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Abstract

The current approaches to construct a multi-criteria
model based on a Choquet integral are split into two
separate steps: construct first the utility functions
and then the aggregation function. Unfortunately,
the decision maker may feel some difficulties in ad-
dressing these tricky steps. In this paper, we pro-
pose a preference learning algorithm that constructs
both the utility functions and the capacity from
several preferences or evaluations. The algorithm
is based on a fixed-point approach that transforms
the global optimization learning problem into two
iterative linear problems. Each problem objective
is to minimize the number of non-validated learn-
ing examples.

Keywords: Preference Learning, Multi-criteria De-
cision Model, Choquet Integral, Fixed-point.

1. Introduction

Multi-Criteria Decision Making (MCDM) consists
in helping a decision maker (DM) in choosing one
option among a set of candidate alternatives, on the
basis of several and conflicting criteria. Many mod-
els have been developed to support a DM [1]. A
family of models called decomposable [2] takes the
form of an aggregation function applied on partial
utility functions applied on the various attributes.
Among the variety of existing aggregation functions,
the weighted sum is one of the most classical and
widely used. It has the major drawback of assuming
independence among criteria. In order to overcome
this difficulty, the Choquet integral has been intro-
duced in MCDM [3]. It has the ability to represent
interaction among criteria ranging from veto, favor
to complementarity or redundancy between criteria
[4].

From an application side, it is very important to
identify the parameters of the Choquet integral –
namely the capacity (also called fuzzy measure).
The traditional approach to elicit a MCDM model
based on the Choquet integral consists in two sep-
arate steps [5]: first, construct the utility function
for each attribute, and then construct the capacity
once the utility functions are known. A lot of pa-
pers have focused on the second phase, transforming
it into an optimization problem, once the DM has
provided a set of learning examples [6]. The first
stage (construction of the utility functions) follows

the MACBETH approach [7]. It assumes that the
DM is able to identify on each attribute two values
– called reference levels – that have a special mean-
ing (the first one is neutral while the second one
is satisfycing). This assumption appears to be too
drastic in some applications.

The idea is then to learn at the same time both
the utility functions and the capacity. The impor-
tance of doing so has been emphasized in [8]. Very
few theoretical works can be found on MCDM mod-
els composed of both the Choquet integral and its
utility functions [9, 10]. The determination of not
only the admissible capacities but also the utility
functions has been considered from a practical side
only in one paper [11]. The existing methods to
solve this problem as a whole are based on stochas-
tic approaches (Monte Carlo or genetic algorithm),
as it is the case in [11].

The problem of learning a preference model has
recently become a hot topic in Artificial Intelligence
under the name of preference learning [12]. Prefer-
ence learning can be used for solving different tasks,
among which one can find object ranking or learn-
ing to rank. Although there are some similarities
between preference learning and the aim of this pa-
per, there are some clear distinctions. In our ap-
proach, we have only a few learning examples so
that we impose that each of them is satisfied (con-
straint approach). In preference learning, the set
of learning data is much larger and the determina-
tion of the preference model is often turned into a
regression problem (when a numerical score is con-
structed). The learning data are not considered as
hard constraints in this approach.

In this paper, we propose a preference learn-
ing algorithm to replace the two previously men-
tioned steps by automating the calculation of the
utility functions and the capacity, using preferences
or evaluations expressed by the DM on various so-
lutions. For example, when the decision consists
in buying a home, the expert has just to express
some preferences between some houses, and not to
describe in details the utility function on each at-
tribute and each attribute importance. Such exam-
ples are called holistic. The determination of both
the utility functions and the capacity from these
holistic learning examples can be translated into an
optimization problem. Unfortunately, this latter is
very complex as it is not linear and the constraints
are even not convex. We propose an approximate

8th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT 2013)

© 2013. The authors - Published by Atlantis Press 88



algorithm based on a fixed-point approach. The
main idea is to transform the original optimization
problem into two iterative linear problems. The aim
of the algorithm is not to find the most appropriate
values of utility functions and capacity. It only tries
to check whether there exist values of the parame-
ters which fulfil the learning examples.

The layout of the paper is as follows. Section
2 presents the multi-criteria decision model that is
based on the two-additive Choquet integral. Then
in Section 3, we consider the inputs and issues of
the problem. The algorithm is detailed in Section 4
and illustrated with an example (Section 5).

