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Abstract

A categorical approach to probability allows to put
basic notions of probability into a broader mathe-
matical perspective, to evaluate their roles, and mu-
tual relationships. Classical probability theory and
fuzzy probability theory lead to two particular cat-
egories and their relationship (in categorical terms)
enable us to understand and explicitly formulate the
difference between them. Using our previous re-
sults, we show that the category ID of D-posets of
fuzzy sets provides a framework in which the tran-
sition from classical to fuzzy probability theory is
the consequence of some natural assumptions im-
posed on classical notions. Probability domains are
constructed via suitable cogenerators and we study
the transition in terms of the fuzzification of clas-
sical Boolean cogenerator. We introduce two cate-
gories CP and FP of probability spaces and observ-
ables corresponding to the classical probability the-
ory and the fuzzy probability theory, respectively.
We show that CP is isomorphic to a subcategory
of FP.
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1. Introduction

In the classical probability theory, CPT for short
([18], [20]), random events are modelled by fields
of sets having the following additional property: in
order to capture limit stochastics, random events
are supposed to be closed with respect to sequential
limits, i.e., we assume that random events form a
o-field of sets.

In the so-called fuzzy probability theory, FTP for
short ([16]), also known as operational probability
theory ([1], [2]), random events are modelled by
suitable systems of fuzzy sets. This generalization of
classical random events allows to model some quan-
tum phenomena. Namely, a fuzzy random variable
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can send an outcome of a random experiment into
a genuine probability measure. Further, the tran-
sition from classical random events to fuzzy ran-
dom events corresponds to the ideas of L.A. Zadeh,
who has proposed in [27] to fuzzify CPT via re-
placing a o-field A of subsets of 2 by the system
M(A) of all measurable functions ranging in the
closed unit interval [0, 1], and replacing a probabil-
ity measure P by the probability integral [udP,
u € M(A). Further he proposed to generalize the
Boolean operations on random events to coordinate-
wise V and A operations: for u, v € M(A), we put
(uV)(w) =u(w) Vow), (uAv)(w) =u(w) Av(w),
w € Q, and for u € M(A) we define its complement
u® as u(w) = 1 —u(w), w € Q. Also, FPT allows
to generalize important constructions of CPT such
as conditional probability, conditional expectations,
independence of fuzzy events (effects) and observ-
ables (dual maps to fuzzy random variables), and
Markov processes (see [16], [17]).

As it is known ([21], [26], [5]), there are other
canonical ways how to generalize the Boolean op-
erations in order to develop a reasonable fuzzy
stochastics. In FPT and some other generaliza-
tions of probability theory, effect algebras ([6])—
equivalently D-posets ([19], [4])—and MV-algebras
model the algebraic part of the theories. Valuable
comments on generalizations of probability theory
can be found in [22].

Using our previous results (cf. [23], [24], [25], [9],
[10], [11], [12], [13]), we show that the category of D-
posets of fuzzy sets provides a framework in which
the transition from CPT to FPT is the consequence
of some natural assumptions imposed on CPT.

A categorical approach to probability allows to
put all basic notions into a broader mathematical
perspective, to evaluate their roles, and mutual re-
lationships ([14]). CPT and FPT lead to two partic-
ular categories and their relationship (in categorical
terms) enable us to understand and explicitly for-
mulate the difference between CPT and FPT.

In the next section we recall the construction of
domains of probability via a cogenerator ([9], [10]).

2. Domains of probability

Elementary events, random events, probability
measures, random variables, and observables con-
stitute central notions of the probability theory lan-
guage. Each of them captures some reality cut-out



connected with specific and complex type of un-
certainty. In a relaxed way the situation in ques-
tion can be viewed as some sort of drama. Ele-
mentary events (random experiment outcomes) are
its characters (properties), random events describe
relationships among characters (fellowships), proba-
bility measures state their power (importance), ran-
dom variables enable to tell a story in the cos-
tumes of real numbers (measurements) and, finally,
observables provide effective tools to compare two
dramas. CPT can be characterized by all features
mentioned above. The problem is that the result-
ing theory controls only a limited piece of reality,
namely the black-and-white one, described by yes-
no questions-answers. From this point of view, FPT
captures wider spectrum of situations: we allow
questions with more than two opposite answers (e.g.
yes, no, unknown).

