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Abstract

This paper deals with database fuzzy queries in
the context where the fuzzy preference conditions
involved are of a bipolar nature (the first pole
corresponding to a constraint, the second to a
wish). More precisely, we consider queries where an
inclusion-based condition comes into play (a typical
example being a division query). Due to the fact
that bipolar fuzzy queries entail using a framework
where bipolar fuzzy relations are handled, we are
led to defining generalized inclusion indicators in
this context. This paper proposes an interpretation
of such indicators and investigates their properties
as well as their practical use in a database querying
context.
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ity, inclusion, fuzzy relations.

1. Introduction

The idea of introducing preferences into queries is
gaining more and more attention in the database
community. In this paper, we focus on the fuzzy-
set-based approach to preference queries, which re-
lies on the use of fuzzy set membership functions
that describe the preference profiles of the user on
each attribute domain involved in the query. Then,
satisfaction degrees associated with elementary con-
ditions may be combined using a panoply of fuzzy
set connectives, which go much beyond conjunction
and disjunction.

A complementary concept is that of bipolarity in
general and its application to database querying.
Bipolarity refers to the propensity of the human
mind to reason and make decisions on the basis of
positive and negative affects [13, 14]. Positive infor-
mation states what is possible, satisfactory, permit-
ted, desired, or considered as being acceptable. On
the other hand, negative statements express what is
impossible, rejected, or forbidden. Negative prefer-
ences correspond to constraints, since they specify
which values or objects have to be rejected (i.e.,
those that do not satisfy the constraints), while
positive preferences correspond to wishes, as they
specify which objects are more desirable than oth-
ers (i.e., satisfy user wishes) without rejecting those
that do not meet the wishes.
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Three types of bipolarity have been pointed out
[14]. The simplest type, called symmetric univariate
bipolarity, uses a bipolar scale whose negative and
positive parts are the mirror images of each other.
The second type of bipolarity, termed symmetric
bivariate, refers to the use of two separate unipolar
scales (one for the positive affects, the other one for
the negative affects) still pertaining to the same in-
formation, with generally a duality relation putting
the scales in symmetric correspondence. The third
type of bipolarity, called asymmetric, takes place
when dealing with two unrelated kinds of infor-
mation in parallel (see also [3] where this type of
bipolarity is described and used). In the rest of
this paper, asymmetric (also called heterogeneous)
bipolarity is considered, and positive and negative
poles are assumed to refer to potentially different
notions (attributes). More precisely, we will deal
with queries made of two poles, one meant as a con-
straint — denoted by C' — and the other acting as
a wish — denoted by W —, and a pair (C, W) is
interpreted as: “C and if possible W”. In the sit-
uation considered later on, the two components of
a query, although they can be assessed on a same
scale (true/false, or the unit interval, or a quali-
tative scale), are not of the same nature and it is
convenient to specify how any pair of elements (tu-
ples or objects) are compared depending on their
scores with respect to the constraint and the wish.
Let us recall, however, that inside a complex con-
straint (resp. wish), the fuzzy-set-based approach
requires the elementary preferences to be commen-
surable. A commonly made choice (see in particular
[14]) for interpreting a bipolar condition consists in
discriminating between two objects x and y using
first the constraint, then if needed (i.e., if x and y
are not distinguishable on the constraint) using the
wish. In what follows, this point of view is chosen
and a lexicographic order is used. If (C(z), W(x))
and (C(y), W(y)) denote the scores of z and y with
respect to the constraint C' and the wish W, one
has:

z >y <(C(x) > C(y)) or )
(C(x) = C(y) and W(z) > W(y))
where x > y means that x is preferred to y. A conse-
quence is the fact that an object which is beaten on
the constraint cannot win even if it is significantly
better on the wish.



In previous works, we have defined a fuzzy bipo-
lar relational algebra [7], as well as a bipolar ver-
sion of the fuzzy query language SQLf [20]. In this
paper, our aim is to extend this latter work by con-
sidering new types of queries, namely those involv-
ing inclusion-based conditions. Taking into account
bipolar fuzzy queries leads to handling bipolar fuzzy
relations (i.e., relations where each tuple is assigned
a pair of degrees, one related to the constraint, the
other to the wish), thus the main issue is to give a
semantics to the notion of inclusion between such
bipolar fuzzy relations.