2. Multi-criteria decision model

We are given a set of n attributes indexed by N =
{1, . . . , n}. Each attribute i ∈ N is represented by
a set Xi which can be discrete or continuous (an
interval). The alternatives are characterized by a
value on each attribute, and are thus represented
by an element of X = X1 × · · · × Xn. We aim to
represent the overall assessment of a decision maker

H : X → IR.

The most commonly form for H is the decom-
posable model [13] and take the form H(x) =
F (u1(x1), . . . , un(xn)), where the ui’s : Xi → [0, 1]
are called the utility functions (also called value
functions) and F : [0, 1]n → [0, 1] is an aggregation
function. Examples of aggregation functions are the
weighted sum or the Choquet integral [14, 3, 4]. We
will consider in this paper a Choquet integral.

We assume that we are given a preference rela-
tion %i over each attribute i. Utility functions ui

are assumed to fulfil the following monotonicity con-
ditions:

∀xi, yi ∈ Xi yi %i xi ⇒ ui(yi) ≥ ui(xi) (1)

2.1. Background on the Choquet integral

The Choquet integral is based on a capacity.

Definition 1 A fuzzy measure [15] or capacity
[14] on N is a set function µ : 2N → [0, 1] satis-
fying

• Monotonicity: A ⊆ B ⇒ µ(A) ≤ µ(B),
• Normalization: µ(∅) = 0, µ(N) = 1.

The Möbius transform (see e.g. [16]) of µ is de-
fined by

m(A) =
∑

B⊆A

(−1)|A\B|µ(B). (2)

Reciprocally, µ can be recovered from the Möbius
transform by

µ(A) =
∑

B⊆A

m(B). (3)

Note that the monotonicity and normalization con-
ditions on µ can easily be translated in terms of
conditions on m:

∀i ∈ N ∀A ⊆ N \ {i}
∑

B⊆A

m(B ∪ {i}) ≥ 0 (4)

∑

A⊆N

m(A) = 1 (5)

The Choquet integral of a ∈ [0, 1]N w.r.t. the
Möbius coefficients m (also called the Lovász ex-
tension) is defined by [14]

Cm(a) =
∑

A⊆N

m(A) ·
∧

i∈A

ai , ∀a ∈ [0, 1]N (6)

where m is the Möbius transform of µ, and ∧ is the
min operator.

2.2. Two-additive Choquet integral

We first start with the concept of k additive capac-
ity, which is a particular family of capacities.

Definition 2 [17] Let k ∈ {1, . . . , n− 1}. A capac-
ity µ is said to be k-additive if m(A) = 0 whenever
|A| > k, and there exists some A ⊆ N with |A| = k

such that m(A) 6= 0.

An important particular case of the Choquet inte-
gral is the 2-additive case. We use the following
notation

mi = m({i}) and mi,j = m({i, j}).

The monotonicity and normalization conditions be-
come in this case

∀i ∈ N ∀A ⊆ N \ {i}

mi +
∑

j∈A

mi,j ≥ 0 (7)

∑

i∈N

mi +
∑

{i,j}⊆N

mi,j = 1 (8)

The Choquet integral of a ∈ [0, 1]N w.r.t. the 2-
additive Möbius coefficients m is

Cm(a) =
∑

i∈N

mi ai +
∑

{i,j}⊆N

mi,j ai ∧ aj . (9)

2.3. Commensurability

The overall utility H takes the form

H(x) = Cµ(u1(x1), . . . , un(xn)). (10)

We have seen that the expression of the Choquet
integral uses minimum functions of its integrand.
This means that the values ui(xi) and uj(xj) shall
be comparable. Two scales ui, uj over criteria i and
j are said to be commensurate if for every xi, xj such
that ui(xi) = uj(xj), the degrees of satisfaction felt
by the DM on criteria i and j are equal. Hence
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utility functions ui shall transforming the attributes
into a commensurate scale (representing some sat-
isfaction degree).

We say that several values on different attributes
are made commensurable, if one is able to compare
them through a binary relation D. For xi ∈ Xi and
all xj ∈ Xj , D is defined by

xi D xj ⇐⇒ ui(xi) ≥ uj(xj). (11)

A preamble to the determination of all utility func-
tions is to be able to construct D.

