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Abstract

The main aim of this paper is to give a charac-
terization of the category of fuzzy soft topological
spaces and their continuous mappings, denoted by
FSTOP. For this reason, we construct the cate-
gory of antichain soft topological spaces and their
continuous mappings, denoted by ASTOP. Also,
we show that the category FSTOP is isomorphic
to the category ASTOP.

Keywords: fuzzy soft set, fuzzy soft topology, soft
I-topology.

1. Introduction

In 1999, Molodtsov [13] proposed a completely new
concept called soft set theory to model uncertainty,
which associates a set with a set of parameters. The
soft set theory has been applied to many different
fields with great success. Later, Maji et al. [11]
introduced the concept of fuzzy soft set which com-
bines fuzzy sets [17] and soft sets [13]. Soft set and
fuzzy soft set theories have a rich potential for ap-
plications in several directions. So far, lots of spec-
tacular and creative researches about the theories of
soft set and fuzzy soft have been considered by some
scholars (see [3, 7, 8, 9, 12, 15]). Also, Aygünoğlu
et al. [5] studied the topological structure of fuzzy
soft sets based on the sense of Šostak [16].

The main result in this paper is that the category
of compatible antichain soft topological spaces and
their continuous mappings, denoted by ASTOP,
is isomorphic to that of the category FSTOP of
fuzzy soft topological spaces and their continuous
mappings. This study is organized in the follow-
ing manner. In the first and second sections, we
give some fundamental concepts and notions about
soft sets, fuzzy sets, fuzzy soft sets and fuzzy soft
topology which are necessary for the last section.
In the main section, we construct the category of
antichain soft topological spaces and their continu-
ous mappings, denoted by ASTOP, and show that
the category FSTOP is isomorphic to the category
ASTOP. Hence, we obtain the result that the cate-
gory ASTOP is a topological category over SET3.

2. Preliminaries

Throughout this paper, X refers to an initial uni-
verse, E is the set of all parameters for X, I = [0, 1]
and I1 = I \ {1}. For λ ∈ [0, 1], λ(x) = λ, for all
x ∈ X.

Definition 2.1 [13] F is called a soft set over X
if and only if F is a mapping from E into the set of
all subsets of the set X, i.e., F : E → P(X), where
P(X) is the power set of X.

The value F (e) is a set called e-element of the soft
set for all e ∈ E. It is worth noting that the sets F (e)
may be arbitrary, empty, or have nonempty inter-
section. Thus a soft set over X can be represented
by the set of ordered pairs

(F,E) = {(e, F (e)) | e ∈ E}.

Example 2.1 (1) [7] Let X = {x1, x2, x3, x4, x5}
be a universal set and E = {e1, e2, e3, e4} be a
set of parameters. If F (e1) = {x2, x4}, F (e2) =
X,F (e3) = F (e5) = ∅ and F (e4) = {x2, x3, x5},
then the soft set F is written by

(F,E) = {(e1, {x2, x4}), (e2, X), (e4, {x1, x3, x5})}.

(2) [14] For a topological space (X, τ), if F (x)
is the family of all open neighborhoods of a point
x ∈ X, i.e., F (x) = {V ∈ τ | x ∈ V }, then the
ordered pair (F,X) indeed a soft set over P(X).

Definition 2.2 [17] A fuzzy set on X is a map-
ping U : X → I, i.e., the family of all the fuzzy sets
on X is just IX consisting of all the mappings from
X to I. The value U(x) represents the degree of x
belonging to the fuzzy set U.

A fuzzy set U on X can be represented as follows:

U = {(U(x)/x) | x ∈ X,U(x) ∈ I}

Definition 2.3 [7, 15] f is called a fuzzy soft set
over X, where f is a mapping from E into IX , i.e.,
fe , f(e) : X → I is a fuzzy set on X, for each
e ∈ E.

Here, the value f(e) is a fuzzy set called e-element
of the fuzzy soft set for all e ∈ E. Thus, a fuzzy soft
set f overX can be represented by the set of ordered
pairs

(f,E) = {(e, f(e)) | e ∈ E, f(e) ∈ IX}.

