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Abstract

As an application of the dual equivalence between
the category of L-spatial C-objects and the category
of L-sober C-M-L-spaces, it is shown in this paper
that for a fixed augmented partially ordered set A,
there exists a dual equivalence between the cate-
gory of A-spatial augmented partially ordered sets
and the category of A-sober A-valued spaces. Then,
with regard to this duality, for a fixed (Z1, Z2)-
complete partially ordered set L, we establish a
dual equivalence between the category of L-spatial
(Z1, Z2)-complete partially ordered sets and the
category of L-sober L-valued Q-spaces.

Keywords: Fuzzy topology, categorical fuzzy
topology, partially ordered set-valued space, aug-
mented partially ordered set, complete partially or-
dered set, subset system

1. Introduction

The famous adjunction Ω ⊣ Pt between the cat-
egory Top of topological spaces and the oppo-
site Loc of the category Frm of frames [16, 17,
19], known as Papert-Papert-Isbell adjunction [24],
and its various generalizations in fuzzy set theory
have received much attention during the last three
decades [2, 3, 4, 5, 14, 17, 20, 23, 24]. Also see [4, 24]
for many other references not included in this paper.
An abstract categorical analogue of Papert-Papert-
Isbell adjunction, replacing Loc with the opposite
Cop of an abstract category C, and Top with the
category C-M-L-Top of C-M-L-spaces, is formu-
lated to be the adjunction LΩM ⊣ LPtM : Cop →
C-M-L-Top in [5]. As a natural categorical gener-
alization of the famous equivalence between the full
subcategory of Loc of all spatial locales and the full
subcategory of Top of all sober topological spaces
[16, 17], the adjunction between C-M-L-Top and
Cop is also refined to a dual equivalence between
the full subcategory L-Spat-C of C of all L-spatial
objects and the full subcategory C-M-L-SobTop
of C-M-L-Top of all L-sober objects in [5].

Partially ordered set (poset for short) with the
additional information of certain specified joins and
meets has been a significant issue in order theory,
algebra, computer science and topology, see [4, 7, 8]
and the references therein. There are two main
approaches: The first one involves the notion of
augmented poset, proposed by Banaschewski and

Bruns [2], while the second one relies on the no-
tion of Z-complete poset [7]. Augmented posets
constitute a category P. The adjunction T ⊣ Ψ :
Pop →S between the category S of spaces and the
opposite Pop of P and is one of the central re-
sults of [2], and the dual equivalence between the
full subcategory SpaP of P of all spatial objects
and the full subcategory SobS of S of all sober
objects is another one. The second approach uses
the notion of subset selection [6, 7], that is, a rule
Z assigning to each partially ordered set (poset for
short) P a subset Z(P ) of the power set P(P ) of
P , and is extended to the framework of (Z1, Z2)-
complete posets in [4]. Here the subset selection
generalizes the notion of subset system [6], origi-
nally introduced by Wright et. al. [25]. For a
quadruple Q = (Z1, Z2, Z3, Z4) of subset systems
Z1, Z2, Z3 and Z4, (Z1, Z2)-complete posets and
(Z3, Z4)-continuous functions form a category QP
[4]. Q-spaces and their category QS have been in-
troduced in [4] as a topological counterpart of QP.
Furthermore, by establishing two full embeddings
GQ : QP→P and HQ : QS →S, it is demon-
strated in [4] that the first approach is category-
theoretically more general approach than the sec-
ond one, while the latter yields feasible results in
applications. Despite the fact that both approaches
provide useful and powerful tools to unify various
kinds of generalized topological spaces under the
same framework, they are inadequate to handle the
problems related with the poset-valued extensions
of such generalized topological spaces resulting from
the essence of fuzzy set theory. To overcome this
shortcoming, we introduce poset-valued spaces and
poset-valued Q-spaces, and extend all central re-
sults of [2, 4] to the present approach. More specif-
ically, referring to a fixed augmented poset A and a
fixed (Z1, Z2)-complete poset L, we extend S and
QS to the category A-S of A-valued spaces and the
category L-QS of L-valued Q-spaces, respectively.
Then, we apply the adjunction LΩM ⊣ LPtM to
augmented posets and A-valued spaces, and obtain
the adjunction AT ⊣ AΨ : Pop → A-S as a gener-
alization of T ⊣ Ψ : Pop →S in Theorem 16. The
dual equivalence between the full subcategory of P
of all A-spatial augmented posets and the full sub-
category of A-S of all A-sober A-spaces is proven
to be an instance of the equivalence between (L-
Spat-C)op and C-M-L-SobTop in Corollary 18,
and extends the equivalence between SpaPop and
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SobS.
The main result of [4] ([4, Theorem 2]) is re-

formulated for L-valued Q-spaces in Theorem 31
consisting of two adjunctions between L-QS and
the opposite of the full subcategory L-QPs of QP
of all L-Q-spatial objects, L-(Z1, Z2, Z1, Z2)S and
the opposite of (Z1, Z2, Z1, Z2)P and a dual equiv-
alence between L-QPs and the full subcategory of
L-QS of all L-Q-sober objects. In order to show
the usefulness of the presented results, we give their
direct applications to some familiar order-theoretic
categories in Corollary 32.

