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Abstract

This paper continues the development of the inno-
vative method for time series analysis and forecast-
ing using special soft-computing techniques: fuzzy
(F-) transform and Fuzzy Natural Logic. We will
demonstrate that the F-transform is a proper tech-
nique for extraction of the trend-cycle of time se-
ries. Furthermore, we will elaborate in more detail
automatic generation of linguistic evaluation of its
behavior in arbitrary time slots. Thanks to the first-
degree F-transform (F1-transform), this works even
if the graph of the time series visually does not sug-
gest a clear tendency.

Keywords: Fuzzy transform; F-transform; evalua-
tive linguistic expressions; fuzzy natural logic

1. Introduction

In [1, 2, 3], advanced application of special soft
computing methods, namely the fuzzy transform
(F-transform) and fuzzy natural logic∗) to analysis
and forecasting of time series was proposed. The
method was implemented in the software LFL Fore-
caster. Its results are convincing since, as demon-
strated in [2], precision of the forecast using this
software is fully comparable with precision of the
top professional systems such as ForecastPror. In
comparison with them, however, our system pro-
vides added value — automatically generated lin-
guistic comments explaining how forecast of the
trend-cycle of the time series has been obtained.
The comments are generated using methods of fuzzy
natural logic.
In [5], we proposed the idea to generate automat-

ically also linguistic evaluation of the trend of the
time series that is, its general tendency in a given
time slot. A similar problem has been solved in
[6]. The authors suggest to approximate the general
trend by a properly inclined line that is obtained by
a heuristic and quite complicated algorithm.

In this paper, we follow the idea from [3] where
we proposed to use the F1-transform because it
provides estimation of the average value of a first
derivative of a given function over a specified area.

∗)Fuzzy natural logic continues the program initiated by
the concept of fuzzy logic in broader sense (FLb-logic) intro-
duced in [4].

This is very useful because the trend of the time se-
ries is often not clear even when viewing the graph.
The situation can be even more difficult if we are to
characterize many (tens to thousands) time series.
The evaluation can be useful, for example, when
managers are to make decision about future direct-
ing of their company, for global economical analysis,
and in many other occasions. Below, we elaborate
this idea in more detail from linguistic point of view.

The notion of F-transform was in detail described
in [7]. It has a lot of interesting properties (approx-
imation ability, optimality and others) and great
potential in various kinds of applications, for exam-
ple, in image processing, mining dependencies from
numerical data, signal processing, special numerical
methods and other ones (see [8, 9] and elsewhere).

The fuzzy natural logic (FNL) is an extension of
mathematical fuzzy logic in narrow sense. Its goal
is to develop a formal theory of human reasoning
whose essential feature is the use of natural lan-
guage. Therefore, FNL includes also mathematical
model of semantics of certain special natural lan-
guage expressions as well as theory of generalized
quantifiers. At present, it consists of formal theo-
ries of evaluative linguistic expressions, intermedi-
ate and generalized quantifiers and their syllogisms
and formal theory of the meaning of fuzzy/linguistic
IF-THEN rules and reasoning based on the latter
(cf., e.g., [10]). Recall that the concept of natural
logic appears already since seventies of the previous
century (cf. [11]).

By a fuzzy set, we understand a function A :
U −→ [0, 1] where U is a universe and [0, 1] is a
support set of some standard algebra of truth val-
ues. The set of all fuzzy sets over U is denoted by
F (U). If A is a fuzzy set in U then we will some-
times write A ⊂∼ U .

2. Theory of F-transform

The fundamental idea of this theory is to transform
a continuous function f : [a, b] −→ R to a finite
vector of numbers (direct F-transform) and then to
transform it back (inverse F-transform). The re-
sult is a function f̂ with interesting properties that
approximates the original function f .
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2.1. The principle of F-transform