The remainder of the paper is structured as fol-
lows. Section 2 recalls basic notions related to the
concept of bipolarity and to graded inclusion indica-
tors based on fuzzy implications. Section 3 presents
an interpretation of graded inclusion of fuzzy bipo-
lar relations. The properties of such extended in-
clusion indicators are studied in Section 4. Section
5 is devoted to database preference queries involv-
ing inclusion-based conditions in the context where
fuzzy bipolar relations have to be handled. Section
6 recalls the main contributions of the paper and
outlines a few perspectives for future research.

2. Preliminary notions

In the following, we assume that satisfaction degrees
belong to an ordinal symbolic scale £ made of k+ 1
linguistic labels. For instance, with £ = 4, one may
use:

wo (“not at all”) < wy (“poorly”) < wsy (“medium”)
< ws (“rather”) < wy (“totally”)

where wg (resp. wy) corresponds to 0 (resp. 1)
in the unit interval when a numeric framework is
used. The operation 1— (-) that is used to interpret
the negation when the degrees belong to the unit
interval is replaced by the order reversal operation
denoted by rev(-): rev(w;) = wi—;.

2.1. Bipolarity

In the following, we denote by p(u) (resp. n(u)) the
degree reflecting the extent to which an element u
satisfies a constraint C' (resp. a wish ). When C
and W concern the same property of a given type
of object or, in other terms, the same attribute of
a given relation, two consistency conditions may be
considered [14]:

e Strong consistency, as for twofold fuzzy sets
[12]:

sup min(y(u), rev(u(u)) =wo  (2)

u
which expresses that the support of the wish
must be included in the core of the constraint.
Then the wish can only discriminate between

the tuples which get degree wy for the con-
straint. As noted in [14], the pair (W, C) un-
der condition (2) is a twofold fuzzy set since
support(W) C core(C).

e Weak counsistency (implied by the strong one),
in the spirit of intuitionistic fuzzy sets [1]:

Vu, n(u) < p(u) (3)

which expresses that the wish must be included
in the constraint (in the sense of Zadeh). Then,
the wish can be used to discriminate between
the tuples which somewhat satisfy the con-
straint. As noted in [14], the pair (W, C) under
condition (3) is an intuitionistic fuzzy set in the
sense of Atanassov [1].

When C and W concern different attributes, the
weak consistency of the wish with the constraint can
be recovered by replacing (C, W) by (C, C AW) as
suggested in [14].

In the remainder of the paper, only weak consis-
tency is enforced. We define a bipolar relation (in
the database sense) as a relation where each tuple
t is associated with two degrees p(t) and n(t) in £
expressing the extent to which the tuple satisfies
the constraint (resp. wish) that has been used to
produce the relation. In this framework, a tuple
will then be denoted by (i, n)/t. In base relations
(i.e., classical relations to which no fuzzy criterion
has been applied yet), p(t) = n(t) = wk, Vt. It is
assumed that tuples such that y = wy do not ap-
pear in the relation (they do not belong to it at all).
Let us denote by r a bipolar base relation and by
(C, W) the pair constraint/wish that is applied to
r in order to build a bipolar fuzzy relation r'. One
has:

v = {(u, )/t ] (wi, i)/t € A p= pe(t)
An=nw(t)}.

When no constraint is expressed, Dubois and Prade
[14] suggest to use C' = true. Notice that this case is
not likely to be very useful in practice, since it cor-
responds to the situation where all the tuples from
the relation queried are considered equally accept-
able. The wish just allows to give a “bonus” to some
items; for example, “I prefer red cars, but if there
are not any, any car will do”. Reciprocally, when
no wish is expressed (case of a non-bipolar — fuzzy
or not — condition), we use W = C. In this case,
the condition acts as a regular select clause, i.e.,
it discards the items which do not satisfy the con-
straint at all (and ranks the others if the constraint
is fuzzy).

We introduce the following operators Imin and
Imaz, which will play a major role for defining the
conjunction (and intersection) and the disjunction
(and union):

(4)

tmin((p, ), (1, 1))
= (pu, n)if p<p/ or (un=p" and n <7’
= (¢, ') otherwise.



Imaz((p, n), (W', 1))
= (p, m) if > p' or (= p" and n>1n')
= (¢, n') otherwise.