The family of all fuzzy soft sets over X is denoted
by (IX)E .

Example 2.2 [7] Let X = {x1, x2, x3, x4, x5} be
a universal set and E = {e1, e2, e3, e4} be a set of
parameters. If f(e1) = {0, 9/x2, 0.5/x4}, f(e2) =
1, f(e3) = 0, f(e4) = {0.2/x1, 0.4/x3, 0.8/x5}, then
the fuzzy soft set f is written by

(f,E) = {(e1, {0, 9/x2, 0.5/x4}), (e2, 1), (e3, 0),
(e4, {0.2/x1, 0.4/x3, 0.8/x5})}.

Definition 2.4 [14, 15] Let f and g be two fuzzy
soft sets over X. Then
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(a) f is called a fuzzy soft subset of g and write
f ⊑ g if fe ≤ ge, for each e ∈ E. Two fuzzy soft sets
f and g over X are called equal if f ⊑ g and g ⊑ f .

(b) the union of f and g is the fuzzy soft set
h = f ⊔ g, where he = fe ∨ ge, for each e ∈ E.

(c) the intersection of f and g is the fuzzy soft set
h = f ⊓ g, where he = fe ∧ ge, for each e ∈ E.

Definition 2.5 The complement of a fuzzy soft
set f is denoted by f ′, where f ′ : E −→ IX is a
mapping given by f ′

e = 1 − fe, for each e ∈ E.
Clearly (f ′)′ = f .
Definition 2.6 [15] (Null fuzzy soft set) A fuzzy

soft set f over X is called a null fuzzy soft set and
denoted by Φ, if fe = 0, for each e ∈ E.

Definition 2.7 [15] (Absolute fuzzy soft set) A
fuzzy soft set f over X is called an absolute fuzzy
soft set and denoted by Ẽ, if fe = 1, for each e ∈ E.
Clearly (Ẽ)′ = Φ and Φ′ = Ẽ.

Proposition 2.1 [2] Let ∆ be an index set and
f, g, h, fi, gi ∈ (IX)E , for all i ∈ ∆. Then we have
the following properties:

(1) f ⊓ g = g ⊓ f, f ⊔ g = g ⊔ f .
(2) f⊔(g⊔h) = (f⊔g)⊔h, f⊓(g⊓h) = (f⊓g)⊓h.
(3) f = f ⊔ (f ⊓ g), f = f ⊓ (f ⊔ g).
(4) f ⊓

(⊔
i∈∆ gi

)
=

⊔
i∈∆ (f ⊓ gi).

(5) f ⊔ (⊓i∈∆gi) = ⊓i∈∆ (f ⊔ gi).

Definition 2.8 [4] Let φ : X1 −→ X2 and
ψ : E1 −→ E2 be two functions, where E1 and
E2 are parameter sets for the crisp sets X1 and X2,
respectively. Then the pair φψ is called a fuzzy soft
mapping from X1 to X2.

Definition 2.9 [4] Let f and g be two fuzzy soft
sets over X1 and X2, respectively and let φψ be a
fuzzy soft mapping from X1 to X2.

(1) The image of f under the fuzzy soft mapping
φψ, denoted by φψ(f), is the fuzzy soft set over X2
defined by

φψ(f)k(y) =

{∨
φ(x)=y

∨
ψ(a)=k fa(x), if x ∈ φ−1(y)

0, otherwise
,

for each k ∈ E2, y ∈ X2.
(2) The pre-image of g under the fuzzy soft map-

ping φψ, denoted by φ−1
ψ (g), is the fuzzy soft set

over X1 defined by
φ−1
ψ (g)e(x) = gψ(e)(φ(x)), for each e ∈ E1, x ∈

X1.
If φ and ψ are injective (surjective), then φψ is

said to be injective (surjective).
(3) Let φψ be a fuzzy soft mapping from X1 to

X2 and φ∗
ψ∗ be a fuzzy soft mapping from X2 to X3.

