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Abstract

Our recent work proposed a new meaning preser-
vation approach together with a parameterizable
nested hyperball structured search space for inter-
pretable fuzzy systems in order to solve a problem of
inconsistency observed in conventional interpretable
fuzzy knowledge bases and simultaneously to ad-
dress the adjustment of the trade-off between inter-
pretability and accuracy.

Based on intuitive reasonings and simulation re-
sults a conjecture was formulated about favorable
trade-off adjustment properties of the proposed
method.

The aim of the present paper is to construct a
mathematical model, in which the conjectured prop-
erties can be analyzed and formally verified. Some
computational considerations about the interpreta-
tion of the resulting knowledge bases are also made.

Keywords: Interpretable fuzzy systems, Knowl-
edge extraction, Interpretability-accuracy trade-off,
Formal analysis

1. Introduction

Fuzzy systems use fuzzy sets to describe domains
of values of certain variables. Similarly to human
thinking, linguistic terms can be used for this pur-
pose. This property makes fuzzy systems rather
unique among modeling systems, because while
maintaining some intuitive conditions about the col-
lection of fuzzy sets, they possess the ability to be
easily interpreted, i.e. easily understandable even
for laymen users.

If the knowledge base of a fuzzy system is con-
structed by experts using their own knowledge,
i.e. the fuzzy sets in the rules of the rule base are
defined manually, the mentioned conditions can be
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met easier than if the knowledge base is built auto-
matically via machine learning processes. However,
there are a number of methods to deal with this
problem (e.g. [1], [2], [3])-

In case of interpretable fuzzy systems within con-
ventional approaches (throughout this paper con-
ventional approaches denote the ones being widely
accepted within the fuzzy research community and
discussed e.g. in [1], [2], [3]) a rule base is con-
structed considering particular restrictions. After
the learning process the resulting fuzzy sets are la-
beled with linguistic terms. The restrictions of using
only a bounded set of labeled fuzzy sets are neces-
sary in order the linguistic terms to have more or
less intuitive meanings. There are some generally
accepted guidelines within the community for these
restrictions as follows (see e.g. [1] — [4]):

(1) Distinguishability: the sets must be distin-
guishable from each other, i.e. the allowed over-
lap of the sets is limited.

Justifiable number of sets: the number of sets
must be at most as many that a human can deal
with (e.g. considering the well-known Miller’s
number, 7 + 2 [5]).

Normality: each set must be normal (the height
of the sets must be 1).

Coverage (applies only for dense rule bases):
the sets must form a cover of the whole input
space, i.e. all elements of the input space must
belong to at least one set with at least a pre-
defined @ > 0 membership value.

(2)

It must be mentioned that other restrictions
can also be considered (e.g. convezity, unimodal-
ity, complementarity, uniform granulation, left-
most/rightmost fuzzy sets, natural zero positioning
[4]), or some conditions might be omitted from the
list, for example, the coverage property can be sub-



stituted by a weaker condition in case of interpola-
tive fuzzy systems as they use sparse rule bases
(cf. [6]). Since these restrictions may vary, hence-
forth in this paper they are only referred to as inter-
pretability conditions, and the proposed approaches
will be independent of these specific restrictions.

Our past works [7] — [10] dealt with the construc-
tion of various types of fuzzy rule based knowledge
extraction architectures by applying several evolu-
tionary optimization approaches. These researches
mainly focused on the efficiency of the established
systems in terms of the achieved accuracy of the ex-
tracted knowledge base. However, as the outstand-
ing inherent interpretability possibility of fuzzy sys-
tems can be a strong reason for their application,
this paper deals with interpretability issues when
fuzzy rule based systems are used for knowledge ex-
traction.