These definitions may be reformulated the following
way. Let us consider the scale S = {(¢, w) | ¢ €
LAw € LAw < ¢}, equipped with the stan-
dard lexicographic order <;.,. Then the Imin and
Imaz operators are the canonical lattice operations

of (S, glem):
(¢, w) <jex (¢ W)
< Imin((c, w), (¢, w")) = (¢, w)
& Imax((c, w), (¢, w')) = (d, w').

Straightforwardly, Imin (resp. Imaz) is commuta-
tive, associative, idempotent, monotonic, has (wy,
wi) (resp. (wo, wp)) as a neutral element, and
(wo, wo) (resp. (wg, wg)) as an absorbing element.
These properties make it legitimate to use Imin and
Imaz as conjunction and disjunction operators re-
spectively (in the spirit of triangular norms and co-
norms).

Notice that Formula (4) can also be written:

' ={(u m)/t | (n, )
= lmin((NC(t)a nW(t))a (ﬂr(t)’ nr(t»)}
) =

since r is a base relation (where ., (t) = 0, (¢

V).

Note that relying on a lexicographic approach would
make the approach questionable for queries involv-
ing a continuous attribute scale. Indeed, if one uses
all of [0, 1], the following holds: Ve, (a, a) >jcy
(@, 0) >z (@ — €, a — €), however small € is. This
might sound counterintuitive to a user. It makes less
problems if [0, 1] is replaced by a small set of quali-
tative levels, and this is why we introduced the scale
L. See for instance [10] on qualitative vs. quantita-
tive scales.

(5)

Wk,

Remark 1. Even though the pairs of degrees we
use resemble those handled in Atanassov’s intuition-
istic fuzzy sets, this resemblance is both natural and
fallacious. On the one hand, Atanassov starts with
genuine bipolar pairs (p, n) = (positive, negative)
but interprets them as representing partially known
membership grades p < pu < 1 — n, better cap-
tured by interval-valued fuzzy sets [11]. We rather
use pairs (I, u) = (wishes, constraints) where
Il < u, that in the literature are interpreted as
uncertainty intervals, but that we interpret as ex-
pressing bipolarity. We could use instead pairs
(p, n) = (wishes, rejections) = (I, 1 —u). In any
case, the query is bipolar because the user expresses
what he rejects (via constraints) and what he prefers
(“I would like this but certainly not that”). More-
over, the bipolar semantics we consider leads us to a
very different calculus from the one Atanassov advo-
cates, more in line with his positive/negative start-
ing point, while his calculus is not faithful to his
original bipolar semantics, see [15].

2.2. Graded inclusion based on a fuzzy
implication

A usual definition of the inclusion of A in B relies
on the expression:

(ACB)& (VeeX,(reA) = (xeB) (6)

which shows the tight relationship between inclu-
sion and implication. This definition can also be
written in terms of a constraint on the characteris-
tic functions of A and B as:

(ACB)& (Vx e X, falz) < fp(x). (7)

This latter expression extends in a canonical way to
two fuzzy sets F and F' by:

(ECF)e (VreX, pe(x) <pr(z), (8)

which is often called “inclusion in the sense of
Zadeh”.

The major drawback of such definitions resides in
the fact that a negative answer is obtained when the
inclusion of E in F' (regular or fuzzy sets) is “obvi-
ously” violated, but also when it almost holds. More
generally, this phenomenon may be interpreted as
the inability to distinguish between quite different
situations, which is obviated using a graded inclu-
sion.

Example 1. The fuzzy sets Eq = {1/a, 1/b} and
E; = {0.5/a, 0.7/b} are not included in the fuzzy
set I' = {0.4/a, 0.7/b} using Formula (8). However,
intuition may lead to consider that it is definitely
more obvious for Fy than for Ey which is “almost
included” in F.o

Devising an inclusion whose result is a degree in
[0, 1] allows for a finer accounting than with an
“all or nothing” view. The logical interpretation
of graded inclusion [2] is based on the following ex-
tension of Formula (6) to fuzzy sets:

deg(ECF)= Inén)l( (ne(z) =5 pr(z))  (9)

— ¢ being a fuzzy implication.