The first step is to form a fuzzy partition of the
domain [a, b]. It consists of a finite set of fuzzy
sets A = {A0, . . . , An}, n ≥ 2, defined over nodes
a = c0, . . . , cn = b. Properties of the fuzzy sets from
A are specified by five axioms, namely: normal-
ity, locality, continuity, unimodality, and orthogo-
nality. A fuzzy partition A is called h-uniform if
the nodes c0, . . . , cn are h-equidistant, i.e., for all
k = 0, . . . , n−1, ck+1 = ck+h, where h = (b−a)/n
and the fuzzy sets A1, . . . , An−1 are shifted copies
of a generating function A : [−1, 1] −→ [0, 1] such
that for all k = 1, . . . , n− 1

Ak(x) = A

(
x− xk
h

)
, x ∈ [ck−1, ck+1]

(for k = 0 and k = n we consider only half
of the function A, i.e. restricted to the inter-
val [0, 1] and [−1, 0], respectively). We also put
s0 =

∫ 1
−1 A(x)dx†).

The membership functions A0, . . . , An in a fuzzy
partition A are called basic functions. Once the
basic functions A0, . . . , An ∈ A are selected, we
define a direct F-transform of a continuous function
f as a vector F[f ] = (F0[f ], . . . , Fn[f ]), where each
k-th component Fk[f ] is equal to

Fk[f ] =
∫ b
a
f(x)Ak(x) dx∫ b
a
Ak(x) dx

, k = 0, . . . , n.

The meaning of Fk[f ] component is weighted av-
erage of the functional values f(x) where weights
are the membership degrees Ak(x). The inverse F-
transform of f with respect to F[f ] is a continuous
function‡) f̂ : [a, b] −→ R such that

f̂(x) =
n∑
k=0

Fk[f ] ·Ak(x), x ∈ [a, b].

It is proved that the function f̂ differs from f (unless
f is a constant function) but, under certain condi-
tions, the sequence {f̂n} uniformly converges to f
for n → ∞. All the details and full proofs can be
found in [7, 12].

2.2. F 1-transform

The F-transform introduced above is F0-transform
(i.e., zero-degree F-transform). Its components are
real numbers. If we replace them by polynomials of
arbitrary degree m ≥ 0, we arrive at Fm transform.
This generalization has been in detail described in
[12].
Let us remark that extension of the F-transform

to higher degree is not autotelic. First of all, we
†)If the partition fulfils the orthogonality condition (sum

of all the membership functions at each point x ∈ [a, b] is
equal to 1), then s0 = 1.
‡)By abuse of language, we call by direct F-transform both

the procedure as well as its result f̂ .

can achieve better approximation properties. Other
nice property is the possibility to estimate also
derivatives of the given function f as average val-
ues over wider area. In this paper, we need only
F1-transform whose brief description follows.

Definition 1
Let f : [a, b] −→ R be a continuous function and
A = {A0, . . . , An}, n ≥ 2 be a fuzzy partition of
[a, b]. The vector of linear functions

F1[f ] = (β0
1 +β1

1(x−c1), . . . , β0
n−1 +β1

n−1(x−cn−1))
(1)

is called the F 1-transform of f with respect to the
fuzzy partition A , where

β0
k =

∫ ck+1
ck−1

f(x)Ak(x)dx
hs0

, (2)

β1
k =

∫ ck+1
ck−1

f(x)(x− xk)Ak(x)dx∫ ck+1
ck−1

(x− ck)2Ak(x)dx
(3)

for every k = 1, . . . , n− 1.

The fuzzy partition in the above definition needs
not be uniform. If it is uniform, then the following
simplification holds true.

Theorem 1
Let an h-uniform partition of [a, b] be given by the
triangular-shaped basic functions A1, . . . , An−1 ∈
A with the generating function A0 = 1− |x|. Then
the coefficients β0

k and β1
k in the representation (1)

of F1[f ] are given by

β0
k =

∫ ck+1
ck−1

f(x)Ak(x)dx
h

, (4)

β1
k =

12
∫ ck+1
ck−1

f(x)(x− ck)Ak(x)dx
h3 , (5)

for every k = 1, . . . , n− 1.

The following theorem plays an important role in
our application to time series trend evaluation.