Due to the trade-off between interpretability and
accuracy, conventional approaches have a huge dis-
advantage. Depending on the resulting rule base of
the learning process, totally different sets can be la-
beled with the very same linguistic terms, i.e. the
vocabulary is not persistent throughout the wide
range of problems. It might even occur, when two
partitions of the input space in two contexts dif-
fer essentially, that the same sets are labeled with
different linguistic terms (see Figure 1).

very small small  medium big very big

verysmall  small medium big very big

Figure 1: The same fuzzy set (characterised by
points a, b and ¢) is labeled with different linguistic
terms in two different covers

However, even if the sets belonging to the linguis-
tic terms were defined exactly, and thus if the terms
denoted the same sets in each resulting rule base,
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i.e. if the vocabulary was persistent, the interpreta-
tion of the result could be significantly different for
two different persons, because due to the ambigu-
ity of natural languages the meaning of a natural
language term may differ for different people.

This is the reason why our recent work [11] pro-
posed a new, personalized spectrum of approaches
for constructing interpretable fuzzy systems. The
main idea of these approaches is to use the linguis-
tic terms in the same sense as the user uses them,
i.e. to have a common vocabulary with the user.

Together with this new meaning preservation ap-
proach, a parameterizable nested hyperball struc-
tured search space was proposed for interpretable
fuzzy systems in order to solve the above mentioned
problem of inconsistency observed in conventional
interpretable fuzzy knowledge bases and simultane-
ously to address the adjustment of the trade-off be-
tween interpretability and accuracy.

Based on intuitive reasonings and simulation re-
sults a conjecture was formulated about favorable
trade-off adjustment properties of the proposed
method. Namely, if the search space of the rule
base parameters is restricted to narrower hyper-
balls, then although the resulting knowledge base
becomes less accurate, after interpretation it will
be more accurate than in case of the application of
broader hyperballs.

This paper aims at constructing a mathematical
model, in which this conjecture can be analyzed and
formally verified.

The next section briefly describes the recently
proposed approaches. The third section establishes
a stochastic model as the base of formal discussions
and then verifies the previously conjectured prop-
erties. Some computational considerations about
the interpretation of the resulting knowledge bases
will be made in the fourth section. Finally, the last
section draws some conclusions and highlights some
open questions concerning the new approaches.

2. The recently proposed approaches

This section gives an overview of the recently pro-
posed approaches [11], on which the results of the
present work are based.

2.1. Meaning preservation technique

As interpretability means that the knowledge is for-
mulated in a manner that makes the information di-
rectly understandable for the user, the easiest way
to meet the requirements of interpretability is to
hold the information in a representation being fa-
miliar to the user. Trivially, such representations
can be natural languages. However, there are some
difficulties with them due to their imprecision. If
people hear or read something being formulated in
a natural language, they associate a meaning to the
heard or read text. However, a person may associate



a certain meaning, whereas another person may as-
sociate something else, because there are no exact
definitions of phrases in natural languages.

In order to deploy the terms in the same sense
as the user applies them, they must be interviewed.
A simple interview could be to ask the user to de-
fine the fuzzy sets. However, supposing someone
not being familiar with fuzzy sets at all (which is
a rather realistic assumption), the interview can be
worked out by using fuzzy membership elicitation
techniques (see e.g. [12]). After that, the adequate
fuzzy sets can be constructed easily.

Linguistic terms may not involve only adjec-
tives (e.g. ‘hot’), but modifiers, so-called linguistic
hedges, too (e.g. ‘a bit’, or ‘very’). These modifiers
can be considered to be transformations of the sets
of the adjectives being under modification. There-
fore, if the user is interviewed about ‘cold’, ‘hot’
and about how the user modifies the meaning of an
adjective if it is combined with the linguistic hedge
‘very’, the meanings of ‘very cold’ and ‘very hot’
need not be interviewed, because they can be com-
puted by applying the transformation of ‘very’ on
the fuzzy sets of ‘cold” and ‘hot’. This may lead
to a complexity reduction. (Obviously, the trans-
formations should be carefully defined based on a
well-designed interview, because e.g. in case of ‘very’
shifting the certain sets with a positive value may
be suitable for ‘hot’, but it is surely not a proper
action for ‘cold’.)

The whole procedure may work in reverse, too.
Instead of interviewing, the user could be trained,
i.e. the user could be told about the meaning of
certain terms (adjectives and modifiers) in a similar
way to the interview.