It turns out that the nature of the inclusion ob-
tained differs depending on the type of fuzzy impli-
cation used in Formula (9). In particular, if F is
included in F according to Zadeh (8), the degree of
inclusion is 1 for any R-implication (or its contrapo-
sition), but it is less than 1 when an S-implication
is used. For instance, with Kleene-Dienes’ or Re-
ichenbach’s implication, degree 1 is obtained iff the
support of E is included in the core of F'.

Example 2. Let us consider the following fuzzy
sets:

By = {0.4/a, 0.3/b},
Ey ={1/a, 0.9/c},
F={1/a, 0.8/c}.



According to Formula (9), for i = 1 or 2, we have:

deg(E; C F) = min(ug, (a) = pr(a),
HE; (b )_>f MF( )7
e, (c) =5 pr(c)),

which, for Kleene-Dienes’ implication leads to:

deg(E1 C F) =
min(04 -k 1, 0.3 2, 0, 0 >k 0.8) = 0.7,

deg(E, C F)
“min(l g 1, 0 =% 0, 0.9 =g 0.8) = 0.8,

while using Godel’s implication, one gets:

deg(E1 CF) =
min(04 —¢ 1, 0.3 - 0, 0 = 0.8) =0,

deg(B C F)
=min(l —-¢ 1, 0 =¢ 0, 0.9 —»¢ 0.8) = 0.8.¢

3. Graded inclusion of bipolar fuzzy
relations

We start with Formula (9) and extend it to the case
where the arguments of the fuzzy implication are
pairs of degrees (u, 7).

deg(E C F) = lming ¢ x ((pe(x), ne(x))

p (ure), mp(@)) Y

—pf being a “bipolar fuzzy implication”, i.e., a
fuzzy implication extended to the case where its
arguments are pairs of degrees. Notice that the
choice is limited since the underlying fuzzy implica-
tion must work with a qualitative scale. One can use
the two extended fuzzy implications —pc and —px
which are the counterparts of Godel and Kleene-
Dienes fuzzy implications respectively:

(11, m) —va (2, 72)

) (s wi) 3 (1, m) Siea (p2, 1m2), (11)
(2, m2) otherwise.

(1, m) —or (p2, 12)

= Imax(—(p1, m), (p2, 172))- (12

Formula (12) raises the question of the interpreta-
tion of the negation (=) of a bipolar condition. Sev-
eral definitions have been proposed, cf. [6, 18, 7].
Let us consider for instance the definition from [18],
which is recalled hereafter.

In [18], the negation of the fuzzy bipolar condi-
tion (C, W) — meaning “C and if possible W” —
is defined as a new type of fuzzy bipolar condition
denoted by [-C, =W] where [E, F| means “E or
else F”. In this case, the positive pole E specifies
perfect values and the negative pole F' specifies ac-
ceptable ones (any element that does not satisfy F is
discarded). Reciprocally, the negation of the fuzzy
bipolar condition [E, F] is the fuzzy bipolar condi-
tion (=E, —F).

With this definition of the negation, Formula (12)
becomes:

(p1,m) —or (p2, 12)

= Imaz((rev(uy), rev(n)), (12, n2)). 13)

The following example compares the results pro-
duced by Formula (10) when —y is = as defined
in Formula (11) or —,k as defined in Formula (12).

Example 3. Let us consider a qualitative scale
made of 7 levels (k = 6):

wo <wp <...<ws5 < wg

and the following bipolar fuzzy relations:

El = {(W3a w3)/a'a ((Ug, WO)/b}’
E2 = {(wﬁa UJ3)/(1, (CU3, LUQ)/C},
F = {(ws, w2)/a, (w5, wa)/c}.