2. Categorical fixed-basis fuzzy topological
spaces and their duality

2.1. The category-theoretic fixed-basis
fuzzy topological spaces

To introduce fixed-basis fuzzy topological spaces in
an abstract category C and their category, we be-
gin with necessary category-theoretic preliminaries,
and refer to [1, 13, 18] for all other notions, nota-
tions and facts from category theory. First of all,
we assume C as an abstract category with prod-
ucts, and fix a C-object L and a class M of C-
monomorphisms. Whenever further assumptions on
C, L and M are necessary, they will be clearly men-
tioned. Given a set X, an X-th power of L is a
C-object LX such that

(
LX πx→ Lx

)
x∈X

is a prod-
uct where Lx = L for each x ∈ X. Each func-
tion f : X → Y determines a unique C-morphism
f←L : LY → LX (the so-called backward C-L-
powerset operator of f) such that the triangle

LY f←L−→ LX

↘
πf(x)

↓ πx

L

commutes for all x ∈ X. The notion of backward C-
L-powerset operator is a category-theoretic general-
ization of the L-powerset operator which has been
extensively used in fuzzy (lattice-valued) mathe-
matics [20, 21, 22, 23].

Proposition 1. Let C be a construct (i.e. a con-
crete category over the category Set of sets and
functions with the forgetful functor | |: C → Set)
with the property that for each set X and x ∈ X,∣∣LX

∣∣ = |L|X and |πx| is the x-th projection map of
|L|X . Then, for any function f : X → Y , the un-
derlying function of f←L : LY → LX is given by the
map f←|L| : |L|Y → |L|X , µ 7→ f←|L|(µ) = µ ◦ f .

Note that all constructs C in Example 3 below
satisfy the hypothesis of Proposition 1. For the par-
ticular case C = Set and L = 2, f←2 : 2Y → 2X

corresponds to the traditional backward (preimage)
powerset operator f← : P(Y ) → P(X) in the usual
sense [21], where P(X) stands for the powerset of

X. However, neither the traditional forward (im-
age) powerset operator f→ : P(X) → P(Y ) nor its
lattice-valued generalizations in [20, 21, 22] have a
category-theoretic counterpart in C.

Definition 2. [5] C-M-L-Top is a category
whose objects (the so-called C-M-L-spaces) are
pairs

(
X, τ

m→ LX
)

, consisting of a set X and

an M-morphism τ
m→ LX , and whose morphisms(

X, τ
m1→ LX

)
f→

(
Y, ν

m2→ LY
)

(the so-called C-
M-L-continuous maps) are functions f : X → Y
such that there exists a (necessarily unique) C-
morphism rf : ν → τ making the diagram

LY f←L−→ LX

m2 ↑ ↑ m1

ν
rf−→ τ

commutative.

C-M-L-Top unifies most of the category-
theoretic approaches to the fixed-basis fuzzy topo-
logical spaces. To show its value and usefulness, we
gathered some familiar cases of C-M-L-Top in the
following example.

Example 3. Along this example, C is assumed be
a construct, while MC always denotes the class of
all C-morphisms m : A → B such that |A| ⊆ |B|
and |m| : |A| ↪→ |B| is the inclusion map.

(i) For C chosen as the category CGR of com-
plete groupoids in [14], C-MC-L-Top is isomor-
phic to the category L-TOP of L-valued topological
spaces in [14].

(ii) For C chosen as the category CQML of
complete quasi-monoidal lattices in [15], C-MC-L-
Top is isomorphic to the category L-TOP of L-
topological spaces in [15].

(iii) For C chosen as the category SQuant of
semi-quantales in [22], C-MC-L-Top is isomor-
phic to the category L-QTop of L-quasi-topological
spaces in [22].

(iv) For C chosen as the category USQuant
of unital semi-quantales in [22], C-MC-L-Top is
isomorphic to the category L-Top of L-topological
spaces in [22].

(v) For C chosen as a variety VR (i.e. a full
subcategory of the category Alg(Ω) of Ω-algebras
and Ω-homomorphisms closed under the formation
of products, subalgebras and homomorphic images
[23]), C-MC-L-Top is isomorphic to the category
L-Top of L-topological spaces in [23]. In particu-
lar, if C is taken as the variety SFrm [22] of semi-
frames or the variety Frm [17] of frames, then C-
MC-2-Top is isomorphic to the category Top of
topological spaces in the usual sense.

2.2. An adjunction between C-M-L-Top
and Cop

C is called an essentially (E , M)-structured cate-
gory iff (E , M) is a pair of C-morphisms classes
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satisfying the following conditions [5]:

• C has (E , M)-factorizations, i.e. each C-
morphism f has an (E , M)-factorization pair
(e, m), i.e. f = m ◦ e with e ∈ E and m ∈ M.

• C has the unique (E , M)-diagonalization prop-
erty, i.e. for any e ∈ E , m ∈ M and f, g ∈
Mor(C) such that g ◦ e = m ◦ f , there exists
a unique C-morphism d fulfilling d ◦ e = f and
m ◦ d = g.

The only difference between an essentially
(E , M)-structured category and an (E , M)-
structured category in [1, 13] is the lack of the
closedness of both E and M under the composition
with isomorphisms in the former. If we recon-
sider Example 3, then for the class Surj(C) of
C-morphisms with surjective underlying functions,
all constructs C in Example 3 are essentially
(Surj(C), MC)-structured. But, since MC is not
closed under the composition with isomorphisms,
non of them are (Surj(C), MC)-structured!