Based on the user defined linguistic terms, fuzzy
rules and rule bases can be constructed easily. How-
ever, not every rule base constructed from these
terms will fulfill the interpretability conditions, and
thus not all of them will be interpretable (e.g. due
to lack of consistency). These ones will be called in-
valid, whereas the ones fulfilling the interpretability
conditions will be referred to as valid interpretable
solutions.

2.2. Nested hyperball structured search
space

The interpreted information can be characterized
by a finite, but in practice, a limited amount of fea-
tures, because a human can deal with only a lim-
ited number of information units. Furthermore, a
human cannot distinguish between units of infor-
mation being too close to each other in meaning,
i.e. the granularity of distinguishable information is
not infinitely small, and hence the space of possible
solutions is bounded. Thus, the set of interpretable
solutions will be considered finite and will be de-
noted by Xy, hereafter.

If a fuzzy system is constructed from samples
by applying supervised machine learning techniques
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and interpretability is the main objective of this pro-
cess, the task of learning is to determine an z§ € Xo,
such that Vo € X : A(xf) > A(z), where A(.) is the
measure of (relative) accuracy, which is a strictly
monotonic decreasing function of the error, which
can be calculated e.g. based on the differences be-
tween the outputs of the system and the desired
outputs. This x; can be achieved by global search-
ing numerical optimization algorithms after a suffi-
cient time. The result of the learning process is the
most accurate knowledge base among interpretable
solutions. Clearly, the stress is on interpretability
in this case.

Let X, denote the largest considerable set of pa-
rameter vectors of the particular fuzzy rule base. If
a fuzzy system is constructed from samples by ap-
plying supervised machine learning techniques and
accuracy is the main objective of this process, the
task of learning is to determine an z7, € X, such
that Vo € X : A(x%,) > A(z), where A(.) is the
same (relative) accuracy function as it was above.
This % can be approximated with arbitrary accu-
racy by global searching numerical optimization al-
gorithms (recall that global search methods stochas-
tically converge to the global optimum). The result
of the learning process is the most accurate knowl-
edge base regardless of interpretability.

It is obvious that if a sequence of search spaces
being nested into each other Xy C X,, C X,, C
-+ C X,, C Xoo (where the sequence of r; indices is
a strictly monotonic increasing sequence) is defined,
then it has a positive probability that an optimal
solution in a broader space has higher accuracy than
all the elements of a narrower space.

However, if r; > 0 and z;, ¢ Xo (where z7, is
the optimal solution within X,.,), an interpretation
can also be given, if there is an interpreter function
J: Xo = Xo, such that J(x} ) is somehow the
‘closest’ element from Xy to zy , ie. Vo € Xp :
d(zy,,3(xy,)) < d(zy,,x), where d : Xoo X Xoo +
R* U {0} is a metric. That is, the interpretation
of a solution z; ¢ Xo is the closest interpretable
solution g € Xo to =y, according to a distance
function.

Tt is clear, that J(z% ) can never be more accurate
than x( by definition as well as z{; can never be more
accurate than z7_.

This shows (matching intuitive expectations) that
interpretability and accuracy are conflicting require-
ments: if an interpretable knowledge base is con-
structed, it is less accurate, and if a more accurate
one is constructed, expectedly, after interpretation
it becomes less accurate than if interpretation had
been the main, and accuracy had only been a sec-
ondary objective.

These conflicting approaches can be combined
with different weights to intermediate approaches
if both the accuracy of the non-interpreted knowl-
edge base and the accuracy of the interpreted one
are important. Such combinations can be achieved



by narrowing the search space of possible knowledge
bases and producing a sequence of nested search
spaces Xo C X, C X,, C---C X, C Xw.

It would be greatly favorable, if, as a benefit,
there was a tendency showing that the interpreted
solution was expectedly more accurate in case of a
narrower search space, because this way by choos-
ing a narrower search space from the sequence, al-
though, the accuracy of the non-interpreted knowl-
edge base would be lower, the accuracy of the in-
terpreted knowledge base would be higher. There-
fore, roughly spoken, one could balance between in-
terpretability and accuracy by selecting the proper
search space.

