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Abstract

In this paper we investigate the usage of non-linear
chemometric models, which are calibrated based on near
infrared (FTNIR) spectra, in order to increase efficiency
and to improve quantification quality in melamine resin
production. They rely on fuzzy systems model archi-
tecture and are able to incrementally adapt themselves
during the on-line process, resolving dynamic process
changes, which may cause severe error drifts of static
models. The most informative wavebands in NIR spec-
tra are extracted by a new variant of forward selection,
termed as forward selection with bands (FSB) and used
as inputs for the fuzzy models. A specific ensemble
strategy is developed which is able to properly com-
pensate noise in repeated spectra measurements. Re-
sults on high-dimensional data from four independent
types of melamine resin show that 1.) our fuzzy model-
ing methodology can outperform state-of-the-art chemo-
metric modeling methods in terms of validation error,
2.) the ensemble strategy is able to improve the per-
formance of models without ensembling and 3.) incre-
mental model updates are necessary in order to prevent
drifting residuals.

Keywords: cloud point prediction, self-adaptive fuzzy
calibration models, ensemble strategy, drift prevention

1. Introduction

1.1. Motivation and State-of-the-Art

In nowadays chemical industrial systems, there is an in-
creasing demand and complexity in monitoring and su-
pervision of processes due to an increasing number of
chemical substances and concentrations. Typically, op-
erators are requested to manually draw samples from the
process from time to time which are either directly quan-
tified or further analyzed in an off-line stage (e.g. by
experts in a laboratory). In many cases, both, the effi-
ciency and quality of chemical systems can be improved
by applying online analytic technologies [1], fully au-
tomatizing the quantification of the substances in chem-
ical processes [2]. Thereby, the connection of a spec-
troscopic measurement method [3] in conjunction with
chemometric models [4] plays a major role. In the con-
sidered process of melamine resin production, the essen-
tial process parameter to be regularly supervised is the

cloud point. This parameter provides information about
the progress of the condensation process in melamine
resin production. Monitoring the value of that parame-
ter indicates the best point of time to turn off heating in
order to stop the condensation. Currently, the situation
is as follows: an operator has to regularly draw samples
from the process, whereas for each sample he needs ap-
proximately 1-2 minutes in order to obtain the concrete
value of the cloud point. Due to the high effort of sam-
ple supervision and analysis, a continuous visualization
of the condensation process is currently not achieved.

In order to automatize the supervision process and
to improve the quantification efficiency and quality of
the process parameter, a Fourier-transform-near-infrared
(FTNIR) spectrometer was installed at the company for
extracting spectra information from the process, reflect-
ing the chemical composition in the melamine resin.
The spectra can be used as input data to set up chemo-
metric models for predicting the cloud point. Standard
partial least squares method [5] [6] was applied from the
PLS toolbox1 and could achieve a solid (but not ideal)
accuracy, which will serve as benchmark for our newly
designed chemometric models. Expected implicit non-
linearities in the process as well as the fact that the pro-
cess shows a dynamically changing behavior over time,
require the usage of enhanced non-linear chemomet-
ric models which are able to adapt their parameters or
even structures (if required) on-line. The combination of
these aspects prohibits the use of standard chemometric
modeling tools.

1.2. Our Approach

In order to resolve aforementioned demands, we present
a chemometric modeling approach, which homoge-
nously joins the following properties in one calibration
framework:

• Non-linear modeling component which is based on
fuzzy systems architecture and which employs sta-
tistical information criteria for dimension reduc-
tion; therefore, we propose an extended variant
of forward selection in order to extract wavebands
with arbitrary widths instead of single wavelengths
(as done in preliminary chemometric studies, see
e.g. [7]), termed as forward selection with bands

1http://www.eigenvector.com/software/pls toolbox.htm

8th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT 2013)

© 2013. The authors - Published by Atlantis Press 17



(FSB). Moreover, we will also connect fuzzy sys-
tems with PLS (partial least squares), achieving a
sort of a non-linear PLS version.
• Incremental model updates including adaptation of

parameters as well as evolution of structural com-
ponents on demand and on-the-fly; this is necessary
in order to react on process drifts over time due to
changing dynamics, preventing time-intensive re-
calibration cycles→ self-adaptivity
• Additionally, we will employ a model ensembling

strategy for compensating the noise in repeated
measurements used to obtain one target sample
value.

Due to the combination of these issues, we may also
speak about ensembled self-adaptive calibration mod-
els.