Let us recall that an adjoint situation (η, ε) : F ⊣
G : A → B is a pair of functors G : A → B and
F : B → A with the unit idB

η→ G ◦ F and co-unit
F ◦ G

ε→ idA satisfying the adjunction identities:
G(εA) ◦ ηG(A) = idG(A) and εF (B) ◦ F (ηB) = idF (B)
for all A in A and B in B. F is left adjoint to G,
F ⊣ G in symbols, iff (η, ε) : F ⊣ G : A → B is an
adjoint situation for some η and ε. Two categories
A and B are equivalent, A∼B in symbols, iff there
exists an adjoint situation (η, ε) : F ⊣ G : A → B
with natural isomorphisms η and ε. Furthermore,
we use the notation A=̃B whenever A and B are
isomorphic categories.

Proposition 4. [5] The class-theoretic function
LΩM : C-M-L-Top→ Cop, defined by

LΩM
((

X, τ
m1→ LX

)
f→

(
Y, ν

m2→ LY
))

= τ
rop

f→ ν,

is a functor.

Each C-object A determines a unique C-
morphism ⟨A⟩ : A → LC(A,L) satisfying the prop-
erty that A

h→ L = A
⟨A⟩→ LC(A,L) πh→ L for each

h ∈C(A, L), where C(A, L) denotes the hom-set
from A to L. In the rest of this section, we as-
sume that C is essentially (E , M)-structured, and
fix an (E , M)-factorization A

eA→ τA
mA→ LC(A,L) of

⟨A⟩ : A → LC(A,L) for each C-object A.

Proposition 5. [5] The class-theoretic function
LPtM : Cop → C-M-L-Top, defined by

LPtM (A) =
(

C (A, L) , τA
mA→ LC(A,L)

)
and

LPtM (g) (u) = u ◦ gop

for each A ∈ Ob(C), A1
g→ A2 ∈ Mor(Cop) and

u ∈ C (A1, L), is a functor.

Proposition 6. [5] (i) For each C-M-L-Top-
object W =

(
X, τ

m→ LX
)

, the map ηW : X →
C (τ, L), defined by ηW (x) = πx ◦ m, is a C-M-
L-Top-morphism W

ηW→ LPtM (LΩM (W )).
(ii) For each C-object A, the arrow εA = eop

A :
τA → A is a Cop-morphism LΩM (LPtM (A)) →
A.

Theorem 7. [5] Let η = (ηW )W∈Ob(C-M-L-Top)
and ε = (εA)A∈Ob(C). Then (η, ε) : LΩM ⊣ LPtM :
Cop → C-M-L-Top.

Definition 8. (i) A C-object A is L-spatial iff
for some (E , M)-factorization pair (e, m) of A

⟨A⟩→
LC(A,L), e is an isomorphism in C.

(ii) A C-M-L-Top-object W =
(

X, τ
m→ LX

)
is

L-sober iff for all h ∈ C(τ, L), there exists a unique
x ∈ X such that h = πx ◦ m.

Proposition 9. [5] (i) A C-object A is L-spatial
iff εop

A is an isomorphism in C.
(ii) A C-M-L-Top-object W is L-sober iff ηW is

an isomorphism in C-M-L-Top.

Corollary 10. [5] The full subcategory L-Spat-C
of C of all L-spatial objects is dually equivalent to
the full subcategory C-M-L-SobTop of C-M-L-
Top of all L-sober objects, i.e. (L-Spat-C)op ∼
C-M-L-SobTop.

3. Applications to augmented posets

3.1. Category of augmented posets

An augmented poset is a triple A = (|A| , JA,MA),
consisting of a poset |A|, a subset JA of P(|A|)
in which each member has the join in |A| and a
subset MA of P(|A|) in which each member has
the meet in |A|. Augmented posets together with
structure preserving maps constitute a category P
[2]. A structure preserving map h : A → B here
means a monotone map h : |A| → |B| such that
h (S) ∈ JB and h (

∨
S) =

∨
h (S) for all S ∈ JA,

and h (R) ∈ MB and h (
∧

R) =
∧

h (R) for all
R ∈ MA [2]. P has products. In particular, for
each set X and an augmented poset A, the X-th
power of A is the augmented poset AX such that∣∣AX

∣∣ = |A|X , JAX is the set of subsets S ⊆ |A|X
with the property that πx(S) ∈ JA for all x ∈ X,
and analogously for MAX . Due to the terminology
of Goguen [12], the elements of |A|X are called |A|-
sets, generalizing the fuzzy sets [26] to the case that
the truth-value structure is an augmented poset.

3.2. Category of poset-valued spaces and its
duality

W = (|W | ,O(W ), Σ(W ), ∆(W )) is called a space
if |W | is a set, O(W ) is a subset of P (|W |),
Σ(W ) is a subset of {U ⊆ O(W ) |

∪
U ∈ O(W )} and

∆(W ) is a subset of {V ⊆ O(W ) |
∩

V ∈ O(W )}.

11



Spaces form a category S [2] whose morphisms
f : W1 → W2 are functions f : |W1| → |W2| satisfy-
ing the conditions that (f←)→ (O(W2)) ⊆ O(W1),
(f←)→ (U) ∈ Σ(W1) for each U ∈ Σ(W2), and
(f←)→ (V) ∈ ∆(W1) for each V ∈ ∆(W2).

In the following considerations, we fix an aug-
mented poset A, and extend the category of spaces
to the category of A-valued spaces. Note first that
for a function f : |Z1| → |Z2|, by Proposition 1, the
backward A-powerset operator f←A : A|Z2| → A|Z1|

of f is given by f←A (µ) = µ ◦ f for each µ ∈ |A||Z2|.