A generalized pipeline introduced in [12] serves
as an illustrating example of such “fuzzy” stochas-
tic situation. It deals with a redistribution of a unit
volume of liquid and, from the mathematical view-
point, it models a transformation of one discrete
probability space into another one. Simple pipelines
(represented by classical maps) do not allow to solve
all situations, but multivalued (fuzzy) pipelines pro-
vide solutions for every pair of discrete probability
spaces. This leads to the notion of a “fuzzy” (oper-
ational) random variable and yields an alternative
approach to random walks (cf. [13]).

A categorical approach to probability enables us
to incorporate both, CPT and FPT, into a gener-
alized probability theory, GPT for short, in which
they become special cases. In GPT, random events
are represented by objects of a suitable chosen cate-
gory, and the other three CPT basic notions are de-
fined in terms of morphisms and, moreover, simple
categorical constructions correspond to important
probabilistic notions and guarantee their properties.

In this section, we deal with a categorical ap-
proach to domains of probability. Based on previous
results (cf. [9]), our procedure can be summarized
as follows (see Fig. 1):

e Start with a “system A of events”;

e Choose an “evaluator C'”—a cogenerator; usu-
ally a structured set suitable for “evaluating”
(e.g. the two element Boolean algebra, unit in-
terval carrying FLukasiewicz MV-structure, D-
poset, ...);

e Choose a set X of “properties” evaluated via C'
such that X separates A;

e Represent each event a € A via the “evalua-
tion” of A into CX assigning each a € A its
evaluation ax € CX, ax = {z(a); v € X};

e Form the minimal “subalgebra” D of C¥ con-
taining {ax; a € A} (see Fig. 2);

e The subalgebra forms a probability domain
D C CX.
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Figure 1: Representation of an event.
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Figure 2: Subalgebra of events.

In the approach described above, the cogenera-
tor carrying a suitable structure to evaluate events
plays a crucial role. The two-element Boolean
algebra {0,1} as the cogenerator C yields some
o-algebra of random events as the domain of prob-
ability in CPT (each subset of universe can be rep-
resented via its indicator function). For a change,
the unit interval [0, 1] equipped by the Lukasiewicz
MV-structure as the cogenerator C' produces some
system of fuzzy sets which can serve as the proba-
bility domain in FPT.

In general, each choice of a suitable cogenerator
C leads to the domain of probability of some par-
ticular probability theory and such domains can be
described as objects of a suitable (sub)category. Be-
cause there are more than one probability theory,
it is desirable to define a reference category and
its subcategories corresponding to particular prob-
ability theories and some functors between these
subcategories corresponding to the relationships be-
tween the probability theories in question. Re-
ferring to our previous results in [9] and [10], we
claim that the unit interval I = [0,1] considered
as a D-poset is the cogenerator which yields a suit-
able reference category, namely the category ID of
D-posets of fuzzy sets and sequentially continuous
D-homomorphisms.

D-posets have been introduced by F. Kopka and
F. Chovanec in [19] in order to model quantum phe-
nomena. They generalize ([4]) various structures,
e.g. D-lattices, orthoalgebras, Boolean algebras,
MV-algebras and provide a category in which states
and observables become morphisms [3]. Recall that
a D-poset is a partially order set X with the least
element Ox, the greatest element 1x, and a partial
binary operation called difference, such that a © b
is defined iff b < a, and the following axioms are
assumed:



(D1) a©0x = a for every a € X;
(D2) Ifc<b<a,thenacb<aocand (a©c) S
(aob)=boec

Recall that each D-poset can be reorganized into
an effect algebra and the two structures are isomor-
phic (cf. [5], [25]).