Our approach will be applied to on-line process data
from four different types of melamin resines and will
show 1.) that our non-linear modeling methodology can
outperform state-of-the-art modeling methods in terms
of validation error, 2.) that the usage of ensemble strat-
egy is able to improve the performance of models with-
out ensembling significantly and 3.) incremental model
updates are necessary in order to keep the predictive
quality of the models high during the further ongoing
on-line process.

2. Chemometric Modeling Steps

2.1. Non-Linear Fuzzy Modeling and Waveband
Extraction

2.1.1. Architecture and Training (Outline)

For modeling implicit non-linearities contained in the
melamine resin production process, we exploit the
Takagi-Sugeno (TS) fuzzy model architecture [8], which
have some favorable properties [9]:

• Universal approximation: ability to resolve any de-
gree of non-linearity with sufficient accuracy.
• Employing piece-wise linear predictors in the form

of hyper-planes li = wi0 + wi1x1 + wi2x2 + ... +
wipxp i = 1, ...,C (assuming p features) for mod-
eling the behavior in C partial local regions: this
achieves some sort of synergies to local weighted
regression models or multi-model partial least
squares, especially when connected with PLS.
• Combining the piecewise local linear predictor

with normalized multivariate Gaussian kernels to
form an over-all smooth and differentiable global
model:

f̂ (~x) = ŷ =
C

∑
i=1

liΨi(~x) Ψi(~x) =
µi(~x)

∑
C
j=1 µ j(~x)

(1)

with µi(~x) the membership degree of x to the ith
kernel.

Non-linearity plays a more and more major role in to-
day’s chemical processes [4], linear predictors are often
beneficial in cases where (off-line) calibration samples

are hard to obtain and smooth functions have some fa-
vorable analytical properties. Takagi-Sugeno fuzzy sys-
tems offer an architecture, which is able to flexibly han-
dle the non-linearity requested and the non-linearity af-
forded; this is controlled by the index C in the sum of
(1), i.e. the number of model components used. In
case of C = 1, the Takagi-Sugeno fuzzy model in (1)
automatically reduces to a multivariate linear regression
model. Thus, using latent variables as inputs, it can also
turn to a global PLS model.

2.1.2. New Waveband Selection for Noise Reduction

One novelty in this paper refers to the dimensionality
reduction process, which is essential for models with
implicit local structures, as suffering significantly from
curse of dimensionality effect [9]. Especially, in the case
of NIR spectra, usually the dimensionality (=number of
wavelengths) lies in the range of 1000-3000, depending
on the spectrometer used [3] (in our application it will
be 1249), which is un-managable high for fuzzy systems
architecture. In [7], we reported a wavelength selection
process, which is based on a variable ranking scheme
exploiting some sort of forward selection with orthogo-
nalization [10]. However, it turned out for some appli-
cations (and also for that one treated in this paper) that
this approach is prone to noise levels occurring during
measurement recordings. The basic drawback comes in
due to selecting single and disjoint wavelengths (posi-
tions) instead of larger wavebands, containing consec-
utive wavelengths. Therefore, we design a new selec-
tion scheme, termed as FSB = Forward Selection with
Bands, where in each iteration still the wavelength cor-
related most to the target y is selected, i.e.:

j∗= argmax j=1,...,n wave(R2
j,1 = R2(wave j,y)) (2)

with R2 the classical R-squared statistics, however adja-
cent wavelengths are adjoined until a certain saturation
of regression model quality is reached:

R2
j,i+1−R2

j,i ≤ R2
j,1 (3)

where the first index denotes the band number and the
second one denotes the width. We constrain this iter-
ative joining by a maximal number of wavelengths in
one waveband max wave in order to prohibit large span
bands. Figure 1 visually shows (from (a) to (d)) how sin-
gle wavelengths are step-wise included to form a wave-
band. Once a band wavebandi is found, its contribution
for explaining the (remaining) target yrem is subtracted:
a regression model f̂ is built using all wavelengths in all
so-far selected bands waveband1,...,i and the following
calculated:

~yrem =~y− f̂ (Xred) (4)

This is repeated until max dim wavebands (containing
a different number of wavelengths) are selected and a
ranking of importance across wavebands is achieved
(first selected = most important one and so on). In a first
trial-and-error phase, this scheme turned out to perform
not really well. The problem was that wavebands may
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(a) (b) (c) (d)

Figure 1: Waveband construction according to our new selection approach termed as Forward Selection with Bands
(FSB)

contain up to n wavelengths, i.e. whenever max dim
(usually set to 10-20) wavebands are selected, a high
number of wavelengths was included in the modeling
process. However, fuzzy systems treat each wavelength
in a waveband as separate dimension in the rule product
space, such that the curse of dimensionality effect is still
severe. Therefore, we investigated a post-processing
phase where we projected each waveband to a single la-
tent variable with the help of robust partial least squares
[6], obtaining a ranked list (lat1, ..., latmax dim) of inputs
for the fuzzy model.