According to Formula (10), for i = 1 or 2, we have:

deg(E; C IF')
= Imin((pg,(a), ne,(a)) —=vr (pr(a), nr(a)),
(15, (b), M5, (b)) —op (1r (D), nr (b)),
(1, (c); nE.(c)) —vr (1r(c), nr(c))),

which, using the extension of Gdédel’ implication
(Formula (11)) leads to:

deg(E1 C F) = Imin((ws, w3) —pa (ws, wa),
(w27 wo) —ba (wo, wo),
(wo, wo) =be (wWs, wa))

= Imin((ws, w2), (wo, wo), (we, we)) = (wo, wo),
(

deg(EZ g F) w3, )

= Imin((ws, w3) —pe
(wo, wo) —*ba (wWo, wo))
(w3, w2) =pa (wWs, wa))
= Imin((ws, w2), (ws, ws), (Wg, we))

= (w37 w2)7

while using the extension of Kleene-Dienes’ impli-
cation (Formula (13)), one gets:

deg(Ey C F) = Imin((ws, ws) =i (w3, wa),
(w2, wo) —pr (wo, wo)

(wo, wo) —prc (W5, wa))

= Imin(Ilmaz((rev(ws), rev(ws)), (ws, wa)),
Imaz((rev(ws), rev(wo)), (wo, wo))
Imax((rev(w), rev(wo)), (ws, wa)))

= Imin((ws, w3z), (w4, ws), (Wg, we))

= (w3, w3),

deg(Ey C F) = Imin((wes, w3) =k (ws, wa),
(wo, wo) —bk (Wo, wo))
(w3, w2) —pK (W5, wa))
= Imin(lmazx((rev(we), rev(ws)), (ws, wa)),
Imaz((rev(wg), rev(wo)), (wo, wo))
Imaz((rev(ws), rev(ws)), (ws, wa)))
= Imin((ws, wa), (we, we), (W5, wa))
= (W37 UJQ) <

As in the fuzzy unipolar case, the differences be-
tween the results obtained with Godel and Kleene-
Dienes implications come from the fact that in the



first case, the left-hand side acts as a threshold (be-
havior of an R-implication) whereas it expresses im-
portance in the second case.

Anyway, one may wonder whether Formula (10)
is the most suitable, considering the fact that the
interpretation of its result, i.e. a pair of degrees
(1, m), is somewhat at odds with the interpretation
of the pairs of degrees associated with the elements
in the relations handled. Indeed, in these relations,
a pair of degrees reflects the satisfaction of a bipolar
event according to the semantics “and if possible” —
or “or else” in case of a negated bipolar condition
—, which is not the case here (the event that is
assessed, i.e. the inclusion of E in F', is not bipolar,
only the arguments are).

A solution to this semantic issue is to view the
inclusion of bipolar relations as an event that is
bipolar itself. A possible choice is to consider the
event “the desirable elements of F are included in
the acceptable elements of F' (constraint), and even
better, the acceptable elements of E are included in
the desirable elements of F' (wish)”. In this state-
ment “acceptable” refers to the satisfaction of the
constraint (degree u) underlying the bipolar rela-
tion whereas “desirable” refers to the satisfaction of
the wish (degree n). This leads to defining:

deg(E C F) = (p1, m) (14)

where

w1 = deg(desirable(E) C acceptable(F))

= min ng(z) —¢ pr(z)

(15)

and

m = deg(acceptable(E) C desirable(F))

— i (16)
= min up(z) = nr(@).
Notice that Formula (14) corresponds to a rather
lax view of bipolar inclusion inasmuch as p; may
be equal to wg even when many elements that
are totally in acceptable(E) are completely outside
acceptable(F). An alternative definition of bipolar
inclusion could be based on the bipolar event “the
acceptable elements of E are included in the accept-
able elements of F' (constraint), and even better, the
desirable elements of E are included in the desirable
elements of F' (wish)”. But then, the wish would
not constitute a refinement (strengthening) of the
constraint as it is the case with Formula (14). On
the other hand, a more satisfactory alternative is
to consider the bipolar event “the acceptable ele-
ments of E are included in the acceptable elements
of F (constraint), and even better, the acceptable
elements of E are included in the desirable elements
of F' (wish)”. This leads to the alternative definition
(where ng does not play any role anymore):

deg(E C F) = (p2, m) (17)

where
wa = deg(acceptable(E) C acceptable(F))

= min ug(z) = pr(@)

(18)

and 7, is defined as in Formula (16) above.

Example 4. Let us consider again the fuzzy bipolar
relations from Example 3, as well as a qualitative
scale made of 7 levels. Let us now use Formula
(14) to assess the inclusion £ C F. With Godel’s
implication, we get for Fy:

H1 = min(wg —G W3, Wy =G Wo, Wo — G w5)
= min(wg, wg, W) = We.

m = min(ws =g wa, W =g Wo, Wo =G Wa)
= min(ws, wg, we) = wo.