Theorem 2
Let A = {A1, . . . , An−1} be an h-uniform parti-
tion of [a, b], let functions f and Ak ∈ A , k =
1, . . . , n−1, be four times continuously differentiable
on [a, b]. Finally, let F1[f ] be the F 1-transform (1)
of f . Then

β1
k = f ′(ck) +O(h), k = 1, . . . , n− 1. (6)

According to Theorem 2, the coefficient β1
k is a

convenient average estimation of the first derivative
of f in the interval [ck−1, ck+1]. We will use this
result in the evaluation of the trend of time series.
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2.3. Inverse F 1-transform

The inverse F 1-transform of a function f is defined
as a linear combination of basic functions with “co-
efficients” given by the F 1-transform components.

Definition 2
Let f : [a, b] −→ R be a given function and
F1[f ] = (F 1

1 [f ], . . . , F 1
n [f ]) be the F1-transform of

f with respect to A = {A0, . . . , An}. Then, the
function f̂1 : [a, b] −→ R defined by

f̂1(x) =
n−1∑
k=1

F 1
k[f ](x)Ak(x) (7)

is called inverse F 1-transform of f with respect to
F1[f ].

Similarly as the F 0 transform, the sequence {f̂1}
of inverse F 1-transforms of f uniformly converges
to f (see [12] for the details).

3. Analysis of time series using F-transform

3.1. Decomposition of time series

Let us consider a stochastic process (see [13, 14])

X : [a, b]× Ω −→ R (8)

where [a, b] ⊂ R is an interval of reals and 〈Ω,A , P 〉
is a probabilistic space. For simplicity, we will usu-
ally suppose that a = 0. By a time series we under-
stand a stochastic process where [a, b] is replaced by
a finite set Q = {0, . . . , p} ⊂ N. It follows from (8),
each X(t, ω) for t ∈ [a, b] and ω ∈ Ω is a random
variable. If we fix ω ∈ Ω then we obtain one real-
ization of (8) and in this case, we will write X(t)
only. Our basic assumption is that X(t, ω) can be
decomposed into three constituent components (cf.
[14, 15]), namely

X(t, ω) = TC (t)+S(t)+R(t, ω), t ∈ [a, b], ω ∈ Ω,
(9)

where TC (t) is a trend-cycle and S(t) is a seasonal
component of the time series X(t). The TC (t) is
assumed to be an ordinary real function. The sea-
sonal component S(t) is considered to be a mixture
of complex periodic functions

S(t) =
r∑
j=1

Pj e
i(λjt+ϕj) (10)

for some finite r where λj are frequencies, ϕj phase
shifts and Pj are amplitudes. The R(t, ω) is a ran-
dom noise, i.e. each R(t) for t ∈ [a, b] is a random
variable with the zero mean value finite variance.
We assume that µ is equal to 0 and has a finite
variance. Moreover, in this paper we consider the
noise to be represented by the simplest possible type
of a stationary stochastic process (see, e.g.,[16, Ex-
ample 1]), namely, as the process of the type

R(t) = ξeiλt+ϕ (11)

where ξ is a random variable with zero mean value
and λ a real number. It is known (see, e.g., [16])
that, under reasonable conditions, every stationary
random process with zero mean can be represented
as a linear combination of processes of type (11).

Thus, (9) becomes

X(t) = TC (t)+
r∑
j=1

Pj e
i(λjt+ϕj)+ξeiλt+ϕ, t ∈ [a, b].

(12)
.

3.2. Extraction of the trend-cycle and trend

We will suppose the following:

(i) The stochastic process X can be decomposed
as in (12) where the seasonal constituent S
consists of periodic functions having periodic-
ities Tj , j ∈ {1, . . . , r} (see (10)). The longest
of the latter is denoted by T̄ .

(ii) A number d̄ ∈ N is chosen and the distance h
in (28) between the nodes is set to

h = d̄ T̄ (13)

so that n ≥ 2. The corresponding triangular
fuzzy partition A0, . . . , An is fixed.

(iii) The trend-cycle TC is a function with no clear
periodicity or its periodicity is much longer
than h̄. Moreover, the modulus of continuity
ω(h,TC ) is small.

Put ξ̄ = sup{ξ(t) | t ∈ [a, b]} and ξ = inf{ξ(t) |
t ∈ [a, b]}, and

ξ̃ =
{
ξ̄ if ξ̄ ≥ 0,
ξ if ξ̄ < 0.