As it was confirmed experimentally in [11], this
tendency holds, if the search spaces are unions of
hyper-balls constructed around all the elements of
X, where the hyper-balls have the same radius val-
ues, furthermore a broader and a narrower search
space differ from each other only in the radius value.

Henceforth, ri,r9, etc. will not only denote in-
dices here, but they will also stand for the radius
of the corresponding balls. Furthermore, X, can
be considered as the union of balls having zero ra-
dius around the interpretable solutions, i.e. the in-
terpretable solutions themselves, and X,, can be
considered as the union of infinitely large balls that
cover the whole problem space. This is the reason
of the indices 0 and oo.

Formally, the search spaces can be defined as fol-
lows:

X, ={z € Xoo|Fzg € X : d(x,20) <7} (1)

Clearly, this way the search spaces are nested into
each other (X,, C X, if r; <7j).

3. Mathematical model and formal analysis

In order to verify the above property theoretically,
it is necessary to establish a mathematical model
as a ground for the formal analysis. Since there
are basically two significant unknown components
in a machine learning process, namely the learn-
ing problem and the (quasi-)optimal knowledge base
(i.e. the parameter set of the learning architecture)
obtained, the mathematical model definitely has to
be stochastic. Therefore, in the following the basic
notions of the model will be defined in the light of
this requirement.

It is also obvious that beyond the stochastic be-
havior the model has to be established by assuming
the fulfillment of some intuitive conditions. These
assumptions will follow after the basic definitions.

After the construction of the model, the expected
properties will be derived formally.

3.1. Basic definitions

The definitions of interpretable and valid solutions
emphasizing their relation, furthermore the defini-
tions of the given translation invariant metric, the
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accuracy function, the interpreter function and the
narrowed search spaces are repeated first.

Definition 1. X is the set of interpretable solu-
tions, X s the set of valid solutions, for which
sets the relations Xog C Xoo € R"™ hold true, where
n is the number of numerical parameters of the mod-
eling architecture.

Definition 2. d : R" x R” — RS‘ is an arbitrary
translation invariant metric (where Ry is the set of
non-negative real numbers).

Definition 3. A : X, — R is the accuracy func-
tion, which is continuous over X .

Definition 4. J : X, — Xy is the interpreter
function, for which Vi, € XoVzg € Xp
d(I(Tx0)s Too) < d(x0,To0) (w.T.t. the given metric

d).

Definition 5. X, = {z € X |3z, € Xp :
d(xz,x9) < r} C R™ 4s the narrowed search space
w.r.t. a given r € Rf U {oo}.

Henceforth, 71,79, etc. will not only denote in-
dices, but they will also stand for the radius of
the corresponding balls. Furthermore, Xy can be
considered as the union of balls having zero radius
around the interpretable solutions, i.e. the inter-
pretable solutions themselves, and X, can be con-
sidered as those parts of the union of infinitely large
balls covering the whole problem space. This is the
reason of the indices ‘0’ and ‘oo’

Definition 6. X := {z € X,|Vy € X, : A(x) >
A(y)} is the set of optimal solutions w.r.t. a given
r € RE U {oo}.

In order to obtain a stochastic model the event
space, the event algebra and the probability mea-
sure have to be defined.

Definition 7. L is the set of possible learning
problems (defined by e.g. input-output samples) and
C is the set of choice functions on {X0 < r < oo}.
(That is, every f € C assigns an element f(X}) of
X} to each set X for every 0 <r < o0).

Then Q := L x C is the event space, which con-
tains “(learning problem, function determining the
optima chosen by the optimization process for all
radius values)” pairs as elementary events.

The event algebra F is the o-algebra containing
all the elements of P(S2), where P() denotes the
powerset of the event space, F = P ().

There is also given a probability measure P over
F defining how frequently the events arise.

The (quasi-)optimal solutions found by the op-
timization algorithms are defined as random vari-
ables.

Definition 8. z} : @ — X is a random variable
for each r determined by the choice functions of the
elementary events (the optimum chosen by the op-
timization algorithm).



Since for every r the set X, is a subset of X,
X, is not necessarily the union of balls. In the fol-
lowing definition R is the radius of the largest open
balls contained in X, around all the interpretable
solutions.