3. Inputs and description of the problem to

solve

This section presents the learning data that are used
as well as a representation of the learning problem
as an optimization problem.

3.1. Inputs: preferential information

The model input information consists in a set of rel-
evant attributes related to a multi-criteria decision
problem. On each attribute, we assume we are given
the partial preference relation %i. In particular, we
know whether the utility is increasing or decreasing.
The input information used as learning data is com-
posed of preferences between alternatives or evalu-
ated alternatives:

• When an alternative is evaluated, the input is
composed of a pair (x, Vx) where x ∈ X is an
alternative and Vx ∈ [0, 1] is the correspond-
ing evaluation. This preferential information is
translated into the following relation:

H(x) = Vx. (12)

• When a preference is expressed between two
alternatives, the input is composed of a pair
(x, y), where x, y ∈ X are two alternatives and
x is supposed to be less preferred to y. This
preferential information is translated into the
following relation:

H(x) ≤ H(y). (13)

To sum-up, the set of preferential information de-
noted by P, is composed of pairs of the form (x, Vx)
and (x, y).

3.2. Translation of the learning data into an

optimization problem

According to (9), the global satisfaction calculation
is based on the following equation, for every x ∈ X:

H(x) =
∑

i∈N

miui(xi)

+
∑

{i,j}⊆N

mi,jui(xi) ∧ uj(xj). (14)

Let

X̂ :={x ∈ X : (x, Vx) ∈ P or (x, y) ∈ P

or (y, x) ∈ P}.

the set of options that used in the learning exam-
ples. Moreover, we set for every i ∈ N

X̂i = {xi : x ∈ X̂}

the set of values on attribute i used in the learn-
ing examples. Then the unknowns concerning the
utility on attribute i are ui(xi) for every xi ∈ X̂i:

ûi := {ui(xi) : xi ∈ X̂i}

and

û := (û1, . . . , ûn).

The set of vectors û is denoted by Û . We can trans-
late the monotonicity conditions (1) in the following
way

∀xi, yi ∈ X̂i yi %i xi ⇒ ui(yi) ≥ ui(xi) (15)

The Möbius coefficients are also unknowns:

m̂ := {mi : i ∈ N} ∪ {mi,j : {i, j} ⊆ N}.

The set of vectors m̂ is denoted by M̂. In total, the
unknowns are basically pairs of the form

(û, m̂) ∈ Û × M̂.

Our aim is to find (û, m̂) that fulfils the mono-
tonicity and normalization conditions (7), (8) and
(15), and the conditions (12) and (13) for all learn-
ing examples in P.

The major difficulty of this statement is that the
constraints (12) and (13) are not linear in the un-
knowns (û, m̂). More precisely, they are bilinear.
Hence Linear Programming cannot be used to de-
termine (û, m̂) directly. Compare to the case when
the utility functions û are already set, the problem
we address is much more complex.

4. Preference learning algorithm related to

the Choquet integral

The idea of our algorithm is to use a fixed-point ap-
proach. Starting from an initial û, we want to find
m̂ that fulfils (7), (8) and and the conditions (12)
and (13) for all learning examples in P. This prob-
lem is linear. Given û, there might be no solution
to the previous constraint satisfaction problem. In
this case, we look for the solution that violates as
few learning examples as possible. This provides a
value for m̂. Given this latter value, one then tries
to find a new value for û that fulfils (15), and the
conditions (12) and (13) for all learning examples
in P. When this problem has no solution, we seek
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for the solution which violates as few learning ex-
amples as possible. This provides a new value of û.
And so on. The algorithm stops when one succeeds
to satisfy all learning examples or when a maximal
number of iterations is reached.

If the previous fixed-point algorithms fails to con-
verge to a solution that satisfies to all learning ex-
amples, then the idea is to execute the same algo-
rithm starting from another value of û.

First, we describe how to generate an initial util-
ity vector û.

4.1. Generation of an initial utility order

To initialize the algorithm, we have to provide a first
set of utility values. To do so, we first generate a
possible global order on utilities, then we associate
ordered values between 0 and 1 to each utility value.