(14)

where ξ(t) is a realization of the random variable ξ
in (11) at the given time moment t. Finally, put

D0 =
∑
j∈I

∣∣∣∣∣Pj sin2(d′jπ)
d2
jπ

2

∣∣∣∣∣+ |ξ̃| sin
2(dπ)

d2π2 , (15)

D1 =
∑
j∈I

∑
j∈I

ηj(t) + |ξ̃| · η(t) (16)

where dj = h
Tj

and I ⊂ {1, . . . , r} is the set of all
subscripts, for which d′j = dj − [dj ] ∈ (0, 1), ξ̃ is
determined in (14) and η(t) is equal to

η(t) = sin2(dπ)
d4π4 ·max{(d4π4 sin2 dπ+

+ 9(λt− 2dkπ)2(sin dπ − dπ cos dπ)2) 1
2 |

k = 1, . . . , n− 1}. (17)

Let us remark that for d ≥ 2, D0 in (15) as well as
D1 in (16) are very small.
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Theorem 3
Let X(t) be realization of the stochastic process in
(9) considered over the interval [0, b]. If we con-
struct a fuzzy partition over the set of equidistant
nodes (28) with the distance (13) then the cor-
responding inverse F-transform X̂m, m ∈ {0, 1},
of X(t) gives the following estimator of the trend-
cycle:

|X̂m(t)− TC (t)| ≤ 2ω(h,TC ) +Dm (18)

for t ∈ [c1, cn−1], where Dm is the error (15) or (16),
respectively depending on the degree of the applied
F-transform.

Proofs of the theorems above and more details can
be found in [17].
The trend-cycle is generally a function with very

small changes (low frequency) and so, its modulus of
continuity ω(h,TC ) is also small. Since, as noted,
D0 and D1 are also very small, we may conclude
from (18) that X̂m ≈ TC , i.e., the F-transform
makes it possible to extract trend-cycle of time se-
ries with high precision.
To verify experimentally the above methodology,

we artificially formed a time series X(t) defined on
the set of integers {0, . . . , 100} as follows:

X(t) = TC (t)+5 sin(0.63t+1.5)+5 sin(1.26t+0.35)
+ 15 sin(2.7t+ 1.12) + 7 cos(0.41t+ 0.79) +R(t).

(19)

The function TC (t) in (19) is the trend-cycle given
by artificial data without clear periodicity (it is de-
picted by dotted line in Figure 1; its modulus of
continuity is ω(30,TC ) = 3.22). The other four
sine members form the seasonal constituent S(t).
Their periodicities are T1 = 10, T2 = 5, T3 = 2.3,
T4 = 15.4, respectively. Therefore, we set T̄ = T4
and d = 1, i.e. the distance (13) is h = 15. Con-
sequently, the width of basic functions is 2h = 30
(the time axis is discrete and so, fractions are ne-
glected). Since all d1, . . . , d4 are close to natural
numbers, the error D0 in (15) is practically 0. The
R(t) is a random noise with (almost) zero average.
The result of application of the F0-transform is de-
picted in Figure 1. One can see from it that the
both the whole seasonal constituent as well as the
noise were almost completely removed. Maximal
difference |TC (t) − X̂0(t)| = 3.32 and so, we may
conclude that the trend-cycle is estimated with the
error corresponding to (18).

4. Linguistic evaluation of the behavior of
time series

Important feature of the trend-cycle is its trend
(tendency). We may distinguish it on the whole
time series as well as in local time slots (for exam-
ple, quarter of year, production period, etc.). The
course of the time series, however, can be largely

volatile and so, it may be quite difficult to recog-
nize its trend. Thus, it might be useful to have an
objective tool using which the trend can be clearly
recognized even on the volatile time series. A suit-
able tool is the F1-transform because it enables us
to estimate the tangent. On the basis of Theorem 2,
we will formulate the following definition.