The fuzzy models training procedure (FLEXFIS) will
be also connected with standard PLS, which is con-
ducted prior to the training process in order to extract
latent variables on a global basis

2.2. Ensemble Technique for Boosting Performance

In literature, ensembling techniques enjoy a wide at-
traction in order to boost performance of classification
and regression models [11]. Basically, there are two
major research lines in the field of ensemble methods:
1.) training of so-called weak models, usually on subset
of features or on parts of the target space, and combin-
ing these weak models to form a strong over-all model
with high performance [12]; or 2.) using a different set
of (full) regression model architectures, exploiting their
diversity which plays a central role in order to guaran-
tee an increase of the stand-alone performance of single
models [13].

In our application, we are confronted with a different
ensembling problem, which stems from the fact that for
each process state three repeated measures are recorded
by the data acquisition machine, which all show the
same target variable values, but slightly different spec-
tra according to noise variations in the recordings. Thus,
the goal of our ensembling method is to perform a kind
of noise reduction. We therefore build regression mod-
els for each of the recordings separately, i.e. using all
samples from the each of the repetitions → S1,2,3, and
train a model for each set separately. Noise reduction
is then achieved by a weighted combination of the sin-
gle model outputs, rather than integrated in the learning
process of one global model. Thus, our noise reduction
approach by ensembling can be also seen as a variance
reduction of one single model. In particular, we define

∀i = 1,2,3:

Si = {~x j|~x j ∈ X ∧ j ∈ {1, . . . ,N}∧mod( j,3) = 3− i}
(5)

with X the whole calibration matrix containing the sam-
ples in the same order as they were recorded and mod the
modulo function. Then, we define the regression models
by Ri ←− T(Si) with T a training procedure operating
on set Si. The final predicted model output is achieved
by a weighted combination in form of:

ŷ = w1 ∗R1 +w2 ∗R2 +w3 ∗R3 (6)

We used a general approach for eliciting the weights,
namely by calculating model qualities pointing to their
predictive generalization power. Thus, within a K-fold
cross-validation procedure (we set K = 10 in all our ex-
periments), we elicited the ’cross-validated’ R2 value as:

R2
i =

1
K

K

∑
j=1

R2( j) ∀i = 1,2,3 (7)

with R2( j) the R-squared value for the jth fold. The R2

values calculated in this way are reliably reflecting the
general quality of the model: this is in accordance to
the fact that a CV estimator is a good indicator for the
generalization quality of a model, see for instance [14]
(Chapter 7). Then, the weights in (6) are elicited by:

wi =
R2

i

R2
1 +R2

2 +R2
3
∀i = 1,2,3 (8)

ensuring that the degree of contribution of the prediction
of each model corresponds to the portion of its general-
ized (cross-validated) model quality.

2.3. Reacting on Time-Dependent Process Drifts

A specific problem in melamine resin production orig-
inates from process drift which may make chemomet-
ric models initially built from pre-recorded calibration
samples (representing a particular composition, environ-
mental actuality etc.) more and more ”out-dated” over
time, thus their predictions are becoming more and more
uncertain. A typical example of drifts from the real
melamine production process is shown in Figure 2, visu-
alizing residuals (=deviations between predicted and ob-
served values of cloud point y) within a 3 weeks period,
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Figure 2: Examples of long term process drifts at
melamine resin production, please note the increasing
residuals (dots) at the end of the streams and the syn-
chronously widening of prediction uncertainty modeled
by local error bars

starting right after the generation of the initial chemo-
metric models.

Although the process drifts are usually in the long-
term run (starting after around 2 weeks), a time-
intensive manual re-calibration of the models is often
not a reliable option. Thus, we propose an automatic
dynamic model update scheme, which adapts model pa-
rameters and expands as well as shrinks model struc-
tures on-the-fly. This will be achieved in an incre-
mental single-pass learning context, following the nat-
ural behavior of on-line data streams [15]. Single-
pass learning [16] guarantees a fast model update and
minimal virtual memory usage as no prior data is
used; the memory usage can be essential in case of
on-line instruments/spectro-meters integrating micro-
controllers with reduced RAM.