On each attribute k, nk denotes the number of
distinct values. The elements of X̂k are denoted by
xk,1, xk,2, . . . , xk,nk

with

xk,1 -i xk,2 -i · · · -i xk,nk
. (16)

Let uk,i = uk(xk,i). As discussed in Section 2.3, in
order to be able to construct uk,i for all i and k,
one needs first to make all elements {xk,i : k ∈
N , i ∈ {1, . . . , nk}} commensurate and thus to
define a preference relation E among these elements.

From (16), we have for each attribute k

uk,1 ≤ uk,2 ≤ . . . ≤ uk,nk
.

We note this order by the following sequence

R
ûk

= (uk,1, uk,2, . . . , uk,nk
).

From those utility orders for each attribute, we have
to generate a relevant global order E on all utilities,
denoted R

û
.

Algorithm 1 describes the generation of a global
order on utilities on all attributes. It starts with an
empty R

û
. At the beginning one can select any of

the element of u1,1, u2,1, u3,1, . . . , un,1 (the least pre-
ferred values on each attribute). In order to choose
such element, one only need to select i ∈ N . Set
next ⊆ N in Algorithm 1 below is the set of cri-
teria from which one can still select one element.
We start with next = N . If we have chosen u2,1

at the first iteration, one needs to select the sec-
ond element among u1,1, u2,2, u3,1, . . . , un,1. We set
hi = 1 for all i ∈ N , at the beginning of the al-
gorithm. If term u2,1 is chosen, then we update
h2 = 2. Hence if i ∈ N is selected at the current
iteration, we add ui,hi

to R
û
, and hi is replaced by

hi + 1 unless hi = ni in which case i is removed
from next (i cannot be selected anymore as there is
no term left on attribute i).

Function getAUtilityOrder(X̂) :
R

û
← ∅;

next ← N ;
For k ∈ N do

hk ← 1;
end For

While (next 6= ∅) do

Select randomly i ∈ next;
R

û
← (R

û
, ui,hi

);
If (hi 6= ni) then

hi ← hi + 1;
else

next ← next \ {i};
end If

done
return R

û
;

End

Algorithm 1: Algorithm to generate a valid
rank of all utility values.

Once R
û

is generated, the next step consists in
associating ordered values between 0 and 1 for each
utility value. As 0 and 1 are specific values, we
calculate the maximum number of each according to
the ranked utility values, based on those rules: an
attribute k with few number of distinct values (nk ≤
5) has at the most one 0 and one 1; an attribute k

with more values (5 ≤ nk ≤ 10) has at the most two
0 and two 1, etc. After that, with nR denoting the
number of values in R

û
that are not equal to 0 or 1,

we divide the segment [0, 1] into nR segments of the
same length, and a random value in this segment
is attributed to each utility value. The function is
getUtilityValues(R

û
) and its outcome is {uk,i :

k ∈ N , i ∈ {1, . . . , nk}}. It is noted û.

4.2. Fixed-point algorithm to obtain

compatible weights and utilities

Once we have an initial value of û, we can launch the
fixed-point algorithm that has to alternatively find
Möbius coefficients that are relevant according to
the previous set of utilities, and to find utilities that
are relevant according to the previous set of Möbius
coefficients. A relevant set of Möbius coefficients or
utilities can produce a result that does not validate
all the constraints. The objective of the algorithm is
to return the solution that maximizes the number of
learning examples that are satisfied. Our objective
is to find a couple of Möbius coefficients and utilities
that fulfill all the constraints.

4.2.1. Find Möbius coefficients given the utility
functions

We assume here that û is known and we wish to
find m̂ that best fits the preferential information.
As one may not satisfy the learning examples, we
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introduce a binary slack variable for each learning
example in the set {0, 1}.