Definition 9. R := sup{r € R} U {oo}|Vzy € Xo:
B, (zo) C X, } is the critical radius w.r.t. the metric
d, where By(x9) = {z € R"|d(z,z9) < r} is the
open ball around xy in R™ with radius r.

In later formal argumentations different events
will be considered. Some of them are defined here.

Definition 10. Given 0 < ry < ro < 00, then the
following two events form a partition of Q. E, :=
{weQlzy, € X, }, d.e. xy, lies inside the narrower
search space X, By := {w € Qlz;, ¢ X, }, d.e. ],
lies outside the narrower search space X,,.

3.2. Intuitive assumptions

The intuitively defined conditions about the model
are listed below.

It is a reasonable assumption that the following
event has a positive probability: “the optimum of
a broader search space has a higher accuracy than
the optimum of a narrower one”.

Assumption 1. If0 <r; <19 < 00, then

P(A(a},) < Alal,)) > 0 (2)

Assume that if an optimization process running
in a broader search space finds a solution within a
narrower set, then the distribution of this solution
is equal to the distribution of the one found by the
optimization process when running in the narrower
search space.

Assumption 2. If 0 < r; < 19 < 00, then in case
of the event Ey, the conditional distribution of the
random variables xy. and xy, are equal, i.e. for each
Borel set B € B(X,,): P(z}, € B|E1) = P(z}, €
B|Ey).

It is also assumed that if two points within the
set of valid solutions having the same accuracy value
are translated by the same vector, the expected ac-
curacy will remain the same.

Assumption 3. Vz1, 25 € X0, Vo € R" : (A(zy) =
Al@)) Az +v € Xoo) AN(za+v € Xo) —
E(A(z1 + v)|E) = E(A(z2 + v)|E), for both events
E = Es99 and E = Eg (defined later in Lemma 2
and in Theorem 2).

The following assumption declares the positive
probability of an event defined later.

Assumption 4. The event Eao1, which will be
defined in Lemma 2, has positive probability,
i.e. P(Eggl) > 0.
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3.3. Theoretical results

The expected property will be proved in parts
through lemmas. The first lemma applies the fol-
lowing proposition.

Proposition 1. If 0 <r; < ry < oo, then:

Vw e Q: A(zy,) < A(zy,) (3)
Proof. It follows from Definition 5 that X,, C X,,,
hence due to Definition 8 and Definition 6 the
proposition holds. O

Lemma 1. If0 < r; < 1y < oo, then EA(z),) <
EA(zy,).

Proof. Let us define two events:

Ez :={w € QA(z;,) = A(z;,)}

T2

(4)
()

It is clear that due to Proposition 1 these events
form a partition of €.
Applying the “Tower Law” [13]:

Ey:={we QA(z})) < A(z;,)}

i€{1,2}: EA(zy,) = E(E(A(zy, |0 (E3, E4)))) =

(6)

where o(FE3, E4) is the o-algebra generated by
events F3 and Fy.

It follows from Eq. 4 and Eq. 5
E(A(2}, | Bs)) = E(A(2}, | By)) and
E(A(x} |Ey)) < E(A(z;,|Es)) hold true, respec-

E(A(zy, |E3))P(Es) + E(A(z7, | Ea))P(E),

that

tively.

Therefore, considering Assumption 1,
i.e. P(E4) > 0, it follows that
EA(zy, ) < EA(x},). O

Lemma 2. If 0 <7 <7y < R, then EAJ(z;,) <
EAJ(x})).

Proof. Let us distinguish three cases:

(1) In case of the event Fj, due to Assump-
tion 2, the interpreted solutions J(x} ) and
J(zy,) have the same distributions, i.e. for each
Borel set B € B(Xo): P(J(zy,) € B|E)) =
P(3(xy,) € B|E1), thus E(AJ(x} )|E1) =

E(A3(z2,) ).

In case of the event Ej if 3(z;, ) = J(x7,) (event

Egl), then E(A/J(Jj;k‘l)‘Egl) = E(Aj(l‘:z)lEQl),

obviously.