Thus: deg(Ey Cg F) = (ws, wo)-
With Kleene-Dienes’ implication, we get:

w1 = min(ws =K ws, Wy — K Wo, Wo —K Ws)
= min(ws, wg, we) = ws.

m = min(w;), — K W2, W2 — K Wy, Wo —K OJ4)
= min(ws, wy, wg) = ws.

Thus: deg(E; Ck F) = (ws, w3).
Similarly, for Es, we get:

deg(Ey Cg F) = (wg, wa) and
deg(Ey Cx F) = (w3, wa).

Using Formula (17), we get for Ej:

deg(Ey Cg F) = (wo, wo) and
deg(E1 Ck F) = (UJg, UJ3).

and for Es:

deg(E2 Co F) = (w3, wa) and
deg(E2 Ck F) = (w37 wg).O

4. Properties

Several researchers axiomatized the graded inclu-
sion of fuzzy sets. Sinha and Dougherty [19], in
particular, defined the following set of axioms. Let
X be a universe and F(X) the class of the fuzzy
sets defined over X.

e (S1) Inc(A, B) =1« A C B in Zadeh’s sense;

e (S2) Inc(A,B) = 0 & 3z € X such that
A(z) =1 and B(z) = 0;

e (S3) Inc has increasing second partial map-
ping: B C C = Inc(A, B) < Inc(A, C);

e (S4) Inc has decreasing first partial mapping:
B C C = Inc(C, A) < Inc(B, A);

e (S5) Inc(A, B) = Inc(S(A), S(B)) where S is
a F(X) — F(X) mapping defined by: Vz €
X, S(A)(x) = A(s(z)), s denoting an X — X
mapping.

e (S6) Inc(A, B) = Inc(B, AY) where A€
(resp. BY) denotes the complement of A (resp.
B) in the universe X;

e (S7) Inc(AU B,C) = min(Inc(A, C), Inc(B,
(') where U is interpreted by max;



e (S8) Inc(A, BNC) = min(Inc(A, B), Inc(A,
C')) where N is interpreted by min.

Independently of Sinha and Dougherty, Kitainik
[17] developed an axiomatic approach to the treat-
ment of fuzzy inclusion indicators. Kitainik’s re-
quirements are given hereafter:

e (K1) Inc(A, B) = Inc(B®, A%);

o (K2) Inc(A, BN C) = min (Inc(A, B), Inc(A,
C));

e (K3) Inc(A, B) = Inc(S(A), S(B)) where S is
defined as in S5 above;

e (K4) When applied to crisp sets, Inc coincides
with crisp set inclusion.

Fodor and Yager [16] showed that the admissible
(in the sense of Kitainik’s requirements) inclusion
indicators belong to the Bandler-Kohout class [2]
(i.e., the inclusion indicators defined by Formula
(9) above) and are based on a contrapositive fuzzy
implication, i.e., a fuzzy implication F such that
F(z, y) = F(Np(y), Np(z)) Vz, y € [0, 1], with
Ny the induced negator of F' defined as Np(z) =
F(z, 0) Vz € [0, 1]. Kitainik proved that in the
Sinha-Dougherty axiom list, Axioms S3, S4 and S7
are a direct consequence of Axioms S1, S2, S5, S6
and S8. On the other hand, Cornelis et al. [9]
pointed out that the inclusion indicators which sat-
isfy the axioms proposed by Sinha-Dougherty are a
subclass of those satisfying Kitainik’s requirements.
Let us now check whether Kitainik’s axioms remain
valid in the context of bipolar fuzzy relations, i.e.,
when Formula (14) is used.

o (K1) deg(A C B) = deg(B® C A%) does not
hold with the definition of the negation from

[18]. For this axiom to be valid, one would
have to have:

na(z) = ppp(r) =
rev(np(z)) =y rev(pa(z))
pa(x) —=np() =
rev(pp(z)) —¢ rev(na(x)),
which is not true in general.
e (K2') The property:
deg(ACBNC) =
Imin(deg(A C B), deg(A C ()
holds due to the definition of Imin and the
monotonicity of fuzzy implications. The com-

plete proof is omitted due to space limit but its
crux is that VMAa NA, KB, 1B, KCs TC*