Constraint (12) (with (x, Vx) ∈ P) is relaxed in
the following way

∑

k∈N

mk uk(xk) +
∑

{j,k}⊆N

mj,k uj(xj) ∧ uk(xk)

− Ex,Vx
≤ Vx (17)

∑

k∈N

mk uk(xk) +
∑

{j,k}⊆N

mj,k uj(xj) ∧ uk(xk)

+ Ex,Vx
≥ Vx (18)

where variable Ex,Vx
∈ {0, 1} is attached to the

learning example (x, Vx). The original constraint
is satisfied if Ex,Vx

= 0. Constraint (13) (with
(x, y) ∈ P) is relaxed in the following way
∑

k∈N

mk

(
uk(xk)− uk(yk)

)

+
∑

{j,k}⊆N

mj,k

(
(uj(xj) ∧ uk(xk)− uj(yj) ∧ uk(yk)

)

− Ex,y ≤ 0 (19)

where variable Ex,y ∈ {0, 1} is attached to the learn-
ing example (x, y). The original constraint is satis-
fied if Ex,y = 0.

The value of m̂ is solution to the following prob-
lem, in which one minimizes the number of learning
examples that are not satisfied:

Minimize
∑

(x,Vx)∈P

Ex,Vx
+

∑

(x,y)∈P

Ex,y

under m̂ ∈ M̂ satisfying (7) and (8)
∀(x, Vx) ∈ P Ex,Vx

∈ {0, 1}
∀(x, Vx) ∈ P (17) and (18) hold
∀(x, y) ∈ P Ex,y ∈ {0, 1}
∀(x, y) ∈ P (19) holds

As û is fixed, the previous problem is linear in m̂.
We denote by

compM (û)

the pair (m̂, f) where m̂ is the solution the previous
linear program and f is the corresponding value of
the functional.

4.2.2. Find utility functions given the Möbius
coefficients

We want here to find û using m̂ obtained previously.
Constraints (12) and (13) use the Choquet inte-

gral and contain thus a minimum function between
pairs of utilities. In order to linearize this term we
introduce for each xj ∈ X̂j , xk ∈ X̂k a new vari-
able uj,k(xj , xk). In order to have uj,k(xj , xk) equal
to uj(xj) ∧ uk(xk), we introduce the following con-
straints:

uj,k(xj , xk)− uj(xj) ≤ 0 (20)

uj,k(xj , xk)− uk(xk) ≤ 0 (21)

uj,k(xj , xk)− uj(xj) + ǫj,k(xj , xk) ≥ 0 (22)

uj,k(xj , xk)− uk(xk)− ǫj,k(xj , xk) ≥ −1 (23)

where variable ǫj,k(xj , xk) ∈ {0, 1}. Rela-
tions (20) and (21) imply that uj,k(xj , xk) ≤
min(uj(xj), uk(xk)). Relations (22) and (23)
imply that either uj,k(xj , xk) ≥ uj(xj) (when
ǫj,k(xj , xk) = 0) or uj,k(xj , xk) ≥ uk(xk) (when
ǫj,k(xj , xk) = 1). Hence ǫj,k(xj , xk) is equal to 1
when uj,k(xj , xk) = uk(xk) and equal to 0 when
uj,k(xj , xk) = uj(xj).

As in Section 4.2.1, we uses a binary slack variable
for each learning example in the set {0, 1}. Con-
straint (12) (with (x, Vx) ∈ P) is relaxed in the
following way

∑

k∈N

mk uk(xk) +
∑

{j,k}⊆N

mj,k uj,k(xj , xk)

− Ex,Vx
≤ Vx (24)

∑

k∈N

mk uk(xk) +
∑

{j,k}⊆N

mj,k uj,k(xj , xk)

+ Ex,Vx
≥ Vx (25)

where variable Ex,Vx
∈ {0, 1} is attached to the

learning example (x, Vx). The original constraint
is satisfied if Ex,Vx

= 0. Constraint (13) (with
(x, y) ∈ P) is relaxed in the following way

∑

k∈N

mk

(
uk(xk)− uk(yk)

)

+
∑

{j,k}⊆N

mj,k

(
(uj,k(xj , xk)− uj,k(yj , yk)

)

− Ex,y ≤ 0 (26)

where variable Ex,y ∈ {0, 1} is attached to the learn-
ing example (x, y). The original constraint is satis-
fied if Ex,y = 0.