Definition 3
Let F1[X] be a direct F 1-transform of the time se-
ries X in (9) w.r.t. a fuzzy partition A . Then trend
T (Ak) of X in the area characterized by the fuzzy
set Ak ∈ A is

T (Ak) = β1
k (20)

where β1
k is the coefficient (3) (or, alternatively, (5)).

Hence, T (Ak) is a weighted average tangent of
the function X(t) over the area determined by the
fuzzy set (basic function) Ak ∈ A .

4.1. Evaluative linguistic expressions

One of methods of the fuzzy natural logic applied in
[2] is the perception-based logical deduction (PbLD).
It is applied to forecasting of the trend cycle. The
basic theory behind is the formal theory of special
natural language expressions called evaluative lin-
guistic expressions which was in detail described in
[18]. Recall that the latter are expressions such as
small, very big, rather medium, extremely strong,
etc. On the basis of our theory a mathematical
model of the meaning of evaluative expressions was
developed.

Essential concept in this theory is that of (lin-
guistic) context. For evaluative expressions, it is
determined by a triple of real numbers 〈vL, vS , vR〉
where vL < vS < vR (∈ R). These numbers repre-
sent the smallest, typically medium, and the largest
thinkable values, respectively. The context is thus
a set

w = {x | vL ≤ x ≤ vR} (21)
together with three distinguished points DP(w) =
〈vL, vS , vR〉. By W we denote the set of all con-
texts (21) and by EvExpr the set of all considered
evaluative expressions. Each evaluative expression
Ev ∈ EvExpr is assigned the meaning which is a
function

Int(Ev) : W −→ F (R).
We will call this function intension of the evaluative
expression Ev. It assigns to each context w ∈ W
a fuzzy set Extw(Ev) ⊂∼ w called extension of the
expression Ev in the context w ∈W .

We will distinguish abstract evaluative expres-
sions, i.e. expressions such as small, weak, very
strong, etc., that alone do not talk about any specific
objects and evaluative linguistic predications such as
“temperature is high, expenses are extremely low,
the building is quite ugly”, etc. In general, the lat-
ter have the surface form

〈noun〉 is 〈simple evaluative expression〉 (22)
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Figure 1: F-transform of the artificial time series X(t), t ∈ {0, . . . , 100}. The dotted line depicts the original
trend-cycle TC (t) given by the data. Using (19), it is completed by values of the four sine members and the
noise R(t) to form the artificial time series depicted also in the figure. After application of the F-transform
to X(t), we obtain approximation X̂(t) of the trend-cycle that is depicted by the solid line. Note that X̂(t)
is almost identical with the original TC (t).

where

〈simple evaluative expression〉 :=
〈hedge〉〈TE-adjective〉,

〈hedge〉 is a linguistic hedge (for example very,
rather, extremely, more or less, roughly, etc.) and
〈TE-adjective〉 is a trichotomous evaluative adjec-
tive (for example small, medium, big, large, weak,
good, etc.). The “is” takes here the role of a copula
assigning property to objects and is not treated as
a genuine verb.

4.2. Linguistic evaluation of the time series
trend

The theory of evaluative expressions provides a spe-
cial function of local perception

LPerc : w ×W −→ EvExpr . (23)

This function assigns to each value x ∈ w in each
context w ∈W an evaluative expression of the form
(22). The function is constructed in such a way that
given a linguistic context w ∈W and a value x ∈ w,
the result of (23) is the most plausible evaluative
expression that characterizes x in the given context
w. This function makes it possible to learn linguis-
tic description (a set of fuzzy/linguistic IF-THEN
rules) characterizing behavior of the trend cycle so
that its course can be predicted.
Using (23), we can also generate linguistic evalu-

ation of the trend of time series (cf. Definition 3).
First we must specify the context. We start with
specification of what does it mean “extreme increase
(decrease)”. In practice, it can be determined as
the largest acceptable difference of time series val-
ues with respect to a given (basic) time interval.
Hence, mathematically we speak about the tangent.
The usual basic time interval is 12 months, 31 days,
etc. depending on the kind of the time series. Thus,
the context is determined by the three distinguished

values vL, vS , vR of the tangent. The largest tangent
vR is determined in the way mentioned above while
the smallest one is usually vL = 0. The typical
medium value vS is determined analogously as vR.
The result is the context wtg = 〈vL, vS , vR〉.
Now, we can linguistically characterize the trend

T (Ak) in (20) with respect to the context wtg, i.e.
we will automatically generate evaluative linguistic
expressions using the function of local perception
(23):

LPerc(T (Ak), wtg). (24)

This is justified by the fact that T (Ak) is an average
tangent over an area covered by the basic function
Ak ∈ A .