In the following two sub-sections, we will summarize
the update mechanisms for the TS fuzzy systems as de-
fined in 2.1.1. Additionally, we will give an out-line of
an incremental PCR (principal component regression)
approach (denoted as incrPCR), representing a recursive
global linear method without evolving structural compo-
nents (just parameter updates).

2.3.1. Evolving and Shrinking TS Fuzzy Systems

The update of TS fuzzy systems is conducted with the
usage of the FLEXFIS++ learning engine [17], which, as
a regression method, is part of the FLEXFIS family and
operates on a single-pass incremental manner, including
structural evolution and recursive parameter update, as is
a common denominator in the context of evolving fuzzy
systems (EFS) [18]. Combined with spectral samples,
we may speak about evolving (non-linear) chemometric
models.

A basic difference to the original approach is that,
when a new spectral sample ~x comes in, first it is pro-
jected on the subspace generated by p latent variables.
In the case of FLEXFIS+FSB variant, they correspond
to the p most important wavebands found with the algo-
rithm described in Section 2.1.2:

~xpro j =~x∗
[
~wB1,1| · · · |~wBp,1

]
(9)

In FLEXFIS+PLS variant, the p latent variables are ob-
tained applying PLS in a global manner:

Latp =
[
~lat1| · · · |~lat p

]
= X ∗WX ,p⇒~xpro j =~x∗WX ,p

(10)
The new projected sample~xpro j is then sent into the up-
date mechanism of the learning engine, which is decom-
posed into the following parts:

1. Check if the current sample fits into the cluster par-
tition, where one cluster corresponds to one rule
(out of C rules in (1)).

2. If yes: the current partition is updated in a conver-
gent manner, i.e. with a decreasing learning gain
over life-time and support of the cluster. This as-
sures stability.

3. If no: a new rule = cluster is added to the rule base
as the new sample falls into an unexplored region
of the feature space. This assures plasticity.

4. Adding corrections terms to consequent parameters
and inverse (parameter) covariance matrices to bal-
ance out non-optimal situations in the RWLS esti-
mator.

5. Update the consequent functions and inverse (pa-
rameter) covariance matrices with the usage of
RWLS [19], thus achieving a local learning scheme
(for each rule separately) [20].

A specific property of our approach (compared to other
EFS approaches [18]), is the fact that it guarantees sub-
optimality which is close to optimality in terms of the
least squares error functional (Step 4 above).

In order to compensate highly dynamic changes in
the on-line stream, leading to extraordinary rule move-
ments, we investigate additional concepts:

• Merging of strongly over-lapping rules: a fast ex-
tended kernel-based similarity measure is used to
estimate the degree of overlap in [0,1]:

Sker(A,B) = (e
− (cA−cB)2

σ2
A+σ2

B + e−(cA−cB)2−(σA−σB)2
)/2
(11)

with cA the center of fuzzy set A and σA is char-
acteristic spread. The first term is motivated from
statistical theory, comparing whether two Gaussian
distributions are different or not (hypothesis test)
[21]. The second term assures that smaller sets
within larger sets are not merged (as representing
different specifications of data clouds in different
parts of the high-dimensional feature space). If the
fuzzy sets of all antecedent parts of two rules are
similar (to a default degree of at least 0.8), it points
to redundant local partitioning and the rules can be
merged.
• Forgetting of older learned relations over time in

order to be able to bring in more flexibility to ad-
just to new changed situations, especially in case
of drift occurrences. We integrate forgetting fac-
tors 1.) in the consequent learning achieving a
smooth exponential out-weighting over time and
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2.) in the antecedent learning part by reactivating
converged rules. The methodology is leaned on the
approaches used in [22].
• Elimination of obsolete rules: in more extreme drift

cases, also referred as data shifts, a new rule is
already opened up within the shifted data cloud.
However, older rules may still contribute (at least a
little) to the final model output, especially when us-
ing multi-dimensional kernels with infinite support:
in fact all rules fire to a certain degree in (1). Rule
ages [23] may be a plausible concept for tracking
out-dated rules which are no longer attached. How-
ever, this rely on unsupervised criteria and thus
do not take into account the impact of the rules
onto the final model output. In this paper, we pro-
pose the concept based on an influence of a fuzzy
rule in the data stream learning context over time,
compared to the influence of all rules, employing
the normalized membership degrees and the conse-
quent hyper-planes [24]. Whenever the influence
drops below a certain threshold, it can be seen as
relatively insignificant compared to the other rules.