In case of the event E, if J(x; ) # J(z7,)

(event Fas), then let us define 2’ such that

o' = J(xy,) + (27, — J(z},)) (see Figure 2).

Then A(z;,) > A(z'), otherwise ;. would not

be in X, which would be a contradiction.

Now, consider the functions f,¢:[0,1] = R

) = AQAI(27,) + (1= Nay) - (7)

g(\) = AI(z7,) + (1=Na")  (8)



If ﬂ)\ S [07 1] : f()\) = g()\) (event FEo91 C EQQ),
then since A is continuous over X, due to
the Intermediate Value Theorem [14] and the
fact that f(0) = A(xy) > A(z') = g(0),
YA € [0,1] : f(A) > g(M\) holds. Hence
3@z) = f() > g(1) = (ar,). Thus,
E(Aj(.’l?ilﬂEggl) > E(Aj(.’l?izﬂEggl) holds.

If 9\ € [0, 1] : f(A) = g()\) (event FEooo C EQQ),
then applying Assumption 3 with the substi-
tutions x; = AJ(z},) + (1 — Nz}, 2
AJ(zr, )+ (1=N)z" and v := (1-X)(3(z;, ) —
(see Figure 2), equation E(AJ(z; )|Eaz2
E(Aj(.’l}:zﬂEggg) holds.

I 1

zy,
)

Since {El, Egl, E221, E222} is a partition of Q and
according to Assumption 4 event E997 has positive

probability, the statement follows. O
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Figure 2: Illustration of the variables defined in

Lemma 2.

Based on the above lemmas it can be seen that
the formal analysis verifies the expected property
formulated in the following theorem.

Theorem 1. If 0 <r; <ry < R, then

EAJ(x;,) < EAJ(z;,) <EA(z; ) <EA(z,). (9)
The equality in the middle holds exactly when r1 =
0.

Proof. From Lemma 1 and Lemma 2 it is straight-
forward to see that the theorem holds true. O

Remark 1. Without Assumption 1 and Assump-
tion /4 the inequalities of Fq. 9 within Theorem 1
would not be strict:

EAJ(2?,) < EA3(z%,) < EA(2?,) < EA(z?,).

T2

(10)

Proof. This follows from the proofs of Lemma 1 and
Lemma 2. 0

The next theorem shows why the interpreter func-
tion should choose the closest interpretable solution.
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Theorem 2. If 0 < r < R, then the closest in-
terpretable solution J(x}) gives the highest expected
accuracy among the interpretable solutions.

Proof. The proof will be similar to the third case in
Lemma 2.

Take an arbitrary interpretable solution xy € Xj.
Let us define 2’ such that «' := xo + (2} — J(x})).
Then A(z}) > A(z'), otherwise z would not be in
X, which would be a contradiction. Now, consider
the functions f,g:[0,1] - R

fA) = AAI(zy) + (1 = N)zy) (11)
g(A) = A(Azo + (1 — N)z') (12)

If A €[0,1]: f(\) = g()\) (event Es), then since
A is continuous over X, due to the Intermediate
Value Theorem and the fact that f(0) = A(z}) >
A(z") = g(0), YA € [0,1] : f(A) > g()) holds. Hence
3(a2) = f(1) > g(1) = zo. Thus, E(AJ(z%)|Fs) >
E(A(x))|Fs) holds.

If 3IX € [0,1] : f(A) = g(N\) (event Eg), then ap-
plying Assumption 3 with the substitutions z; =
AJ(x2)+(1=N)zk, x9 := Azo+(1-N)2’ and v := (1—
A)J(zf) — (1 — N)zk, the equation E(AJ(z))|Es) =
E(A(x))|Fs) holds.

Since {Fs, Eg} is a partition of 2, the statement
of the theorem follows. O

Naturally, depending on the applied metric
the balls may not only be balls (like in case of
Euclidean-metric), but they can be e.g. cubes
(Maximum-metric),  octahedrons (Manhattan-
metric), ellipsoids (Mahalanobis-metric), or many
others. In other words, every object being a ball
according to any translation invariant metric can
be applied instead of Euclidean balls.