(na = tmin((us, nB), (nes o)),
pa — min((ps, n8), (1e, nc))m))
= Imin((na — pp, fa — np),
(na = pe, pa = nc))
where [p] (resp. [n]) denotes the projection of a

pair of degrees on its first (resp. second) com-
ponent.

o (K3') deg(A C B) = deg(S(A), S(B)) where
S is defined as in Axiom S5: straightforwardly
holds;

e (K4’) When applied to crisp sets, deg(A C B)
coincides with crisp set inclusion: holds since
i) in that case, pua(z) = na(z) and pp(z) =
np(z) Yz, and ii) fuzzy implications coincide
with the classical (Boolean) implication when
their arguments are Boolean.

Notice that the only axiom that does not hold,
namely the contrapositivy axiom (K1), is very con-
straining — even in the unipolar case — since it dis-
misses all the fuzzy implications that are not contra-
positive (which is the case of most R-implications,
in particular). We do not think that this axiom
should be considered mandatory in the database
framework, considering that the complementation
operation never intervenes at a query level in such
a context.

Remark 2. The same three axioms are preserved
if Formula (17) is used instead of Formula (14).

5. Application to database querying

The general framework is that of bipolar fuzzy rela-
tions, i.e., relations where each tuple ¢ is associated
with two degrees p(t) and n(t) in £ expressing the
extent to which the tuple satisfies the constraint
(resp. wish) that has been used to produce the re-
lation (cf. Subsection 2.1).

A typical example of database queries involv-
ing an inclusion, dealt with hereafter, is division
queries.

5.1. Reminder about the division

We assume that the dividend relation r has the
schema (X, A), while that of the divisor relation
s is (B) where A and B are compatible sets of at-
tributes. The division of relation r by relation s
may be defined as follows:

rf[A+ Bls={x € nx(r)|s C Qx)} (19)

where 7x (r) denotes the projection of r over X and
Q(z) ={a| (z, a) € r}. In other words, an element
x belongs to the result of the division of r by s iff
it is associated in r with at least all the values a
appearing in s.

Example 5. Let us consider a database involving
the two relations order (o) and product (p) with
respective schemas O(np, store, qty) and P(np,
price). Tuples (n, s, q) of o and (n, pr) of p
state that product n has been ordered from store
s in quantity ¢ and that its price is pr. Retrieving
the stores which have been ordered all the products
priced under $127 in a quantity greater than 35, can
be expressed thanks to a division as:

0435 [ND <+ Np] Pur27



where relation o435 corresponds to pairs (s, n) such
that product n has been ordered from store s in a
quantity over 35 and relation p,127 gathers products
whose price is under $127. With the extensions of
relations 0435 and py127 given hereafter:

0g35 = {(832, P15), (832, D12), <5327 P34>, (532, D26)s
<S77 1012), (87, p26>7 <819» P15>, (819, P12>7 <8197 Pza)}

putzr = {(p15), (P12), (P26)}
the division returns {(ss2), (s19)}.¢

When the relations involved are fuzzy (i.e. contain
graded tuples), Equation (19) may be interpreted
as follows [8]:

fr(a+B)s(T) =
inf ws(a) =5 pur(x, a)

a€support(s)

(20)

where — ¢ denotes a fuzzy implication.

Example 6. Let us consider again the relations
from Example 5, a scale £ such that k£ = 7, and two
fuzzy conditions “quantity is around 30” and “price
is around $100” applied on O and P respectively,
leading to two fuzzy relations 0,39 and pa100 Whose
extensions are given hereafter:

0430 = {wa/(s32, p11), w7/ (832, P17), W5/ (832, P29),
we/(s7, P11), ws/(87, P20), wr/(s19, P11), W2/ (519,
p17), we/(S19, Pa2)}

Paloo = {w7/<p11>, w6/<p17>7 w5/<p29>}.
The division of 0430 by pa100 based on Godel’s im-

plication returns {wy/(s32), wa/(s19)}.¢

5.2. Division of bipolar fuzzy relations

Let us now consider the case where r and s may be
bipolar fuzzy relations. Starting with Formula (19),
we define:

(N7‘[A+B]s(x)7 777'[A+B]s(x)) = deg(s - Q(:L')) (21)

where deg(s C Q(x)) is interpreted according to
Formula (14).