Definition 11. The category A-S consists of the
following information: Objects are A-valued spaces
(A-spaces for short), i.e. quadruples Z =(|Z|,
OA(Z), ΣA(Z), ∆A(Z)), where |Z| is a set, OA(Z)
is a subset of |A||Z|, ΣA(Z) is a set of subsets
U ⊆ OA(Z) such that U ∈ JA|Z| and

∨
U ∈ OA(Z),

and ∆A(Z) is a set of subsets V ⊆ OA(Z) such that
V ∈ MA|Z| and

∧
V ∈ OA(Z), while morphisms

f : Z1 → Z2 are functions f : |Z1| → |Z2| fulfilling
the next properties: (f←A )→ (OA(Z2)) ⊆ OA(Z1),
(f←A )→ (U) ∈ ΣA(Z1) for each U ∈ ΣA(Z2), and
(f←A )→ (V) ∈ ∆A(Z1) for each V ∈ ∆A(Z2).

Remark 12. The category A-S can also be equiv-
alently defined by means of the category P of aug-
mented posets as follows.

(i) Let Z = (|Z| ,OA(Z), ΣA(Z), ∆A(Z)) be
an entity consisting of a set |Z|, a subset
OA(Z) of |A||Z|, subsets ΣA(Z) and ∆A(Z) of
P( |A||Z|). Then Z is an A-space iff AT (Z) =
(OA(Z), ΣA(Z), ∆A(Z)) is an augmented poset and
the inclusion map iAT (Z) : AT (Z) ↪→ A|Z| is a P-
morphism.

(ii) For two A-spaces Z1, Z2 and a map f :
|Z1| → |Z2|, f : Z1 → Z2 is an A-S-morphism
iff the restriction of the P-morphism f←A : A|Z2| →
A|Z1| to AT (Z2) yields a P-morphism (f←A )|AT (Z2)

:
AT (Z2) → AT (Z1).

We directly conclude from Remark 12:

Proposition 13. P-MP-A-Top =̃A-S.

Proposition 14. For 2P = (2, P (2) , P (2)), 2P-S
=̃ S.

Proof. Given a set X, U ⊆ P (X) and Φ ⊆
P(P (X)), let Uc denote the set of characteris-
tic functions χV : X → 2 of all V ∈ U, and
Φ∗ = {Uc | U ∈Φ}. Then, the functor F :S → 2P-S,
defined by F (W ) = (|W | ,O(W )c, Σ(W )∗, ∆(W )∗)
for each W ∈ Ob (S), and F (f) = f for each f ∈
Mor(S), is an isomorphism proving the claim.

Corollary 15. P-MP-2P-Top =̃ S.

Theorem 16. There exists an adjoint situation(
ηA, εA

)
: AT ⊣ AΨ : Pop → A-S.

Proof. Let us first show that P is essentially
(ExtrEpi, MP)-structured. Let h : U → V

be a P-morphism. If we define the augmented
poset Imh such that |Imh| is the set h→(U)
equipped with the partial order inherited from
V , JImh = {h→(S) | S ∈ JU} and MImh =
{h→(S) | S ∈ MU}, then the inclusion map iImh :
Imh ↪→ V is a P-morphism. It is not difficult to
see that the co-domain restriction of h to h→(U)
is an extremal epimorphism eh : U → Imh in P.
Thus, U

eh→ Imh
iImh
↪→ V is an (ExtrEpi, MP)-

factorization of h : U → V . This means that P
has (ExtrEpi, MP)-factorizations. On the other
hand, since P has pullbacks [2], and by virtue
of [13, 35.4 COROLLARY], P has the unique
(ExtrEpi, Mono)-diagonalization property. There-
fore, since MP ⊆ Mono, P has the unique
(ExtrEpi, MP)-diagonalization property. Hence,
P is essentially (ExtrEpi, MP)-structured. Then,
since the hypothesis of Theorem 7 is satisfied for
C =P, E = ExtrEpi and M = MP, the adjoint
situation in question follows from Theorem 7 and
Proposition 13.

By making use of the definitions of η, ε, LΩM
and LPtM, and by considering Proposition 13,
one can calculate ηA, εA, AT and AΨ, ex-
plicitly. The functor AT : A-S →Pop is given by

AT
(

Z1
f−→ Z1

)
= AT (Z1)

(f←A )op

|AT (Z2)−→ AT (Z2). To
clarify the functor AΨ : Pop → A-S, we first define,
for each augmented poset B, the A-space AΨ(B) by
|AΨ(B)| =P(B, A), OA(AΨ(B)) = {Ψa | a ∈ |B|},
ΣA(AΨ(B)) = {{Ψa | a ∈ S} | S ∈ JB} and
∆A(AΨ(B)) = {{Ψa | a ∈ S} | S ∈ MB}, where
Ψa : P(B, A) → |A| is a map defined by
Ψa(h) = h(a) for each a ∈ |B| and h ∈P(B, A).
Then, AΨ is given by

AΨ
(

B1
u−→ B2

)
= AΨ(B1) AΨ(u)−→ AΨ(B2),

where [AΨ(u)] (h) = h ◦ uop for all h ∈ |AΨ(B1)|.
Finally, for each A-space W and for each aug-
mented poset B, the W -th component of ηA is
the A-S-morphism ηA

W : W → AΨ(AT (W )), de-
fined by [ηW (x)] (h) = h(x) for all x ∈ |W | and
h ∈ |AT (W )|, whereas the B-th component of εA

is the opposite of the P-morphism
(
εA

B

)op : B →
AT (AΨ(B)), defined by

(
εA

B

)op (a) = Ψa for each
a ∈ |B|.