The two original and the uncountable interme-
diate approaches (since the radius can take arbi-
trary values from (0,00)) form a whole spectrum
between the two opposite ends, i.e. between the
interpretable-oriented, and the accuracy-oriented
approaches. Selecting an approach closer to the
interpretable-oriented end results in a knowledge
base being less accurate before and more accurate
after the interpretation, whereas selecting an ap-
proach closer to the accuracy-oriented end results
in a knowledge base being more accurate before and
less accurate after the interpretation, expectedly.

If the newly proposed approaches are compared
to the conventional ones from the point of view of
expected accuracy, the following observations can
be made. Conventional techniques search in a nar-
rowed solution space X ony, C Xo due to the in-
terpretability conditions, but after the learning pro-
cess the resulting fuzzy sets are labeled, which is the
same as applying an interpreter function J.on,. Ob-
viously, in general the thus obtained interpretable
solution will not be equal to the one given by J,
because in the conventional case not necessary the
closest interpretable solutions are selected, which
leads to a sub-optimal solution (cf. Theorem 2).



4. Interpretation of the extracted
knowledge base — computational
considerations

In case of the interpretable-oriented approach, there
is no need for interpretation, since the result is al-
ready interpretable (J(x3) = xj). Otherwise, three
cases can be distinguished:

1. The value of the radius of the balls r is less
than or equal to the minimum distance be-
tween interpretable solutions. In this case there
is exactly one interpretable solution around z;
within the distance of . Therefore, a ball with
radius r should be constructed around z}, and
the one and only interpretable solution within
the ball will be J(x).

2. The value of the radius of the balls r is greater
than the minimum distance between inter-
pretable solutions and at most ry, which is a
predefined limit. In this case there are inter-
secting balls, hence there can be more than
one (but at least one) interpretable solution
around z} within the distance of r. Thus af-
ter a ball with radius r is constructed around
xy, within the ball all the distances between the
interpretable solutions and z; should be com-
puted and compared to each other. Then the
closest interpretable solution should be chosen.

3. The value of the radius of the balls r is greater
than rg. In this case there can be so many in-
terpretable solutions around x; within the dis-
tance of 7, that it would result a significant
computational demand to find all of the inter-
pretable solutions within the ball and compute
their distances from x. A better choice to con-
struct a ball with radius rg, and if there are
no interpretable solutions in the ball, to con-
struct another one with radius r; > rg, and so
forth, iteratively, until there is at least one in-
terpretable solution within the ball. Definitely,
in case of X, this method should be applied
instead of constructing such a large ball that
certainly contains at least one interpretable so-
lution and risking the possibility to construct
a ball containing all interpretable solutions.
Because in this unfavorable case each inter-
pretable solution should be found and all dis-
tances should be computed, which has the same
(huge) time complexity (apart from a constant
factor) as to evaluate all of the interpretable so-
lutions, i.e. to find z{§ with exhaustive search,
whereas x{ is the best interpretable solution by
definition, but J(z%)) is not certainly.

5. Conclusions

In the first part of the present paper a brief overview
was given about our recently proposed approaches
for interpretable fuzzy systems, where a meaning
preservation technique together with a new param-
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eterizable search space narrowing method was ap-
plied in order to simultaneously deal with an incon-
sistency problem of conventional interpretable fuzzy
systems and the adjustability of the interpretability-
accuracy trade-off. The conjecture formulated in
[11] announcing favorable properties of the trade-
off adjustment approach was also recalled.

The second part of the paper mainly aimed at
formally analyzing and proving the mentioned con-
jecture based on an intuitively established stochas-
tic model. After the successful formal verification
of the expected favorable properties, some compu-
tational considerations about the interpretation of
the extracted knowledges are made.

Despite the successful formal reasonings, there
are a number of open questions left about the re-
cently proposed approaches. What type of metrics
would be practical for certain problems? How could
the optimum be searched in the narrowed spaces ef-
ficiently? What about the time complexity of the
proposed approaches? And so forth. ..

Future work may aim at finding answers to such
questions.
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