidate cannot be frequent either and so can be 
removed from kC . 

3. Introduction to MapReduce 

MapReduce is a programming model and an associated 
implementation for processing and generating large data 
sets. As the framework showed in Figure 1, MapReduce 
specifies the computation in terms of a map and a reduce 
function, and the underlying runtime system 
automatically parallelizes the computation across 
large-scale clusters of machines, handles machine failures, 
and schedules inter-machine communication to make 
efficient use of the network and disks. 

 

Figure 1. Illustration of the MapReduce framework 

Map takes an input pair and produces a set of 
intermediate key/value pairs. The MapReduce library 
groups together all intermediate values associated with 
the same intermediate key and passes them to the reduce 
function [4]. That is, a map function is used to take a 
single key/value pair and outputs a list of new key/value 
pairs. It could be formalized as: 

map :: (key1, value1)  list(key2, value2) 
The reduce function, also written by the user, accepts 

an intermediate key and a set of values for that key. It 
merges together these values to form a possibly smaller 
set of values. The intermediate values are supplied to the 
users reduce function via an iterator. This allows us to 
handle lists of values that are too large to fit in memory. 
The reduce function is given all associated values for the 
key and outputs a new list of values. Mathematically, this 
could be represented as: 

reduce :: (key2, list(value2))  (key3, value3) 

The MapReduce model provides sufficient high-level 
parallelization. Since the map function only takes a single 
record, all map operations are independent of each other 
and fully parallelizable. Reduce function can be executed 
in parallel on each set of intermediate pairs with the same 
key.  

4. Parallel Apriori Algorithm based on 
MapReduce 

4.1. The main idea of the parallel Apriori algorithm 

As described in Section 2, the key step in Apriori 
algorithm is to find the frequent itemsets. In the k th 
iteration, it computes the occurrences of potential 
candidates of size k in each of the transactions. It is 
obviously that the occurrences counting of candidate 
itemsets in one transaction is irrelevant with the counting 
in another transaction in the same iteration. Therefore, the 
occurrences computation process in one iteration could be 
parallel executed. After this phase, all the occurrences of 
candidate itemsets are summed up. Furthermore, the join 
actions are done on the frequent k-itemsets and prune 
actions are performed on the candidate (k+1)-itemsets. 
Finally, the frequent (k+1)-itemsets are found. According 
to the frequent itemsets, the rules that have a support and 
confidence greater than given thresholds are generated. 

Figure 2 shows the flow chart of parallel Apriori 
algorithm, which is denoted as PApriori. The steps are as 
follows. 

Step1. Use MapReduce model to find the frequent 
1-itemsets. 

Step2. Set 1k = . 
Step3.If the frequent (k+1)-itemsets cannot be 

generated, then goto Step6. 
Step4. According to the frequent k -itemsets, use 

MapReduce model to generate the frequent 
(k+1)-itemsets.  

Step5. If k  is less than the max iteration times, then
k + + , goto Step3; Otherwise, continue to the next step. 

Step6. According to the frequent itemsets L , 
generate the strong rules. 
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k kL∪

Figure 2. The flow chart of the parallel Apriori algorithm 

4.2. The parallel implementation of the Apriori 
algorithm based on MapReduce 

As the analysis mentioned above, PApriori algorithm 
needs one kind of MapReduce job. The map function 
performs the procedure of counting each occurrence of 
potential candidates of size k and thus the map stage 
realizes the occurrences counting for all the potential 
candidates in a parallel way. Then, the reduce function 
performs the procedure of summing the occurrences 
counts. For each round of the iteration, such a job is 
carried out to implement the occurrences computing for 
potential candidates of size k.  

Map-function The input dataset is stored on HDFS[5] 
as a sequence file of <key, value> pairs, each of which 
represents a record in the dataset. The key is the offset in 
bytes of this record to the start point of the data file, and 
the value is a string of the content of this record. The 
dataset is splitted and globally broadcasted to all mappers. 
Consequently, the occurrence computations are parallel 
executed. For each map task, once the items in the 
candidate itemsets occur in the transactions, the <key’, 1> 
pair will be outputted, where key’ is the candidate 
itemsets. We use m_cycles to represent the maximum 
cycles of the PApriori. The pseudo-code of map function 
is shown in Algorithm 1.  

 
Algorithm1. Map(key, value) 

Input: Global variable m_cycles, the offset key, the 
sample value 
Output: <key’, value’> pair, where the key’ is the 
candidate itemsets and value’ is the once occurrence of 
the key’, actually, it equals to 1. 
1. if (m_cycles>1) /*for the case k>1*/
2.   For each itemset kiC  in the 

candidate       k -itemsets  

3.      If kiC
 is a subset of value 

4.           Output( kiC , 1); 
5.      Endif 
6.    End For 
7. Else For each itemset iI  in value 

/*k=1*/ 
8.          If 0iI ≠           

9.              Output( iI ,1); 

10.         Endif 
11.       End For

Reduce-function The input of the reduce function is 
the data obtained from the map function of each host. In 
reduce step, we sum up all the values with the same key 
and get the final result. In another word, we can get the 
total occurrences of potential candidates in the 
transactions. The pseudo-code for reduce function is 
shown in Algorithm 2.  