2.3.2. Incremental PCR

Alternatively to the evolving TS fuzzy systems, we pro-
pose an incremental update mechanism for PCR (in-
cPCR) [25], as serving as one of the most widely used
and renowned state-of-the-art modeling technique in the
field of chemometrics. The update engine in incPCR is
driven by two aspects:

• Updating the eigen-space (eigenvectors and eigen-
values) in order to permanently adjust the rotated
axes to be ideal in terms of pointing into those di-
rections where maximal variance of sample data
appears.
• Updating the regression coefficients ~β obtained in

batch mode by ~β = (ST
mSm)−1ST

my, with Sm = PmX
the scores by projecting each original sample from
X to all selected components in Pm = [p1, ..., pm].
in order to account for changes in the dependen-
cies between principal components and the target
variable; in practice, this means to move, rotate the
regression hyper-plane spanned by [β1, ...,βm,y].

A key point for a well-posed update of the eigen-
space there is to check whether a new incoming sample,
xnew, has almost all energy (90%) in the current eigen-
space Pm = [p1 p2...pm] or not. This can be done by com-
puting the residual vector~h with [26]

~h = (xnew− x̄)−Pm~g (12)

where x̄ denotes the vector obtained by averaging the
input samples and ~g is calculated by ~g = PT

m (xnew− x̄),
and then checking whether the norm of the residual vec-
tor is smaller than a threshold value η . If this is the case,
the eigen-space is simply updated, otherwise a column
is added to Pm and m = m + 1, see [26]. The regression
coefficients are updated with the usage of recursive least
squares (RLS) approach [19], afterwards, in order to ac-
count for changing optimal positions of hyper-planes.

(a) Target of data set #1 (b) Absorbance Spectra.

Figure 3: Visualization of data set #1.

3. Experimental Setup

3.1. Data set description

The data sets provided by our partner company (Dynea)
were recorded with the usage of FTNIR process spec-
trometer which has been optimized from the beginning
of the development with respect to robustness, mea-
surement time and cost-effectiveness and is designed on
bases of a Michelson interferometer. In order to obtain
a robust design, a monolithic interferometer [27] is uti-
lized in the Michelson setup. The measurement is con-
ducted by a transmission probe (Hellma) with an optical
path of 1 mm through the fluid. The final drawn data sets
consist of multiple instances, i.e. every instance is a set
of 3 consecutive measurements. The number of wave-
lengths (variables) and instances vary from one formula
to the other. Table 1 summarizes the characteristics of
the data sets for the four different recipes under con-
sideration; these are drawn from different independent
production cycles, thus offering significant diversity for
validating our approach.

Figure 3 shows respectively the measured cloud point
values for the multiple instances data set #1, 3(a), and
the spectral values as a representation of the multiple
instances, in 3(b). Furthermore, process variables were
recorded by sensor readings (temperature, pressure, pH
value) and synchronized with the recordings of the NIR
spectrometer recordings. The original goal was to pro-
vide orthogonal or at least independent information to
NIR; however, it turned out that they were more or less
perfectly correlated (> 0.99 correlation coefficient) with
some bands in the spectra.

3.2. Evaluation Scheme

3.2.1. Batch Phase

The first stage evaluates our new proposed methods
(FLEXFIS+FSB/PCA/PLS with and without ensem-
bling) within a batch off-line process, using RMSE 10-
fold cross-validation error as comparison measures

CV RMSE =

√√√√ 1
K

K

∑
i=1

∑
i∗(N/K+1)
k=(i−1)∗(N/K)+1(y(k)− ŷ(k))2

N/K

(13)

with N the number of calibration samples, and the stan-
dard deviation of the RMSE over different folds:

SD =

√
1

K−1

K

∑
i=1

(RMSE(i)−CV RMSE)2 (14)
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Recipe #1 #2 #3 #4
Instances Training 1608 (3 x 536) 1269 (3 x 423) 753 (3 x 251) 1119 (3 x 373)
Wavelengths 1249 1249 1249 1249

Table 1: Data sets summary.

with RMSE(i) the root mean squared error over the
ith fold. The latter provides a measure how sensi-
tive a method reacts onto a specific fold combination.
For benchmark purposes, we apply widely used and
renowned state-of-the-art approaches including multi-
ple linear regression (MLR), principal component re-
gression (PCR) [25], partial least squares regression
(PLSR) [5], local weighted regression (LWR) [28], re-
gression trees (RegTree) [14], stepwise regression (Step-
wiseReg), ridge regression and GLMnet [29] (a con-
vex combination of Lasso and ridge regression) and
FLEXFIS combined with old forward selection (FLEX-
FIS+FS) variant [7].