Definition 17. (i) An augmented poset B is A-
spatial iff

(
εA

B

)op is an isomorphism in P.
(ii) An A-space W is A-sober iff ηA

W is an iso-
morphism in A-S.

Corollary 18. Let A-SpaP be the full subcategory
of P of all A-spatial augmented posets, and A-SobS
be the full subcategory of A-S of all A-sober A-
spaces. Then, A-SpaPop ∼ A-SobS.

Proof. Since A-SpaP= A-Spat-P and A-SobS=̃
P-MP-A-SobTop, the required equivalence follows
from Corollary 10.
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Without going into detail, it is worth to men-
tion here that 2P-SpaP is the same as the full
subcategory SpaP of P of all spatial augmented
posets in [2], whereas 2P-SobS is isomorphic to the
full subcategory SobS of S of all sober spaces in
[2]. Thus, the dual equivalence between SpaP and
SobS proven in [2, Proposition 2] is an instance of
Corollary 18. We close this section with the final re-
mark that the co-domain of AT lies in A-SpaPop,
while the co-domain of AΨ lies in A-SobS.

4. Applications to (Z1, Z2)-complete posets

4.1. (Z1, Z2)-complete posets and their
category

A subset selection Z [6, 7] is, by definition, a class-
theoretic function sending each poset P to a set
Z (P ) of subsets of P whose elements are the so-
called Z-sets of P , and is called a subset system
[6, 25] if it satisfies the additional property that for
each monotone map f : P → Q, M ∈ Z (P ) implies
f (M) ∈ Z (Q). It is said that a subset selection
Z preserves surjectivity if for each surjective mono-
tone map f : P → Q and for each M ∈ Z (Q), there
exists at least one N ∈ Z (P ) such that M = f (N).
Throughout this paper, Z and Zi (i = 1, ..., 4) al-
ways stand for subset systems if further assumptions
are not made explicitly. In this paper, we consider
only the subset systems V, F , D, Cn, P, where V
(F , D, Cn, P)-sets of each poset P are no subset
(finite subsets, directed subsets, countable subsets
and all subsets, resp.) of P . Note that all of them
but D are surjectivity-preserving.

A poset P is called Z-
∨

(
∧

)-complete iff each
M ∈ Z (P ) has a join (meet) in P [4, 7, 25]. A
(Z1, Z2)-complete poset is defined to be a Z1-

∨
-

complete and Z2-
∧

-complete poset [4]. If we asso-
ciate two subset selections Zsup and Z inf to Z such
that M ∈ Zsup(inf)(P ) iff M ∈ Z(P ) with

∨
M

(
∧

M), then P is (Z1, Z2)-complete iff Z1(P ) =
Zsup

1 (P ) and Z2(P ) = Z inf
2 (P ).

A monotone function f : P → Q is Z-
∨

-
continuous iff for each M ∈ Zsup (P ),

∨
f (M) =

f (
∨

M), and is Z-
∧

-continuous iff for each
M ∈ Z inf (P ),

∧
f (M) = f (

∧
M). A Z1-∨

-continuous and Z2-
∧

-continuous function is
shortly called (Z1, Z2)-continuous function. For
Q = (Z1, Z2, Z3, Z4), (Z1, Z2)-complete posets and
(Z3, Z4)-continuous maps constitute a category QP
[4]. For the sake of shortness and for any occurrence
of Q = (Z1, Z2, Z1, Z2), Q will be replaced by the
pair (Z1, Z2) in this paper, e.g. (Z1, Z2, Z1, Z2)P
will be shortly written as (Z1, Z2)P. As is shown in
[4], most of the familiar order-theoretic constructs
can be expressed in the form of QP. Now we give
only some examples of QP that will be used sub-
sequently, and refer reader to [4] for many other
examples.

Example 19. For Q = (V, V, V, V) (Q =

(F , F , F , F), Q = (P, F , P, F), Q =(V, P,
V, P), Q = (F , P, F , P), Q = (D, P, D, P),
Q = (P, P, P, P), Q =(Cn, F , Cn, F), Q =
(D, F , D, F)), QP is known as the category Pos
of posets and monotone maps [1] (the category
Blatt of bounded lattices and maps preserving fi-
nite joins and and finite meets [2], the category
SUP∧ of complete lattices and maps preserving
arbitrary joins and finite meets [11], the category
MCPos of complete lattices and maps preserving
arbitrary meets [1], the category INF∨ of complete
lattices and maps preserving arbitrary meets and fi-
nite joins [4], the category INF↑ of complete lattices
and maps preserving arbitrary meets and directed
joins [11], the category CLat of complete lattices
and maps preserving arbitrary meets and arbitrary
joins [1], the category σComLat of σ-complete lat-
tices and maps preserving countable joins and fi-
nite meets [4], the category QF of quasiframes and
Scott-continuous functions preserving finite meets
[9], resp.).

Since the functor GQ : QP→P, defined by
GQ (P ) =

(
P, Zsup

3 (P ) , Z inf
4 (P )

)
and GQ(f) = f ,

is a full embedding [4], P forms a category larger
than QP. On the other hand, QP can be viewed as
the practically most realizable part of P.

4.2. Poset-valued Q-spaces

Definition 20. [4] The category QS consists of
the following data: Objects are Q-spaces (X, τ),
that is, X is a set and τ is a subset of P (X)
with the property that τ is a (Z1, Z2)-complete poset
ordered by set inclusion, and the inclusion map
iτ : τ ↪→ P (X) is (Z3, Z4)-continuous. Morphisms
f : (X, τ) → (Y, ν) are functions f : X → Y such
that (f←)→ (ν) ⊆ τ .