 
Algorithm2. Reduce(key, Value) 
Input: key is the element of the candidate itemsets, Value 
is once occurrence of the key  
Output: <key’, value’> pair, where the key’ is identical 
to key and value’ is total occurrence of the key’. 
1. sum=0; 
2. while( values.hasNext()){ 
3.     sum+=values.next(); 
4.     } 
5.output (key, sum); 

5. Experimental Results 

In this section, we evaluate the performance of our 
proposed PApriori algorithm in terms of sizeup, speedup 
and scaleup to deal with large scale dataset. 

5.1. The datasets 

The transactional data for an AllElectronics branch and 
T10I4D100K dataset are used in our experiments. As 
shown in Table1, there are nine transactions in the 
transactional data. We denote it as dataset1and replicate it 
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to get 1GB, 2GB, 4GB, and 8GB datasets respectively. 
They have many short transactions with few frequent 
itemsets. For the T10I4D100K dataset, we replicate it to 2 
times, 4 times, 8 times and get 0.6G, 1.2G, 2.4G datasets, 
we denote them as T10I4D200K, T10I4D400K and 
T10I4D800K respectively. They have fewer larger 
transactions with many frequent itemsets. Performance 
experiments were run on a cluster of 10 computers, six 
with four 2.8GHz cores and 4GB memory, the rest four 
with two 2.8GHz cores and 4GB memory. Hadoop 
version 0.20.2 and Java 1.5.0_14 are used as the 
MapReduce system for all the experiments. Experiments 
were carried on 10 times to obtain stable values for each 
data point.  

Table1. Transactional data for an AllElectronics branch 

TID List of item_IDs 
T100 I1,I2,I5 
T200 I2,I4 
T300 I2,I3 
T400 I1,I2,I4 
T500 I1,I3 
T600 I2,I3 
T700 I1,I3 
T800 I1,I2,I3,I5 
T900 I1,I2,I3 

5.2. Optimal number of reducers assigning 

In Hadoop version 0.20.2, the number of mappers is 
automatically determined by the cluster system while the 
number of reducers needs to be given by users. So before 
the parallel performance experiments, we can choose the 
optimal number of reducers by assigning different ones in 
the experiments. 

The 2GB replication of Dataset1 is used and we 
choose two nodes in our assigning experiments. The 
execution times under different number of reducers are 
shown in Figure 3. 

 

Figure 3. Executing times under different number of reducers 

As shown in Figure 3, with the increase of reducers, 
the degree of parallelism increases, the execution time 
decreases gradually and reaches its minimum when the 
number of reducers is 4. After that, the execution time 
increases with the increase of reducers due to the 
additional management time and the extra 
communication time. 

As we all known, the total computing time of a 
Hadoop program is mainly composed of two parts, one 
part is computing time of each map and reduce phases, 
the other part is communication and networking between 
map and reduce phases. The more the number of reduces 
is, the shorter the computing time of each map and reduce 
phases trends. However, the longer will be the time of 
communication and networking between map and reduce 
phases. Thus there can be some tradeoff between the two 
parts. 

Generally speaking, in a cluster of computers without 
job fails in the running time, the optimal number of 
reducers is 0.95 or 1.75 × number of nodes × 
mapred.tasktracker.tasks.maximum. In case of 0.95, all 
the reduces can be invoked at the same time when all the 
maps finish. In case of 1.75, a faster node may execute 
multiple reduces, thus each node could be loaded in more 
balance. 

According to the configuration of our cluster, each 
node has 4 cores, so the 
mapred.tasktracker.tasks.maximum of each node is 2. 
And there are 2 nodes used in the experiments, therefore, 
it can get the shortest computing time when the number 
of reduces is 4 on condition that there are no job fails in 
the running time. 
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5.3. The evaluation measure 

We use scaleup, sizeup and speedup to evaluate the 
performance of PApriori algorithm. 

Scaleup: Scaleup evaluates the ability of the 
algorithm to grow both the system and the dataset size. 
Scaleup is defined as the ability of a m-times larger 
system to perform a m-times larger job in the same 
run-time as the original system. The definition is as 
follows. 

1( , )
mm

TScaleup data m
T

=               (1) 

Where, 1T is the execution time for processing data 
on 1 core, mmT  is the execution time for processing 
m*data on m cores.  

Sizeup: Sizeup analysis holds the number of cores in 
the system constant, and grows the size of the datasets by 
the factor m. Sizeup measures how much longer it takes 
on a given system, when the dataset size is m-times larger 
than the original dataset. It is defined by the following 
formula: 

1

( , ) mTSizeup data m
T

=             (2) 

Where, mT  is the execution time for processing 
m*data, 1T  is the execution time for processing data. 

Speedup: Speedup refers to how much a parallel 
algorithm is faster than a corresponding sequential 
algorithm. It is defined by the following formula: 

1

p

TSpeedup
T

=                 (3) 

Where, p  is the number of processors, 1T  is the 
execution time of the algorithm with one processor, pT  
is the execution time of the parallel algorithm with p 
processors.  