Then the composition of these mappings from X1
to X3 is defined as follows: φψ ◦φ∗

ψ∗ = (φ◦φ∗)ψ◦ψ∗ ,
where ψ : E1 −→ E2 and ψ∗ : E2 −→ E3.

Proposition 2.2 [9] Let X1 and X2 be two
universes, f, f1, f2, fi ∈ (IX1)E1 and g, g1, g2, gi ∈
(IX2)E2 for all i ∈ ∆, where ∆ is an index set.
Then the following properties are satisfied:

(1) If f1 ⊑ f2, then φψ(f1) ⊑ φψ(f2).
(2) If g1 ⊑ g2, then φ−1

ψ (g1) ⊑ φ−1
ψ (g2).

(3) φψ
(⊔

i∈∆ fi
)

=
⊔
i∈∆ φψ(fi).

(4) φψ (⊓i∈∆fi) ⊑ ⊓i∈∆φψ(fi), the equality holds
if φψ is injective.

(5) φ−1
ψ

(⊔
i∈∆ gi

)
=

⊔
i∈∆ φ−1

ψ (gi).
(6) φ−1

ψ (⊓i∈∆gi) = ⊓i∈∆φ
−1
ψ (gi).

3. Fuzzy soft topological spaces

To formulate our program and general ideas more
precisely, first recall the concept of fuzzy topolog-
ical space, that is of a pair (X, τ) where X is a
set and τ : IX → I is a mapping (satisfying some
axioms) which assigns to every fuzzy set on X the
real number, which shows "to what extent" this set
is open. According to this idea a fuzzy topology is
a fuzzy set on IX . This approach have lead us to
define fuzzy soft topology which is compatible with
the fuzzy soft theory. By our definition, a fuzzy soft
topology is a fuzzy soft set over the set of all fuzzy
soft sets (IX)E which denotes "to what extent" the
fuzzy soft set is open according to the parameters.

Throughout this study, let E and K be arbitrary
nonempty sets viewed on the sets of parameters.

Definition 3.1 [5] A mapping τ : K −→ I(IX )E

is called a fuzzy (E,K)-soft topology on X if it
satisfies the following conditions for each k ∈ K
(where τk , τ(k) : (IX)E → I is a mapping for
each k ∈ K):

(O1) τk(ΦX) = τk(ẼX) = 1M .
(O2) τk(f ⊓ g) ≥ τk(f) ∧ τk(g), for each f, g ∈

(IX)E .
(O3) τk(

⊔
i∈∆ fi) ≥

∧
i∈∆ τk(fi), for each

{fi}i∈∆ ⊆ (IX)E .
Then the pair (X, τ) is called a fuzzy (E,K)-soft

topological space. The value τk(f) is interpreted as
the degree of openness of a fuzzy soft set f with
respect to parameter k ∈ K.

Let τ1 and τ2 be two fuzzy (E,K)-soft topologies
on X. We say that τ1 is finer than τ2 (τ2 is coarser
than τ1), denoted by τ2 ≤ τ1, if τ2

k (f) ≤ τ1
k (f) for

each k ∈ K, f ∈ (IX)E .
Example 3.1 [5] Let T be a fuzzy topology on X

in Šostak’s sense, that is, T is a mapping from IX to
I. Take E = I and define T : E −→ IX as T (e) ,
{µ : T (µ) ≥ e} which is levelwise fuzzy topology of
T in Chang’s sense [6], for each e ∈ I. However,
it is well known that each Chang’s fuzzy topology
can be considered as Šostak fuzzy topology. Hence,
T (e) satisfies (O1), (O2) and (O3).

According to this definition and by using the de-
composition theorem of fuzzy sets [10], if we know
the resulting fuzzy soft topology, then we can find
the first fuzzy topology. Therefore, we can say that
a fuzzy topology can be uniquely represented as a
fuzzy soft topology.