As a natural poset-valued extension of QS, we
now introduce, for an arbitrarily fixed (Z1, Z2)-
complete poset L, the category L-QS of L-Q-spaces,
and point out in this section that L-QS can be
fully embedded into GQ(L)-S. To present L-QS,
we should first note that by virtue of Proposition
1, each function f : X → Y gives rise to a QP-
morphism f←L : LY → LX , defined by f←L (µ) = µ◦f
for each µ ∈ LY .

Definition 21. The category L-QS comprises the
following items: Objects are L-valued Q-spaces
(X, τ), i.e. X is a set and τ is a subset of LX

such that τ is a (Z1, Z2)-complete poset equipped
with the order inherited from LX , and the inclusion
map iτ : τ ↪→ LX is (Z3, Z4)-continuous. Mor-
phisms f : (X, τ) → (Y, ν) are functions f : X → Y
such that (f←L )→ (ν) ⊆ τ .

In a similar way to Proposition 14, one can easily
observe that 2-QS is isomorphic to QS. The cat-
egory L-QS enables us to unify the poset-valued
extensions of the categories of various notions of
spaces:
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Example 22. (1) For a poset L and Q =
(V, V, V, V), L-QS, denoted by L-BS, is an exten-
sion of the category BS of base spaces, extensively
studied in [8].

(2) For a bounded lattice L (i.e. L is a lattice with
the top and bottom elements) and Q = (F , F , F , F),
L-QS, denoted by L-BlatBS, is an extension of the
full subcategory BlatBS of BS in [4].

(3) For a complete lattice L and Q =
(P, F , P, F), L-QS, denoted by L-Top, is an exten-
sion of the category Top of topological spaces [1],
and is also known as the category of L-topological
spaces [20].

(4) For a complete lattice L and Q = (V, P, V, P),
L-QS, denoted by L-CSp, is an extension of the
category CSp of closure spaces [10].

(5) For a complete lattice L and Q =
(F , P, F , P), L-QS, denoted by L-TCSp, is an ex-
tension of the category TCSp of topological closure
spaces [10].

(6) For a complete lattice L and Q =
(D, P, D, P), L-QS, denoted by L-ACSp, is an ex-
tension of the category ACSp of algebraic closure
spaces [10].

(7) For a complete lattice L and Q =
(P, P, P, P), L-QS, denoted by L-ATSp, is an
extension of the category ATSp of Alexandroff-
discrete spaces [10].

(8) For a σ-complete lattice L (i.e. L is a poset
with countable joins and finite meets) and Q =
(Cn, F , Cn, F), L-QS, denoted by L-Alex, is an ex-
tension of the category Alex of Alexandroff spaces
[2, 4].

(9) For a quasiframe L [9] (i.e. L is a poset
with directed joins and finite meets ) and Q =
(D, F , D, F), L-QS, denoted by L-PreTop, is an
extension of the category PreTop of pretopological
spaces [9].

It is shown in [4] that the functor HQ : QS →S,
defined by HQ (X, τ) =

(
X, τ, Zsup

3 (τ) , Z inf
4 (τ)

)
and HQ(f) = f , is a full embedding. We now ex-
tend this result to L-Q-spaces.

Lemma 23. Let X be a set, and let τ be a
subset of LX such that τ is a (Z1, Z2)-complete
poset equipped with the order inherited from LX .
Then, (X, τ) is an L-Q-space iff LHQ (X, τ) =(
X, τ, Zsup

3 (τ) , Z inf
4 (τ)

)
is a GQ(L)-space.

Proof. Let (X, τ) be an L-Q-space.
GQ(L)T (LHQ (X, τ)) is obviously an augmented
poset. On the other hand, since iτ : τ ↪→ LX is a
QP-morphism, GQ (iτ ) : GQ (τ) → GQ

(
LX

)
is a P-morphism. Furthermore, we easily
see that the identity map idLX on LX is a
P-morphism GQ

(
LX

)
→ GQ (L)X . Thus

iτ = idLX ◦ GQ (iτ ) : GQ(τ) → GQ (L)X is a
P-morphism. Then it follows from Remark 12 (i)
that LHQ (X, τ) is a GQ(L)-space. Conversely,
suppose LHQ (X, τ) is a GQ(L)-space. Then,

iτ : GQ(τ) → GQ (L)X is a P-morphism by
Remark 12 (i). To see that (X, τ) is an L-Q-space,
it is enough to confirm that the inclusion map
iτ : τ ↪→ LX is (Z3, Z4)-continuous. For each
M ∈ Zsup

3 (τ), since iτ : GQ(τ) → GQ (L)X is a
P-morphism, we have iτ (

∨
M) =

∨
iτ (M), i.e.

iτ is Z3-
∨

-continuous. Z4-
∧

-continuity of iτ is
similar.

Theorem 24. The functor LHQ : L-QS →
GQ(L)-S, sending each (X, τ) to LHQ (X, τ), and
leaving morphisms unchanged, is a full embedding.

Proof. We have from Lemma 23 that LHQ assigns
to each L-QS-object a GQ(L)-S-object. One can
also prove that each L-QS-morphism (X, τ) f→
(Y, ν) yields a GQ(L)-S-morphism LHQ (X, τ) f→
LHQ (Y, ν). Because LHQ clearly preserves compo-
sition and the identities, LHQ : L-QS → GQ(L)-S
will be, indeed, a functor. The property of LHQ
being a full embedding is easily seen from the defi-
nition of LHQ.