Linear speedup or ideal speedup is obtained when
Speedup p= . When running an algorithm with linear 
speedup, doubling the number of processors doubles the 
speed. In practice, linear speedup is difficult to achieve 
because the communication cost increases with the 
number of records becomes large. 

5.4. The performance and analysis 

We examine the scaleup, sizeup and speedup 
characteristics of the PApriori algorithm. 

To demonstrate how well the PApriori algorithm 
handles larger datasets when more cores of computers are 

available, we have performed scaleup experiments where 
we have increased the size of the datasets in direct 
proportion to the number of cores in the system. For 
dataset1, the datasets size of 1GB, 2GB, 4GB and 8GB 
are executed on 4, 8, 16 and 32 cores respectively. For 
dataset T10I4D100K, T10I4D100K, T10I4D4200K, 
T10I4D400K and T10I4D1800K are executed in the 
same way. 

Figure4 shows the scaleup performance of the 
datasets. Clearly, the PApriori algorithm scales well, the 
scaleup fall shortly as the database and multiprocessor 
sizes increase. It always maintains a higher than 78% 
scalability for dataset1 and 80% for T10I4D100K.  

To measure the performance of sizeup, we fix the 
number of cores to 4, 8, 16 and 32 respectively. Figure 5 
shows the sizeup results on different cores. When the 
number of cores is small such as 4 and 8, the sizeup 
performances differ little. However, as more cores are 
available, the sizeup value for 16 or 32 cores decreases 
significantly compared to that of 4 or 8 cores on the same 
data sets. The results show sublinear performance for the 
PApriori algorithm, the program is actually more efficient 
as the database size is increased. Increasing the size of the 
dataset simply makes the noncommunication portion of 
the code take more time due to more I/O and more 
transaction processing. This has the result of reducing the 
percentage of the overall time spent in communication. 
Since I/O and CPU processing scale well with sizeup, we 
get sublinear performance. 

To measure the speedup, we kept the dataset constant 
and varied the number of cores. The number of cores 
varies from 4 to 32. We have performed four experiments, 
the size of the dataset increases from 1GB to 8GB for 
dataset1, and from 0.3GB to 2.4GB for T10I4D100K.  

We have performed the speedup evaluation on 
datasets with different sizes and systems. Figure6 shows 
the speedup for different datasets. As the result shows, 
the speedup performance does however not to be very 
good in the case of 1GB for dataset1 and 0.3GB for 
T10I4D100K. This is an artifact of the small amount of 
data each node processing. In this case, communication 
cost becomes a significant percentage of the overall 
response time. This is easily predicted from our sizeup 
experiments where we notice that the more data a core 
processes, the less significant becomes the 
communication cost giving us better performance. 
Therefore, PApriori algorithm can deal with large 
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datasets efficiently. Larger datasets would have shown 
even better speedup characteristics. 

  

(a) Scaleup for dataset1 

  

(b) Scaleup for T10I4D100K 

Figure4. Scaleup performance evaluation  

 
 

 (a) Sizeup for dataset1  

 

(b) Sizeup for T10I4D100K 

Figure5. Sizeup performance evaluation 

 
 

  (a) Speedup for dataset1 

 

(b) Speedup for T10I4D100K 

Figure6. Speedup performance evaluation 

To sum up, for the datasets either have many short 
transactions with few frequent itemsets or fewer larger 
transactions with many frequent itemsets, PApriori 
algorithm has shown good performance.  
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5.5. Application to transaction logs mining 

The PApriori algorithm we proposed has been applied on 
some transaction logs from a telecommunications 
company.  

The raw data contains 3249144 transaction logs 
consisting of 34 attributes, such as transaction number, 
transaction type, transaction source, user ID, product ID 
and so on. Each log record that one user buy or download 
one application program by mobile phone or PC. The aim 
is to find the association rules among the products. 

We have done some pre-processing on the raw data. 
First, we choose the necessary items for association rules 
mining. In other words, we choose the user ID, product 
ID as the attributes needed. Since one user may download 
several products, then we combine the products 
downloaded by the same user. Finally, we get the data 
that the PApriori algorithm can deal with, i.e. each line of 
the dataset record the produces that one user download. 
For example, 50,60,61,126,1915 indicate that the user 
download the products whose IDs are 50,60,61,126,1915. 

We run PApriori algorithm on the transaction logs 
and get the association rules within 10 minutes. It 
indicates that PApriori algorithm can deal with large real 
datasets showing good performance. 

6. Conclusion 

Searching for frequent patterns in transactional databases 
is considered one of the most important data mining 
problems. The task of finding all association rules 
requires a lot of computation power and memory. In this 
paper, we propose a fast parallel Apriori algorithm based 
on MapReduce, We use sizeup, speedup and scaleup to 
evaluate the performances of PApriori. The experimental 
results show that the program is actually more efficient as 
the database size is increased. Therefore, the proposed 
algorithm can process large datasets on commodity 
hardware effectively. 
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