Example 3.2 Let X = {x, y},K = {k1, k2} and
E be a nonempty arbitrary parameter set for X.
Define the mapping, τ : {k1, k2} → I(IX )E as fol-
lows: for each e ∈ E,
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τk1(f) =


1
4 , if fe(x) > fe(y)
1
5 , if fe(x) < fe(y)
1, if fe(x) = fe(y)

,

τk2(f) =


9

10 , if fe(x) > fe(y)
8

10 , if fe(x) < fe(y)
1, if fe(x) = fe(y)

.

It is easy to verify that τ is a fuzzy (E,K)-soft
topology on X.

Definition 3.2 [5] Let (X1, τ
1) be a fuzzy

(E1,K1)-soft topological space and (X2, τ
2) be a

fuzzy (E2,K2)-soft topological space. Let φ :
X1 −→ X2, ψ : E1 −→ E2 and η : K1 −→ K2
be functions. Then the mapping φψ,η from X1
into X2 is called a fuzzy soft continuous map if
τ1
k (φ−1

ψ (g)) ≥ τ2
η(k)(g) for all g ∈ (IX2)E2 , k ∈ K1.

The category of fuzzy soft topological spaces
and fuzzy soft continuous mappings is denoted by
FSTOP.

Theorem 3.1[5] The category FSTOP is a topo-
logical category over SET3 with respect to the for-
getful functor V : FSTOP → SET3 which is
defined by V (X, τ) = (X,E,K) and V (φψ,η) =
(φ,ψ, η).

4. The category of ASTOP

Definition 4.1 A parameterized family T =
{Tk}k∈K of Tk ⊆ (IX)E which satisfies the following
properties for each k ∈ K is called the (E,K)-soft
I-topology on X.

(S1) ΦX , ẼX ∈ Tk.
(S2) If f, g ∈ Tk, then f ⊓ g ∈ Tk.
(S3) If {fi}i∈Γ ⊆ Tk, then

⊔
i∈Γ

fi ∈ Tk.

The pair (X, T ) is called an (E,K)-soft I-
topological space.

Let (X1, T 1) be an (E1,K1)-soft I-topological
space, (X2, T 2) be an (E2,K2)-soft I-topological
space, φ : X1 → X2, ψ : E1 → E2 and η : K1 → K2
be functions. Then the mapping φψ,η : (X1, T 1) →
(X2, T 2) is called continuous if

g ∈ T 2
η(k) implies φ−1

ψ (g) ∈ T 1
k , for each k ∈ K.

Example 4.1 (1) The family T t = {T t
k } is called

trivial (E,K)-soft I-topology on X where for each
k ∈ K, T t

k = {ΦX , ẼX}.
(2) The family T D = {T D

k } is called discrete
(E,K)-soft I-topology on X where for each k ∈ K,
T D
k = (IX)E .
Given a set X, let STO(X) denote all (E,K)-soft

I-topologies on X. Consider the partial order ⊆ on
STO(X) which is defined as follows:

T ⊆ S :⇔ Tk ⊆ Sk, for each k ∈ K.

Then, according to this order, the union and
the intersection of two (E,K)-soft I-topologies

T = {Tk}k∈K and S = {Sk}k∈K on X are described
by the following equalities:

T ∪S = {(T ∪S)k}k∈K and T ∩S = {(T ∩S)k}k∈K ,

where (T ∪ S)k = {Tk ∪ Sk} and (T ∩ S)k =
{Tk ∩ Sk}.

Hence STO(X) is a complete lattice with respect
to the order ⊆ which is defined above, with the least
element T t and the greatest element T D.

Definition 4.2 An object of the category
ASTOP is a pair (X, γ), where X is a set and
γ : [0, 1] → STO(X) is a map such that for each
a ∈ I1, γ(a) =

∪
b>a

γ(b) and γ(1) = {ΦX , ẼX}.

A morphism φψ,η : (X1, γ
1) → (X2, γ

2)
in ASTOP is a map φψ,η : (X1, E1,K1) →
(X2, E2,K2) such that for each a ∈ [0, 1], φψ,η :
(X1, γ

1(a)) → (X2, γ
2(a)) is continuous.