Theorem 24 proves that A-spaces provide a more
general approach than L-Q-spaces. However, as is
exhibited in Example 22, L-Q-spaces produce more
efficient and easily realizable results.

4.3. Relations between L-QS and QPop

In this section, by providing suitable definitions of
L-Q-spatiality in QP and L-Q-sobriety in L-QS,
our aim is to show that AT ⊣ AΨ : Pop → A-S
and A-SpaPop ∼ A-SobS can be carried over an
adjunction between L-QS and the opposite of the
full subcategory L-QPs of QP of all L-Q-spatial ob-
jects and a dual equivalence between L-QPs and the
full subcategory of L-QS of all L-Q-sober objects,
respectively. In case Z1 and Z2 preserve surjec-
tivity, we shall also demonstrate that AT ⊣ AΨ :
Pop → A-S produces an adjunction between L-
(Z1, Z2)S and (Z1, Z2)Pop. We start with some
preparations.

Proposition 25. [4] For categories A, B, a full
subcategory A′ of A and a full subcategory B′ of B,
if F ⊣ G : A → B is an adjoint pair of functors
with the property that for all X ∈ Ob (A′) and for
all Y ∈ Ob (B′),

G(X) ∈ Ob (B′) and F (Y ) ∈ Ob (A′) (1)

then the restriction F ′ of F to B′and the restriction
G′ of G to A′ form an adjoint pair of functors F ′ ⊣
G′ : A′ → B′.

Corollary 26. [4] Under the considerations in
Proposition 25, if G : A → B and F :B→A are
equivalences inverse to each other and satisfy (1),
then G′ : A′ → B′ and F ′ :B′ →A′ are equiva-
lences inverse to each other.
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Lemma 27. Let P(Q) and S(L, Q) stand for the
image of QP under GQ and the image of L-QS un-
der LHQ, respectively. Then, the functor GQ(L)T :
GQ(L)-S →Pop assigns to each S(L, Q)-object a
P(Q)-object.

Proof. Since each S(L, Q)-object W possesses the
property that OGQ(L)(W ) is a (Z1, Z2)-complete
poset and GQ(L)T (W ) = GQ(OGQ(L)(W )), it is
clear from the definition of P(Q) that GQ(L)T (W )
is a P(Q)-object.

Lemma 28. Let Z1 and Z2 preserve surjectiv-
ity. Then, the functor G(Z1,Z2)(L)Ψ maps each
P(Z1, Z2)-object to an S(L, Z1, Z2)-object.

Proof. The proof can be done by using analogous
arguments to those in the proof of [4, Lemma 6], so
it is omitted here.

Lemma 29. Let P(L, Q)s denote the full subcat-
egory of P(Q) of all GQ(L)-spatial objects. Then
GQ(L)Ψ maps each P(L, Q)s-object to an S(L, Q)-
object.

Proof. The required result can be verified in a sim-
ilar fashion to [4, Lemma 8].

Definition 30. Let P be a (Z1, Z2)-complete poset,
and (X, τ) an L-Q-space.

(i) P is L-Q-spatial iff GQ(P ) is GQ(L)-spatial.
(ii) (X, τ) is L-Q-sober iff LHQ(X, τ) is GQ(L)-

sober.

Theorem 31. Let L-QPs be the full subcategory
of QP of all L-Q-spatial objects, and L-QSs be the
full subcategory of L-QS of all L-Q-sober objects.
Then the following statements are true:

(i) There is a pair of adjoint functors LTQ ⊣
LΨQ : L-QPop

s → L-QS.
(ii) L-QPs is dually equivalent to L-QSs.
(iii) If Z1 and Z2 are surjectivity-preserving, then

there is a pair of adjoint functors LT(Z1,Z2) ⊣
LΨ(Z1,Z2) : (Z1, Z2)Pop → L-(Z1, Z2)S.

Proof. (i) To prove the assertion, we apply Propo-
sition 25, and choose F ⊣ G : A → B as GQ(L)T ⊣
GQ(L)Ψ : Pop → GQ(L)-S. By considering the fact
that the co-domain of GQ(L)T lies in P(L, Q)op

s ,
and using Lemma 27 and Lemma 29, we observe
that the condition (1) in Proposition 25 is satisfied
for A′ =P(L, Q)op

s and B′ =S(L, Q). Thus the ad-
junction in question follows from Proposition 25 and
the fact that P(L, Q)s and S(L, Q) are, respectively,
isomorphic to L-QPs and L-QS.

(ii) is an application of Corollary 26 to the equiv-
alences GQ(L)Ψs : GQ(L)-SpaPop → GQ(L)-
SobS and GQ(L)Ts : GQ(L)-SobS→ GQ(L)-
SpaPop. By making use of the isomorphism be-
tween P(L, Q)s and L-QPs, the full subcategory of
S(L, Q) of all GQ(L)-sober spaces and L-QSs, the
required equivalence follows from Lemma 27 and
Lemma 29.

(iii) Firstly, pick F ⊣ G : A → B as
G(Z1,Z2)(L)T ⊣ G(Z1,Z2)(L)Ψ : Pop → G(Z1,Z2)(L)-
S, A′ =P(Z1, Z2)op and B′ =S(L, Z1, Z2) in
Proposition 25. Then, since (Z1, Z2)P and L-
(Z1, Z2)S are, respectively, isomorphic to P(Z1, Z2)
and S(L, Z1, Z2), we obtain the questioned pair of
adjoint functors from Proposition 25 by making use
of Lemma 27 and Lemma 28.