Furthermore, all methods are evaluated within a pa-
rameter grid scenario, where the most sensitive param-
eters of these methods (e.g. the pruning level in case
of RegTree or the α-value for the sensitivity to add new
variables in case of StepwiseReg) are varied according
to a pre-defined grid and for each parameter combina-
tion a cross-validation procedure (with the same splits)
conducted. Finally, for each method that combination is
selected which minimizes the following criterion:

RMSE(pen)
α = RMSE · eα param1+β (1−param2) (15)

If an algorithm does not involve param1, then it receives
the default value param1 = 0. Analogously for param2
with default value param2 = 1. Empirically, we have
determined α = 0.05 and β = 0.5 as adequate normal-
ization values. This criterion assures to punish more
complex models having a similar RMSE value (error)
over others in order to decrease over-fitting effects as
much as possible.

3.2.2. Adaptive Phase

The second stage includes the verification of drifts is-
sues and the demonstration of the importance to resolve
these issues with incremental adaptive learning meth-
ods. For doing so, we compare the quality of static mod-
els, initially trained by applying the same procedure as
outlined in the previous section (grid search + 10-fold
CV), with the quality of dynamic models, permanently
updated on new on-line data samples. We take a small
initial batch for training and the remaining instances as
longer stream for testing, as usually drifts only arise over
a longer time period of about at least 2 weeks; three dif-
ferent split portions are used: 10/90, 25/75 and 33/67.
In this sense, the three different testing portions also
serve as separate validation data for the static models.
We will see that static models significantly suffer more
and more, the smaller the training portion is. The qual-
ity of the models is measured in terms of accumulated
RMSE over time; in case of dynamic models, always

Recipe #1 Recipe #2 Recipe #3
MLR 0.096 ± 0.02 0.566 ± 0.48 0.160 ± 0.02
PCR 0.041 ± 0.03 0.083 ± 0.06 0.029 ± 0.01
PLSR 0.036 ± 0.02 0.044 ± 0.03 0.028 ± 0.01
LWR 0.149 ± 0.04 0.220 ± 0.09 0.190 ± 0.08
RegTree 0.120 ± 0.07 0.125 ± 0.04 0.120 ± 0.07
StepReg 0.039 ± 0.01 0.059 ± 0.06 0.034 ± 0.01
GLMNet 0.033 ± 0.01 0.064 ± 0.07 0.031 ± 0.01
RidgeReg 0.096 ± 0.02 0.714 ± 1.13 0.205 ± 0.06
Fuz.+PCA 0.033 ± 0.01 0.055 ± 0.03 0.032 ± 0.02
Fuz.+PLS 0.029 ± 0.01 0.037 ± 0.03 0.020 ± 0.01
Fuz.+FS 0.137 ± 0.02 0.073 ± 0.04 0.079 ± 0.01
Fuz.+FSB 0.054 ± 0.02 0.063 ± 0.05 0.048 ± 0.01

Table 2: CV results (RMSE+SD, divided by the range
of the target) for three recipes

a one-step-ahead error is calculated and accumulated
within an incremental model update scheme. The ap-
plied methods will be incrPCR (as described in Section
2.3.2), FLEXFIS+PLS and FLEXFIS+FSB incremental
(as described in Section 2.3.1) and their static counter-
parts. Thus, by comparing incrPCR and FLEXFIS, we
also verify the impact/necessity of structural evolutions
and non-linearities on the model accuracy.

4. Results

4.1. Batch Phase

The results in Table 2 show the CV accuracies and sen-
sitivities of the various methods on the four recipes of
Melaminharz, indicating the preferred methods in bold
font for each recipe.

A viewpoint on the results in Table 2 is that in case
of Recipe #1 FLEXFIS+PLS and GLMnet perform best
and similar, whereas for the other three recipes FLEX-
FIS+PLS can outperform all other state-of-the-art meth-
ods. The interpretation of this result is that introduc-
ing non-linearity in conventional PLS helps to improve
its performance, also boosting it over other state-of-the-
art methods. Selecting bands explicitly and project-
ing each one locally to one latent variable (as done in
FLEXFIS+FSB), does indeed not help to improve the
error rates further, but is able to outperform the old ver-
sion FLEXFIS+FS (extracting single wavelengths) on
all three data sets.