Predications using which we linguistically evalu-
ate time series trend have specific form. The basic
characteristic is sign of the trend. This is charac-
terized by a special word, namely “+” is expressed
by the word increasing (or increase) and “−” by
decreasing (or decrease). This can further be com-
pleted by special expressions characterizing its gra-
dient. Moreover, the obtained expressions are ap-
parently subject to ordering that is similar to the
natural ordering of the “standard” evaluative ex-
pressions. We conclude that the general syntactic
form of expressions characterizing trend is either (a)
or (b) specified below:

(a)
Trend is 〈gradient〉 (25)

where

〈gradient〉 := stagnating|〈hedge〉〈sign〉, (26)
〈sign〉 := increasing|decreasing (27)

and

〈hedge〉 := negligibly|slightly|somewhat|
clearly|roughly|sharply|significantly.
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Figure 2: Automatically generated linguistic evaluations of monthly trend of inflation measure over 10 years.
The context for tangent is 〈vL = 0, vS = 2/12, vR = 5/12〉. Evaluation of trend in the marked areas is the
following: Slot 1.: clear increase, Slot 2.: fairly large decrease, SLot 3. stagnating, Slot 4. significant increase
and Slot 5. huge decrease.

(b) In some cases, however, only the feature in-
crease (decrease) of trend is evaluated:

〈sign of trend〉 is 〈special hedge〉 (28)

where 〈sign of trend〉 := increase|decrease and

〈special hedge〉 := negligible|slight|
small|clear|rough|large|fairly large|

quite large|significant|huge.

Note that, in fact, the increase (decrease) (of
trend) is evaluated both in (25) as well as in (28).
The difference in their use depends on the syntac-
tic specificities but not on their semantics. Some
cases, for example “trend is slightly increasing” and
“increase of trend is slight” are even synonymous.
This suggest the idea that the above special eval-

uative predications (25) and (28) are semantically
tantamount†) to the standard form

〈sign of trend〉 is B (29)

where B is an evaluative expression generated by
the function (23). Therefore, we can first gener-
ate the predications (29) linguistically characteriz-
ing the given tangent and then replace them by (25)
or (28) according to the following tables:

Case (a)
Tantamount linguistic expressions

〈gradient〉 B

stagnating Ze, ± extremely small
negligibly 〈sign〉 significantly small
slightly 〈sign〉 very small
somewhat 〈sign〉 rather small
clearly 〈sign〉 medium, quite roughly

small, very roughly small
roughly 〈sign〉 quite roughly big, very

roughly big
sharply 〈sign〉 very big
significantly
〈sign〉

significantly big

†)It is not clear whether the expressions (25) and (28) are
indeed synonymous in the strict sense. We need further lin-
guistic research to answer this question.

Case (b)

Tantamount linguistic expressions
〈special hedge〉 B

negligible significantly small
slight very small
small small
clear medium, quite roughly

small, very roughly small
rough quite roughly big, very

roughly big
fairly large roughly big, more or less

big
quite large rather big
large big
sharp very big
significant significantly big
huge extremely big

5. Examples

As mentioned, practical realization of the idea pre-
sented above is based on Definition 3. Depending
on the fuzzy partition, the generated evaluation may
concern either the whole time series or an arbitrary
part of it.

The way how evaluation is generated is demon-
strated on the case of smooth curve of monthly infla-
tion measure in Figure 2. The context for tangent is
wtg = 〈vL = 0, vS = 2/12, vR = 5/12〉. This means
that typically extremely small tangent is 0, typically
medium is 2/12 (i.e., increase 2% per 12 months)
and typically extremely big is 5/12 (i.e., increase
5% per 12 months). Note that Slot 2 is wider than
Slot 5 and so, the program generated the comment
fairly large decrease for Slot 2 and huge decrease for
Slot 5. The evaluations are generated on the ba-
sis of objectively computed average tangent and we
argue that they comply well with the course of the
time series.