An object (X, γ) of ASTOP is called a compat-
ible antichain (E,K)-soft I-topological space and
γ is said to be a compatible antichain (E,K)-soft
I-topology on X.

Given a fuzzy (E,K)-soft topology τ on X, we
can obtain a collection of (E,K)-soft I-topologies
{τa | a ∈ [0, 1]} on X, where τak = {f ∈ (IX)E |
τk(f) ≥ a}. Moreover, if we let γτk (a) =

∪
b>a

τ bk , then

(X, γτ ) is an object of ASTOP.
Lemma 4.1 Let τ be any fuzzy (E,K)-soft topol-

ogy on X. Then for each f ∈ γτk (a), τk(f) ≥ a.
Proof. It is trivial and therefore omitted.
Proposition 4.1 (1) If two fuzzy (E,K)-soft

topologies on X determine the same object in
ASTOP, then they are equal.

(2) Let (X,S) and (Y, T ) be fuzzy (E1,K1)-soft
topological space and fuzzy (E2,K2)-soft topologi-
cal space, respectively. If φψ,η : (X,S) → (Y, T ) is
continuous, then φψ,η : (X, γS) → (Y, γT ) is con-
tinuous.

Proof. (1) Let T and S be two fuzzy (E,K)-
soft topologies on X satisfying γT = γS . We want
to show T = S, i.e., for each k ∈ K and f ∈
(IX)E , Tk(f) = Sk(f).

Let k ∈ K and a ∈ I1 = I \ {1} with a < Tk(f).
Fix a number b ∈ I1 such that a < b ≤ Tk(f). Then
f ∈ T b

k ⊆ γT
k (a) = γS

k (a). By Lemma 4.1, we get
Sk(f) ≥ a. Therefore, since a ∈ I1 is arbitrary, we
obtain the following inequality Tk(f) ≤ Sk(f). On
the other hand, by the similar way, we can show
Sk(f) ≤ Tk(f). Hence the conclusion of (1).

(2) Suppose that φψ,η : (X,S) → (Y, T ) is contin-
uous. To show that φψ,η : (X, γS) → (Y, γT ) is con-
tinuous, we have to show that for each a ∈ I, k ∈ K
and g ∈ γT

η(k)(a), we have φ−1
ψ (g) ∈ γS

k (a).
From g ∈ γT

η(k)(a) =
∪
b>a

γT
η(k)(b), we know that

g has the form of g =
⊔
j∈J

⊓i∈Mjgji , where Mj
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is a finite index set and gji ∈ γT
η(k)(bji) (bji >

a). By Lemma 4.1, Tη(k)(gji) ≥ bji > a.

Thus Sk(φ−1
ψ (gji)) ≥ Tη(k)(gji) > a. More-

over, φ−1
ψ (gji) ∈ γS

k (a). Therefore, φ−1
ψ (g) =⊔

j∈J
⊓i∈Mjφ

−1
ψ (gji) ∈ γS

k (a).

By the above proposition, we have a functor from
the category FSTOP of fuzzy (E,K)-soft topologi-
cal spaces to ASTOP, which is injective on objects.

Given a compatible antichain (E,K)-soft I-
topology γ on X, then we can construct a fuzzy
(E,K)-soft topology T γ on X such that for each
f ∈ (IX)E and k ∈ K,

T γ
k (f) = sup{a ∈ I1 | f ∈ γk(a)}.

We have:
Proposition 4.2 T γ is a fuzzy (E,K)-soft topol-

ogy on X, called induced fuzzy (E,K)-soft topology
by γ.

Proof. We need to check the axioms (O1)-(O3)
of Definition 3.1.

(O1): It is clear that T γ
k (ẼX) = 1 and T γ

k (ΦX) =
1, for each k ∈ K.