Let us denote by birel the operation — which is
not part of the query language itself — that builds
a bipolar fuzzy relation from two consistent (in the
sense of weak consistency) regular fuzzy relations:

birel(r, s) =
{(, M)/t |t € support(r) A pr(t) = A
t € support(s) A us(t) =n} (22)
U{(, 0)/t |t € support(r) A p,(t) = u A
t & support(s)}.
where p,.(t) (resp. ps(t)) denotes the membership
degree associated with tuple ¢ in the regular fuzzy

relation 7 (resp. s). The definition of the division
of bipolar fuzzy relations can be rewritten as:

r[A+Bls = birel(r¢[A+B|sw, rw[A+Blsc) (23)

where relc (resp. rely ) denotes the fuzzy relation
obtained by keeping only the degrees u (resp. 1) at-
tached to the tuples from the bipolar fuzzy relation
rel.

In practice, it is likely that either the divisor or
the dividend will be bipolar but not both since the
meaning of the query then becomes rather complex.
Anyway, Formula (14) makes it possible to deal with
the general case where both are.

Example 7. Let us consider again the relations O
and P from Example 5. Let us now assume that a
bipolar relation Oy is built from O using the bipolar
condition:

(Co: qty is higher_than_10,
Wo: qty is higher_than_15)

where higher_than_10 and higher_than_15 are as-
sumed to be fuzzy predicates. An example of a divi-
sion query involving a bipolar dividend is: “find the
stores from which at least 10 occurrences of each
product have been ordered, and if possible at least
15 occurrences of each product. Here, the bipolar
fuzzy dividend is O, whereas the divisor is P.

Now assume that a bipolar relation P, is built
from P using the bipolar condition:

(Cp: price is less_than_200,
Wp: price is less_than_150)

where less_than_200 and less_than_150 are fuzzy
predicates. An example of a division query involv-
ing a bipolar divisor is: “find the stores from which
all of the products priced less than $200 have been
ordered, and if possible all of those priced less than
$150”. In this case, the unipolar dividend is O
whereas the fuzzy bipolar divisor is P;.¢

Let us mention that an alternative semantics for the
bipolar division of unipolar fuzzy relations is studied
in [5], where bipolarity is conveyed by a stratified
divisor.

Remark 3. Considering the definition given above,
processing a division r[A =+ Bls of two bipolar
fuzzy relations r and s comes down to processing
two divisions of non-bipolar fuzzy relations, namely
ro[A+Blsw and rw [A=+ B]sc — cf. Equation (23).
Since it has been proven that the result of the di-
vision of two fuzzy relations is a quotient provided
that the conjunction operator used for the Carte-
sian product is appropriately chosen [8], the result
of a division of bipolar fuzzy relations can be char-
acterized as a twofold quotient. However, when the
implication used is an S-implication, the quotient
property can be guaranteed only if the divisor is
normalized. In the context of bipolar relations, this
means that both s¢ and sy have to contain a tuple
whose associated degree equals 1.

Remark 4. Basically, the processing of a division
of bipolar fuzzy relations obeys the same principle
as in the unipolar case (see [4]). The only thing that
changes is that it is necessary to process two divi-
sions of unipolar fuzzy relations (cf. Formula (23))
instead of one, which means that the practical com-
plexity is multiplied by two, but the class of data
complexity stays the same.



6. Conclusion

In this paper, we have studied how the notion of
a graded inclusion could be extended to the case
where the sets involved result from the evaluation
of two bipolar fuzzy conditions on two regular sets.
After considering several possible interpretations of
such an extended inclusion, we focused on a view
that consists in seeing inclusion as a bipolar event
whose assessment is based on the inclusion of the
desirable (resp. acceptable) elements of a set in the
acceptable (resp. desirable) elements of the other.
We have then studied the properties of the corre-
sponding bipolar inclusion indicator, and showed
how it could be applied in a context of database
flexible querying.

Perspectives concern for instance implementation
issues, and we plan on integrating the bipolar inclu-
sion operator defined here into a fuzzy querying pro-
totype named PostgreSQLf that we have developed
over the open source RDBMS PostgreSQL. Another
objective is to investigate other types of application
(outside the database context) for this bipolar in-
clusion operator.
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