More complicated is demonstration of comments
generated to one time series taken from M3-
Competition provided by the International Institute
of Forecasters (the real content of the time series is
not known). The time series is depicted in Fig. 3.
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Figure 3: Demonstration of evaluation of trend of various parts of a complicated time series. Trend of the
whole series is stagnating. Slot 1 (time 23-32): clear decrease, Slot 2 (time 70-127): negligible decrease, Slot 3
(time 92-115): small increase, Slot 4 (time 116-127): fairly large decrease.

Figure 4: Analysis and forecast of the time series from Fig. 3. Slot 3 (time 92-115 — validation part) and
Slot 4 (time 116-127 — testing part) contain computed and predicted trend cycle, and also real and predicted
values the time series itself. The generated comments in Slot 4 are: rough decrease for the predicted data and
fairly large decrease for the real data.

One can see that its trend is by no means clear.
Slot 3 (time 92-115) of this time series is validation
part, on which the quality of the forecast is tested
and the best one is chosen. Slot 4 (time 116-127)
is testing part that is not used for computation of
the forecast but only for comparison of the forecast
with the real data. In Fig. 4 the same time series is
analyzed and its forecast is computed.
The linguistic context for the trend evaluation

was set to wtg = 〈vL = 0, vS = 1200/12, vR =
3000/12〉 since the time series demonstrates clear
periodicity of T = 12 (this was obtained using peri-
odogram— cf., e.g., [13]). The generated evaluation
of trend of the predicted values in the testing part is
rough decrease while evaluation of trend of the real
data is fairly large decrease. Both evaluations are
in good agreement which is another support for the
quality of our forecasting method. Thus, instead
of presenting concrete predicted numbers, the man-
ager might be satisfied with the information that
“rough decrease is expected”.

6. Conclusion

In this paper, we presented special soft computing
methods that can be used for analysis and fore-
casting of time series. The used methods are F-
transform (both zero and first degree) and one of
the theories of the fuzzy natural logic, namely the
formal theory of evaluative linguistic expressions.

F-transform method is used especially for extraction
of the trend-cycle of the time series while methods
of the fuzzy natural logic are applied to prediction
of the latter. Furthermore, by combination of the
F1-transform and fuzzy natural logic we can gen-
erate linguistic comments to the trend of the time
series in arbitrary time slots. We believe that such
comments can be useful, for example, in situations
when it is difficult to see the global trend because
the time series is too much varying.

One of the directions for further research is ap-
plication of other theories of fuzzy natural logic, for
example formal theory of intermediate quantifiers
developed in [19, 20]. The latter are linguistic ex-
pressions such asmost, many, almost all, few, some,
a large part of, etc. Using this theory, we can model
the meaning of sentences, such as

“most (many, few) analyzed time series
stagnated recently but their future trend
is slightly increasing”,

“huge decrease of trend of almost all time
series in the recent quarter of the year”,

and similar. Moreover, we can also apply syllogistic
reasoning with such expressions, for example
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Few analyzed time series are not
from IT industry

Many analyzed time series are clearly raising
Few clearly raising time series are not

from IT industry

It is important to realize that the latter is exam-
ple of valid generalized Aristotle’s syllogism which
means that it is true in all situations (models).
Another possibility is to mine interesting infor-

mation from the given set of time series, summarize
their properties and summarize also their possible
future development. Namely, we start with analysis
and forecasting of all the time series. Then we gen-
erate comments to interesting time slots, summarize
them using the intermediate quantifiers and derive
further properties on the basis of valid syllogisms.
We will discuss this topic in some of future papers.

Acknowledgment

This paper was supported by the program MŠMT-
KONTAKT II, project LH 12229 “Research and
development of methods and means of intelligent
analysis of time series for the strategic planing
problems”. Additional support was given also
by the European Regional Development Fund in
the IT4Innovations Centre of Excellence project
(CZ.1.05/1.1.00/02.0070).