Essential to probabilistic applications ([10], [13],
[12], [24]) are D-posets of fuzzy sets, i.e. system
X C I¥ equipped with the coordinatewise partial
order, coordinatewise convergence of sequences, the
bottom and the top element of IX, and closed with
respect to the partial operation difference defined
coordinatewise. If for each x,y € X, x # y, there
exists u € X such that u(z) # u(z), then X is said
to be reduced. We always assume that X is reduced.
Denote ID the category having (reduced) D-posets
of fuzzy sets as objects and having sequentially con-
tinuous D-homomorphisms as morphisms. Objects
of ID are subobjects of the powers IX (cf. [23]).

An ID-poset allows us to model the sure and im-
possible events, and the negation of an event as the
difference of the sure event and the event in ques-
tion. It is an efficient simple structure in which
random events in both CPT and FPT can be de-
scribed and their structure is completely determined
by the morphisms into cogenerator C' = [0, 1]. Thus
it makes sense to study probability domains within
the category ID.

We identify each subset A of a universe X and
its indicator function x4, xa(x) =1 if 2 € A and
xa(z) = 0 otherwise. Then ([23]) a o-field A of sub-
sets of X can be viewed as an ID-poset having some
additional properties, where x4 © xp = xa — xXB i
defined iff B C A. Similarly, the measurable func-
tions M(A) can be viewed as an ID-poset having
some additional properties, where for u,v € M(A)
we define u ©v = u — v iff v(z) < u(z) for all
x € X. Now, let B be a o-field of subsets of Y
and let f: X — Y be a measurable map. Then
the preimage map f<: B — A, f<(B) = {z € X;
f(z) € B}, is a sequentially continuous Boolean ho-
momorphism of B into A. It is easy to see that every
probabilistic integral (defined for [0,1]-valued func-
tions measurable with respect to a probability mea-
sure) and every probability measure (as the inte-
gral reduced to indicator functions) are sequentially
continuous D-homomorphisms (the sequential con-
tinuity follows from the Lebesgue dominated con-
vergence theorem). More important is that also the
converse holds true (cf. [7]).

Lemma 2.1. (i) Let p be a sequentially continuous
D-homomorphism of A into I. Then p is a proba-
bility measure.

(i) Let h be a sequentially continuous D-
homomorphism of M(A) into I. Then there exists
a probability measure P on A such that for each
u € M(A) we have h(u) = [udP, i.e., h is a prob-
ability integral on M(A) with respect to P.
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Consequently observables, probability measures,
and fuzzy probability measures become morphisms
of the category ID ([11]).

Observe that nontraditional cogenerators lead to
nontraditional models of probability. For exam-
ple, for a given positive integer n, the cogenerator
Sp = A{(x1,22, ...,xn) € I; D x; <1} yields a
generalized fuzzy probability, in which each gener-
alized random event represents n “competing sub-
jects” ([8]). More information on other nonclassi-
cal cogenerators and the corresponding (probabil-
ity) theories can be found in [10], [12], [13], [15].

3. Fuzzification of a cogenerator

In this section we formalize the transition from
{0,1} (Boolean cogenerator) to I (fuzzy cogener-
ator).

Let A be a D-poset. By a sub-D-poset of A we
understand a subset B of A containing the top and
the bottom element of A, equipped with the inher-
ited partial order and closed with respect to the
inherited partial operation of difference.

Recall ([5], [7]) that a bold algebra is a system
X C [0,1]% containing the constant functions Oy,
1x and closed with respect to the complement and
(Lukasiewicz) operations @, @: for a,b € X put
(a & b)(z) = a(r) @ b(xr) = min{l,a(z) + b(z)},
(a® b)(2) = a(z) © b(x) = max{0, a(z) + b(z) — 1},
x € X. Bold algebras are MV-algebras represen-
table as [0, 1]-valued functions. Also the unit inter-
val I = [0, 1] can be considered as a bold algebra of
all measurable [0, 1]-valued functions. Indeed, let T
be the trivial field of all subsets of a singleton {-}.
Then [0,1] = [0,1]1} = M(T). If a bold algebra
X C[0,1]¥ is sequentially closed in [0, 1]%, then X
is a Lukasiewicz tribe.