Table 3 presents the results obtained when employ-
ing the ensembling scheme according to Section 2.2, ex-
tracting the weights from a cross-validated model qual-
ity R2. We have also compared the performance of the
ensembling strategy with a typical approach when re-
peated measures are available, that is averaging the spec-
tral information before the modeling process. The best
method for each formulation is highlighted in bold font
and always corresponds to an ensembling variant, also in
most other cases the ensembling brings an improvement
over the original non-ensembled, i.e. using all measure-
ments as one data set modeling scheme. It is interesting
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Method Recipe #1 Recipe #2 Recipe #3 Recipe #4
PLSR (orig) 0.0359 ± 0.0195 0.0439 ± 0.0330 0.0284 ± 0.0090 0.0399 ± 0.0359
PLSR (aver) 0.0358 ± 0.0206 0.0403 ± 0.0284 0.0270 ± 0.0089 0.0397 ± 0.0363
PLSR (ens) 0.0340 ± 0.0263 0.0426 ± 0.0335 0.0264 ± 0.0092 0.0379 ± 0.0355
GLMnet (orig) 0.0326 ± 0.0107 0.0638 ± 0.0692 0.0309 ± 0.0069 0.0476 ± 0.0330
GLMnet (aver) 0.0326 ± 0.0106 0.0679 ± 0.0512 0.0324 ± 0.0084 0.0474 ± 0.0382
GLMnet (ens) 0.0321 ± 0.0110 0.0621 ± 0.0927 0.0310 ± 0.0092 0.0437 ± 0.0349
FLEXFIS+PLS (orig) 0.0297 ± 0.0118 0.0370 ± 0.0277 0.0203 ± 0.0065 0.0428 ± 0.0317
FLEXFIS+PLS (aver) 0.0268 ± 0.0117 0.0343 ± 0.0274 0.0166 ± 0.0047 0.0411 ± 0.0334
FLEXFIS+PLS (ens) 0.0242 ± 0.0083 0.0291 ± 0.0212 0.0104 ± 0.0089 0.0281 ± 0.0250
FLEXFIS+FS (orig) 0.1371 ± 0.0179 0.0733 ± 0.0356 0.0786 ± 0.0110 0.0970 ± 0.0414
FLEXFIS+FS (aver) 0.0573 ± 0.0167 0.0620 ± 0.0215 0.0638 ± 0.0143 0.0787 ± 0.0312
FLEXFIS+FS (ens) 0.0482 ± 0.0130 0.0550 ± 0.0215 0.0458 ± 0.0091 0.0695 ± 0.0317
FLEXFIS+FSB (orig) 0.0540 ± 0.0146 0.0626 ± 0.0456 0.0477 ± 0.0082 0.0951 ± 0.0218
FLEXFIS+FSB (aver) 0.0413 ± 0.0171 0.0610 ± 0.0268 0.0464 ± 0.0089 0.0911 ± 0.0240
FLEXFIS+FSB (ens) 0.0395 ± 0.0111 0.0583 ± 0.0398 0.0434 ± 0.0082 0.0601 ± 0.0387

Table 3: CV ensemble results for the four formulations ’(ens)’ compared with original non-ensembled results ’(orig)’
as well as with the averaged spectral information of the repeated measurements ’(aver)’

Method 10/90 25/75 33/67
Recipe #1
PCR (stat) 0.0809 0.0807 0.0664
incrPCR (dyn) 0.0555 0.0513 0.0483
FLEXFIS+PLS (stat) 0.0902 0.0780 0.0590
FLEXFIS+PLS (dyn) 0.0703 0.0538 0.0400
FLEXFIS+FSB (stat) 0.1271 0.1155 0.0997
FLEXFIS+FSB (dyn) 0.0551 0.0510 0.0411

Recipe #2
PCR (stat) 0.8516 0.0977 0.1090
incrPCR (dyn) 0.0682 0.0570 0.0654
FLEXFIS+PLS (stat) 0.7338 0.1008 0.1218
FLEXFIS+PLS (dyn) 0.2113 0.0575 0.0658
FLEXFIS+FSB (stat) 0.1497 0.0969 0.1236
FLEXFIS+FSB (dyn) 0.0638 0.0572 0.0564