References

[1] V. Novák, M. Štěpnička, I. Perfilieva, and
V. Pavliska. Analysis of periodical time series
using soft computing methods. In Da Ruan,
J. Montero, J. Lu, L. Martínez, P. D’hondt,
and E.E. Kerre, editors, Computational Intel-
ligence in Decision and Control, pages 55–60.
World Scientific, New Jersey, 2008.

[2] V. Novák, M. Štěpnička, A. Dvořák, I. Perfil-
ieva, V. Pavliska, and L. Vavříčková. Analysis
of seasonal time series using fuzzy approach.
Int. Journal of General Systems, 39:305–328,
2010.

[3] V. Novák, I. Perfilieva, and V. Pavliska. The
use of higher-order F-transform in time series
analysis. In World Congress IFSA 2011 and
AFSS 2011, pages 2211–2216, Surabaya, In-
donesia, 2011.

[4] V. Novák. Towards formalized integrated the-
ory of fuzzy logic. In Z. Bien and K.C. Min, ed-
itors, Fuzzy Logic and Its Applications to Engi-
neering, Information Sciences, and Intelligent
Systems, pages 353–363. Kluwer, Dordrecht,
1995.

[5] V. Novák, I. Perfilieva, and N. G. Jarushk-
ina. A general methodology for manage-
rial decision making using intelligent tech-
niques. In E. Rakus-Anderson, R.R. Yager,
N. Ichalkaranje, and L.C Jain, editors, Re-

cent Advances in Fuzzy Decision-Making, pages
103–120. Springer, Heidelberg, 2009.

[6] J. Kacprzyk, A. Wilbik, and Zadrożny. Lin-
guistic summarization of time series using a
fuzzy quantifier driven aggregation. Fuzzy Sets
and Systems, 159:1485–1499, 2008.

[7] I. Perfilieva. Fuzzy transforms: theory and ap-
plications. Fuzzy Sets and Systems, 157:993–
1023, 2006.

[8] I. Perfilieva, V. Novák, and A. Dvořák. Fuzzy
transform in the analysis of data. Int. Journal
of Approximate Reasoning, 48:36–46, 2008.

[9] I. Perfilieva. Fuzzy transforms: A challenge to
conventional transforms. In P. W. Hawkes, ed-
itor, Advances in Images and Electron Physics,
147, pages 137–196. Elsevier Academic Press,
San Diego, 2007.

[10] V. Novák. Reasoning about mathematical
fuzzy logic and its future. Fuzzy Sets and Sys-
tems, 192:25–44, 2012.

[11] G. Lakoff. Linguistics and natural logic. Syn-
these, 22:151–271, 1970.

[12] I. Perfilieva, M. Daňková, and B. Bede. To-
wards a higher degree F-transform. Fuzzy Sets
and Systems, 180:3–19, 2011.

[13] J. Anděl. Statistical Analysis of Time Series.
SNTL, Praha, 1976 (in Czech).

[14] J.D. Hamilton. Time Series Analysis. Prince-
ton, Princeton University Press, 1994.

[15] A. Bovas and J. Ledolter. Statistical Methods
for Forecasting. Wiley, New York, 2003.

[16] A.M. Yaglom. An introduction to the theory of
stationary random functions. Revised English
ed. Translated and edited by Richard A. Silver-
man. Englewood Cliffs, NJ: Prentice-Hall, Inc.
XIII, 1962.

[17] V. Novák, I. Perfilieva, M. Holčapek, and
V. Kreinovich. Filtering out high frequencies
in time series using f-transform. Information
Sciences, (submitted).

[18] V. Novák. A comprehensive theory of trichoto-
mous evaluative linguistic expressions. Fuzzy
Sets and Systems, 159(22):2939–2969, 2008.

[19] V. Novák. A formal theory of intermedi-
ate quantifiers. Fuzzy Sets and Systems,
159(10):1229–1246, 2008.

[20] P. Murinová and V. Novák. A formal theory of
generalized intermediate syllogisms. Fuzzy Sets
and Systems, 186:47–80, 2012.

47