Lemma 3.1. Let B be a sub-D-poset of I and let
a,be B. Then

(i) {1=[(1—a)AD]} > a;
(ii) 1— ({1—[(1—a) Ab]} — a) = min{1,a + b}.

Proof. If (1—a)Ab=1—a, then 1 < a+b, thusa =
{11—[(1—a)/\b}} >aand 1—({1—[(1—a)Ab]} —a)
I (1—a)Ab—b then 1> a-+b thus 1—b—
{1-[1—=a)Ab]} >aand 1—({1—[(1—a)Ab]} —a)
=a+b. O

Corollary 3.2. Let B be a sub-D-poset of I. Then
B is closed with respect to the Lukasiewicz opera-
tions a®b = min{1, a+b}, a®b = max{0,a+b—1}.

Lemma 3.3. Let B be a bold subalgebra of I. For
a, be B,b<a, puta©b=a—b. Then B equipped
with the inherited order and the difference “©7 is a
sub-D-poset of I.

Corollary 3.4. There is a canonical one-to-one re-
lationship between sub-D-posets of I and bold subal-
gebras of I.



It is easy see that a subtractivity of a D-
homomorphisms into [ is equivalent to the addi-
tivity of states (see [11]).

Definition 3.5. Let A be a D-poset and let n be
a natural number, n > 1. Assume that for each
a € A, a # 0, there exists an element a(n) € A such
that 0 < a(n) < a and, foreach k =1,2, ..., n—1,
we can subtract from a successively k-times a(n)
and the result is greater or equal to a(n), and if we
subtract from a successively n-times a(n), then the
result is 0. Then A is said to be divisible by n. If A
is divisible by n for each natural number n, n > 1,
then A is said to be divisible.

Definition 3.6. Let A be a D-poset and let B be a
sub-D-poset of A. Assume that for each countable
set S C B there exists the supremum sup S of S in
A and sup S € B. Then B is said to be o-complete
in A.

Lemma 3.7. Let B be a sub-D-poset of I. If B is
divisible and o-complete in I, then B = 1.

Corollary 3.8. I is the smallest of all sub-D-
posets B of I such that B is divisible and o-complete
i 1.

This yields a description of the relationship be-
tween {0,1} and [0,1] and leads to the following
definition.

Definition 3.9. Let A be a o-complete divisible
D-poset and let B be a sub-D-poset of A. If there
is no proper sub-D-poset C' of A such that

(i) B is a sub-D-poset of C,
(ii) C is divisible,
(iii) C is o-complete in A,

then A is said to be a fuzzification of B.

4. Fuzzification of objects

First, we show that M(A) is a fuzzification of A.

Let A be a (reduced) o-field of subsets of a set X
and let M(A) be the set of all measurable functions
ranging in [0, 1]. Recall that both A and M(A) are
FLukasiewicz tribes and D-posets of fuzzy sets with
respect to the coordinatewise partial order and the
inherited difference operation defined coordinate-
wise.

Lemma 4.1. The sub-D-poset M(A) is divisible
and o-complete in [0,1]%.

Proof. Clearly, M(A) is divisible. Let {u,}22; be a
sequence of elements of M(A). Forn=1,2, ..., put
Uﬂ:\/zzl Uk (Un(x) = sup{ul(x), UQ(.”L'), s ’un(x)}v
x € X). Then {v,}52 is a nondecreasing sequence
converging in [0,1]% to v = sup{ui,ug, ...}
Since the sub-D-poset M(A) is closed with respect
to limits, we have v € M(A). Thus M(A) is
o-complete in [0, 1]X. O
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Lemma 4.2. Let X be a sub-D-poset of [0,1] such
that A C X. If X is divisible and o-complete in
[0,1]%, then M(A) C X and the sub-D-poset M(A)

is o-complete in X.