Theorem 31 is an extension of the main result of
[4] ([4, Theorem 2]) to L-Q-spaces, and has direct
applications to many familiar categories of ordered-
structures. We gather some (but not all) of them in
the final result:

Corollary 32. Let L be an object of Pos (Blatt,
SUP∧, MCPos, INF∨, INF↑, CLat, σComLat
and QF). Then, there are adjunctions between L-
BS and Posop, L-BlatBS and Blattop, L-Top and
(SUP∧)op, L-CSp and MCPosop, L-TCSp and
(INF∨)op, L-ACSp and (L-INF↑s)op, L-ATSp
and CLatop, L-Alex and σComLatop, L-PreTop
and (L-QFs)op. Furthermore, there are dual equiv-
alences between L-Poss and L-BSs, L-Blatts and
L-BlatBSs, L-SUP∧s and L-Tops, L-MCPoss

and L-CSps, L-INF∨s and L-TCSps, L-INF↑s and
L-ACSps, L-CLats and L-ATSps, L-σComLats

and L-Alexs, L-QFs and L-PreTops.

References

[1] J. Adámek, H. Herrlich and G. E. Strecker,
Abstract and Concrete Categories, Wiley, New
York, 1990.

[2] B. Banaschewski and G. Bruns, The funda-
mental duality of partially ordered sets, Order,
5:61-74, 1988.

[3] M. Demirci, Pointed semi-quantales and
lattice-valued topological spaces, Fuzzy Sets
and Systems, 161:1224-1241, 2010.

[4] M. Demirci, (Z1, Z2)-complete partially
ordered sets and their representations
by Q-spaces, Appl. Categ. Struct., doi:
10.1007/s10485-012-9277-4.

[5] M. Demirci, Fundamental duality of abstract
categories and its applications, Fuzzy Sets and
Systems, Submitted.

[6] M. Erné, Bigeneration in complete lattices and
principle separation in posets, Order, 8:197-
221, 1991.

[7] M. Erné, Algebraic ordered sets and their gen-
eralizations. In I. Rosenberg and G. Sabidussi,
editors, Algebras and Orders, Proc. Montreal,
1992, pages 113-192, Kluwer Academic Pub-
lishers, Amsterdam, 1993.

[8] M. Erné, General Stone duality, Topol. its
Appl., 137:125-158, 2004.

[9] M. Erné, Choiceless, pointless, but not useless:
dualities for preframes, Appl. Categ. Struct.,
15:541-572, 2007.

15



[10] M. Erné, Closure. In F. Mynard et al., edi-
tors, Beyond topology, Contemporary Mathe-
matics 486, pages 163-238. American Mathe-
matical Society, Providence, 2009.

[11] G. Gierz, K. H. Hofmann, K. Keimel, J. D.
Lawson, M. Mislove and D. S. Scott, Continu-
ous Lattices and Domains, Cambridge Univer-
sity Press, Cambridge, 2003.

[12] J. A. Goguen, Categories of V-sets, Bull. Amer.
Math. Soc., 75:622-624, 1969.

[13] H. Herrlich and G. E. Strecker, Category The-
ory, Allyn Bacon, Boston, 1973.

[14] U. Höhle, Many valued topology and its appli-
cations, Kluwer Academic Publishers, Boston,
2001.

[15] U. Höhle and A.P. Šostak, Axiomatic foun-
dations of fixed-basis fuzzy topology. In
U. Höhle and S. E. Rodabaugh, edi-
tors, Mathematics of Fuzzy Sets: Logic,
Topology and Measure Theory, Handbook
of Fuzzy Sets Series, Vol. 3, pages 123-
272, Kluwer Academic Publishers, Dordrecht,
1999.

[16] J. R. Isbell, Atomless parts of spaces, Math.
Scand., 31:5-32, 1972.

[17] P. T. Johnstone, Stone Spaces, Cambridge Uni-
versity Press, 1982.

[18] S. Mac Lane, Categories for the Working Math-
ematician, Springer, Berlin, 1971.

[19] D. Papert, S. Papert, Sur les treillis des ouverts
et les paratopologies, Semin. de Topologie et de
Geometrie Differentielle Ch. Ehresmann 1: 1-9,
1959.

[20] S. E. Rodabaugh, Point-set lattice-theoretic
topology, Fuzzy Sets and Systems 40: 297–345,
1991.

[21] S. E. Rodabaugh, Powerset operator founda-
tions for poslat fuzzy set theories and topolo-
gies. In U. Höhle and S. E. Rodabaugh, editors,
Mathematics of Fuzzy Sets: Logic, Topology
and Measure Theory, Handbook of Fuzzy Sets
Series, Vol. 3, pages 91-116, Kluwer Academic
Publishers, Dordrecht, 1999.

[22] S. E. Rodabaugh, Relationship of algebraic
theories to powerset theories and fuzzy topo-
logical theories for lattice-valued mathematics,
Int. J. Math. Math. Sci., 2007:1-71, 2007.

[23] S. A. Solovyov, Sobriety and spatiality in vari-
eties of algebras, Fuzzy Sets Systems, 159:2567-
2585, 2008.

[24] W. Yao, A survey of fuzzifications of frames,
the Papert–Papert–Isbell adjunction and sobri-
ety, 190:63-81, 2012.

[25] J. B. Wright, E. G. Wagner and J. W.
Thatcher, A uniform approach to inductive
posets and inductive closure, Theoret. Com-
put. Sci., 7:57-77, 1978.

[26] L. A. Zadeh, Fuzzy sets, Inform. and Control,
8:338-353, 1965.

16