Recipe #3
PCR (stat) 0.4069 0.1731 0.0893
incrPCR (dyn) 0.0605 0.0604 0.0410
FLEXFIS+PLS (stat) 0.2691 0.1674 0.0695
FLEXFIS+PLS (dyn) 0.0654 0.0342 0.0233
FLEXFIS+FSB (stat) 0.1520 0.1491 0.0981
FLEXFIS+FSB (dyn) 0.0745 0.0660 0.0499

Recipe #4
PCR (stat) 0.2360 0.1629 0.1358
incrPCR (dyn) 0.0733 0.0480 0.0469
FLEXFIS+PLS (stat) 0.2146 0.1602 0.1473
FLEXFIS+PLS (dyn) 0.0572 0.0514 0.0499
FLEXFIS+FSB (stat) 0.2203 0.1045 0.0793
FLEXFIS+FSB (dyn) 0.0711 0.0679 0.0623

Table 4: RMSE values for predicting new on-line sam-
ples over time with static models (denoted by ’stat’) and
incrementally adapted ones as described in Section 2.3
(denoted as ’dyn’)

to see that the ensembling method can even improve the
quality of the best original models for each formulation:
the range of the improvement lies from 19% (in case of
#1) up to astonishing 49% (in case of #3). Moreover,
averaging the spectral information prior to the modeling
process behaves worse than the ensembling procedure
(with the exception of PLSR in #2) and a bit better than
using the original data set.

4.2. Adaptive Phase

According to the off-line results demonstrated in the
preliminary section, for the on-line phase we focussed
on adaptive modeling on the original spectra informa-
tion and using ensemble strategy. The results on the
three different training/testing portions are shown in Ta-
ble 4, which compare static models built up once on
the training portion and kept fixed during the whole on-
line validation phase with dynamically adaptive mod-
els, according to the methodologies described in Sec-
tion 2.3. Obviously, static models are not able to pre-
dict new samples with sufficient accuracy, especially for
Recipes #2 to #4, as producing significantly large er-
rors (errors above 10%). Moreover, the errors become

larger, the larger the prediction horizon becomes (tables
to be read from last to first column). On the other hand,
dynamic models produce much lower errors, partially
coming close to the more optimistic off-line CV results,
and tendentially remaining quite stable over different
time horizons: in bold font, we highlighted the best dy-
namic method to be used for each data set. For Recipe
#1, incrPCR and FLEXFIS+FSB perform equally well,
also in the other cases incrPCR performs in a similar sta-
ble manner as FLEXFIS+PLS and FLEXFIS+FSB, with
little worse accuracy as is also the case in batch off-line
setting due to lower pure linearity. Thus, we may con-
clude that a structural change of models is not absolutely
necessary in this production process, and therefore an
adaptation of parameters sufficient.

Finally, we observed the evolution of residuals and er-
ror bars over some splits, an example results for Recipe
#4 shown in Figure 4 (residuals as dots, error bars as
solid lines around), where the left image shows the be-
havior of static models and the right one the behavior of
dynamically adaptive models. Clearly, we can observe
two major results: 1.) the residuals start drifting after a
while when applying static models, which is prohibited
when permanently updating the models and 2.) the er-
ror bars are widening up in case of higher residuals, thus
indicating their good correlation with prediction errors.
Execution times for model updating and performing pre-
diction on a single sample are significantly beyond real-
time for all approaches.

5. Conclusion

In this paper, we presented a new approach for tack-
ling the requirements regarding the on-line prediction of
the cloud point in melamine resin production process.
The approach introduces a non-linear version of PLS,
as latent variables are connected with fuzzy systems,
which are adaptable with new incoming on-line data
samples investigating recursive parameter updates with
structural evolution components. Furthermore, fuzzy
systems are connected with a new variant of forward se-
lection, termed as forward selection with bands (FSB)
which inherits the statistical concepts of forward selec-
tion, but is able to extract wavebands with arbitrary size.
Additionally, we investigated the implementation of a
new model ensemble strategy for noise reduction in re-
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Figure 4: Behavior of residuals (dots) and error bars (surrounding solid lines) for recipe #4, left for static models, right
for self-adaptive models; note also the different y-axis scale in both images

peated measurements. The results show that 1.) our ap-
proach can outperform state-of-the-art methods during
batch off-line modeling cycles and 2.) is able to pro-
hibit residual drifts over time due to permanent model
updates.
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