(O2): Let µ be any number in I1 and k ∈ K
such that µ < T γ

k (f) ∧ T γ
k (g). Hence µ < T γ

k (f)
and µ < T γ

k (g). Taking a λ ∈ I such that µ <
λ < T γ

k (f) and µ < λ < T γ
k (g), there exists af

and ag such that λ < af ∧ ag and both f ∈ γk(af )
and g ∈ γk(ag). Then f ∈ γk(λ) and g ∈ γk(λ),
moreover f ⊓g ∈ γk(λ) since γk(λ) is an (E,K)-soft
I-topology. That is, T γ

k (f ⊓ g) ≥ λ > µ. Since µ is
arbitrary, we obtain T γ

k (f ⊓g) ≥ T γ
k (f)∧T γ

k (g), for
each k ∈ K.

(O3): Let µ be any number in I1 and a family of
{fj | j ∈ J} ⊆ (IX)E such that µ <

∧
j∈J T γ

k (fj).
Thus T γ

k (fj) > µ for every j ∈ J. By the definition
of T γ

k , there exists aj > µ such that fj ∈ γk(aj),
hence we obtain ⊔j∈Jfj ∈

∪
β>µ

γk(β) = γk(µ). This

means that µ ≤ T γ
k (⊔j∈Jfj). Therefore, since µ is

arbitrary, T γ
k (⊔j∈Jfj) ≥

∧
j∈J T γ

k (fj) is obtained.
Proposition 4.3 (1) If (X, γ) and (X, ξ) are

two objects in ASTOP and they determine the
same fuzzy (E,K)-soft topology on X, then they
are equal.

(2) Let (X, γ) and (Y, ξ) be (E1,K1)-soft I-
topological space and (E2,K2)-soft I-topological
space, respectively. If φψ,η : (X, γ) → (Y, ξ) is con-
tinuous, then φψ,η is continuous with respect to the
induced fuzzy soft topologies.

Proof. (1) Let τ be the same fuzzy (E,K)-soft
topology induced by γ and ξ. We want to show γ =
ξ, i.e, γk(a) = ξk(a) for every k ∈ K and a ∈ I1. As
an alternative way, for each a ∈ I1, we show that for
all b > a, f ∈ γk(b) means f ∈ ξk(a). Thus, γk(a) =∪
b>a

γk(b) ⊆ ξk(a) and conversely in a similar way. In

fact, f ∈ γk(b) implies τk(f) ≥ b > a. Hence, there
exists c > a such that f ∈ ξk(c), i.e., f ∈ ξk(a).

(2) Suppose that φψ,η : (X, γ) → (Y, ξ) is contin-
uous. We hope that τγk (φ−1

ψ (f)) ≥ τ ξη(k)(f) holds
for every k ∈ K1 and f ∈ (IY )E2 .

Taking any number a ∈ I1 such that a < τ ξη(k)(f),
then there exists b ∈ I1 such that a < b and
f ∈ ξη(k)(b). Thus, φ−1

ψ (f) ∈ γk(b) since φψ,η :
(X, γ(b)) → (Y, ξ(b)) is continuous. We obtain,
τγk (φ−1

ψ (f)) ≥ b > a. Therefore, since a is arbitrary,
we get the conclusion, τγk (φ−1

ψ (f)) ≥ τ ξη(k)(f).
By above propositions, we obtain the following

theorem.
Theorem 4.1 The category FSTOP is isomor-

phic to the cartegory ASTOP. Hence ASTOP is
a topological category over SET3.

5. Conclusion

In this paper, we gave a characterization of the cat-
egory FSTOP[5]. In this manner, we constructed
ASTOP, the category of antichain soft topologi-
cal spaces and their continuous mappings. Also, we
showed that FSTOP is isomorphic to ASTOP and
so, ASTOP is a topological category over SET3.
From [1], we learn that a topological category inher-
its all limits and colimits, whenever they exist, from
the underlying ground category. Hence, ASTOP
has all limits and colimits, since SET has them.
For further research, one can try to extend these
results to the case of L-fuzzy soft topological spaces
where L is a completely distributive lattice.
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