Proof. Since X is o-complete in [0, 1]X, for u,v € X
we have u Vv € X. It is known (cf. [10]) that
each lattice D-poset of fuzzy sets is a bold algebra.
Thus & is a bold algebra. Since X is o-complete
in [0, 1], it follows that X is sequentially closed in
[0,1]%, and hence X is a Lukasiewicz tribe. It is
known (cf. [10]) that for each divisible Lukasiewicz
tribe X C [0,1]% there exists a o-field B of subsets
of X such that X = M(B). From A C X we get
M(A) C X O

Corollary 4.3. M(A) is the smallest of all sub-D-
posets X of [0,1]% such that A is contained in X
and X is divisible and o-complete in [0,1]X.

Now, let us turn to categorical aspects of the tran-
sition from classical probability to fuzzy probability.

Definition 4.4. Let (2, A, P) and (E,B, Q) be clas-
sical probability spaces and let h be a sequentially
continuous D-homomorphisms of B into A such that
Q(B) = P(h(B)) for all B € B. Then h is said to
be measure preserving. It will be called a classical
observable.

Definition 4.5. Let (Q, A, P) be a classical proba-
bility space, let M(A) be the corresponding D-poset
of fuzzy sets and let [(-)dP be the probability in-
tegral with respect to P. Then (2, M(A), [(-)dP)
is said to be a fuzzy probability space.

Observe that there is a canonical one-to-one cor-
respondence between classical probability spaces
and fuzzy probability spaces.

Definition 4.6. Let (Q,M(A), [(-)dP) and
(E,M(B), [(-) dQ) be fuzzy probability spaces. Let
h be a sequentially continuous D-homomorphisms
of M(B) into M(A) such that [vdQ = [ h(v)dP
for each v € M(B). Then h is said to be probability
integral preserving. It will be called a fuzzy observ-
able. If, moreover, h(B) € A for all B € B, then h
is said to be a restricted fuzzy observable.

It is known (cf. [1], [2], [16], [11], [12]) that
there are fuzzy observables which are not restricted.
Such observables correspond to genuine fuzzy (op-
erational) random variables and have definite quan-
tum qualities.

Denote CP the category having classical proba-
bility spaces as objects and classical observables as
morphisms. Denote FP the category having fuzzy
probability spaces as objects and fuzzy observables
as morphisms.

QUESTION. How are the categories CP and FP
related?

To answer our question, we recall the following
extension theorem (cf. [7], [11]).



Theorem 4.7. Let (Q, A, P) and (E,B,Q) be clas-
sical probability spaces and let (Q, M(A), [(-)dP)
and (2, M(B), [(-)dQ) be the corresponding fuzzy
probability spaces. Let h. be a classical observable.

Then there exists a unique fuzzy observable h such
that he(B) = h(B) for all B € B.

Denote RFP the subcategory of FP having the
fuzzy probability spaces as objects and the re-
stricted fuzzy observables as morphisms.

The next theorem follows directly from the pre-
vious one.

Theorem 4.8. The categories CP and RFP are
isomorphic.

ANSWER. There is a canonical isomorphism be-
tween CP, representing the classical probability the-
ory, and the subcategory RFP of FP, representing
the fuzzy probability theory. The objects of the
two categories are in a canonical one-to-one cor-
respondence, but the fuzzy probability theory has
“more” morphisms. Indeed, to each classical do-
main of probability A (o-field of sets) there corre-
sponds a unique domain of fuzzy probability theory
M(A) (the set of all measurable functions ranging
in I) but, in general, there are fuzzy observables
of M(B) to M(A) which are not extensions of any
classical random variable from B to A.

The author is indebted to the referee for his valu-
able suggestions how to improve the original text.
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