The value of û is solution to the following prob-
lem, in which one minimizes the number of learning
examples that are not satisfied:

Minimize
∑

(x,Vx)∈P

Ex,Vx
+

∑

(x,y)∈P

Ex,y

under û ∈ Û satisfying (1)
∀(x, Vx) ∈ P Ex,Vx

∈ {0, 1}
∀(x, Vx) ∈ P (24) and (25) hold
∀(x, y) ∈ P Ex,y ∈ {0, 1}
∀(x, y) ∈ P (26) holds

∀(x) ∈ X̂ ǫj,k(xj , xk) ∈ {0, 1}

∀(x) ∈ X̂ (20), (21), (22) and (23) hold

As m̂ is fixed, the previous problem is linear in û.
We denote by

compU (m̂)

the pair (û, f) where û is the solution the previous
linear program and f is the corresponding value of
the functional.

4.3. General algorithm

We have introduced all necessary ingredients to
show the general fixed-point algorithm. Algorithm
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2 is the preference learning algorithm related to
Choquet integral.

In this algorithm, integer j is the global num-
ber of times a fixed-point loop is used. Integer i

is the number of iteration in the fixed-point sub-
algorithm. Within each iteration of the fixed-point
algorithm, functions compU(m̂j,i) and compM(ûj,i)
are launched. They return in particular the value
of the functional f . It is equal to the number of
non validated constraints. When f = 0, all learning
constraints can be fulfilled and thus the algorithm
can stop. In the opposite case, the algorithm contin-
ues. The algorithm is implemented in Java, and the
problems compU(m̂j,i) and compM(ûj,i) are based
on the linear program solver LP solve [18].

Function PLAlgorithmWithChoquet() :
While (j < maxIter) do

R
j

û
← getAUtilityOrder(X̂);

i = 1;
ûj,i ← getUtilityValues(Rj

û
);

stop = False;
While (¬stop) do

(m̂j,i, f)← compM (ûj,i);
If (f = 0) then

stop ← true;
end If

i← i + 1;
(ûj,i, f) ←
compU (m̂j,i−1);
If (f = 0 OR

ûj,i = ûj,i−1) then

stop ← true;
end If

done
j ← j + 1;

done

End

Algorithm 2: Algorithm to learn preference

with Choquet Integral.

Let us end this section by a remark on conver-
gence of the fixed-point. At each iteration, the aim
is to minimize the number of training data that
is not satisfied. Suppose that Suppose that, at a
given iteration of the general algorithm (see Section
4.3), we have just run the optimization problem of
Section 4.2.1 and the outcome is compM (ûk−1) =
(m̂k, fk), where m̂k are the Möbius coefficients, fk

is the minimal number of learning examples that
cannot be satisfied and ûk−1 is the value of the util-
ities found at the previous iteration. At the next
iteration, the solution of the optimization problem
of Section 4.2.2 is compU (m̂k) = (ûk+1, fk+1). By
construction, ûk satisfies the optimization problem
of Section 4.2.2 with value fk for the functional.
Hence one shall have fk+1 ≤ fk. And so on. This

proves that the sequence of the values of the func-
tional is non-negative and decreasing, and is thus
converging. This does not necessarily mean that it
converges to zero.

5. Illustration with an example

5.1. Description of the example

Let us describe a standard example used to moti-
vate the Choquet integral with respect to capacities
or bi-capacities [19]. The director of a university
decides on students who are applying for gradu-
ate studies in management where some prerequisites
from school are required. Students are indeed eval-
uated according to mathematics (M), statistics (S)
and language skills (L). All the marks with respect
to the scores are given on the same scale from 0
to 20. These three criteria serve as a basis for a
pre-selection of the candidates. Let us consider the
following four students.

M S L
student A 14 17 6
student B 14 15 8
student C 9 17 6
student D 9 15 8

The applicants have generally speaking a strong
scientific background so that mathematics and
statistics have a large importance to the director.
However, he does not wish to favour too much stu-
dents that have a scientific profile with some flaws
in languages. Besides, mathematics and statistics
are in some sense redundant, since, usually, students
good at mathematics are also good at statistics. As
a consequence, for students good in mathematics,
the director prefers a student good at languages
to one good at statistics. Student A is penalized
by his performance in languages. Hence, the direc-
tor would prefer a student (with the same mark in
mathematics) that is a little bit better in languages
even if the student would be a little bit worse in
statistics. This means that the director prefers B

to A:
A ≺ B (27)

Consider now a student that has a weakness in
mathematics. In this case, since the applicants are
supposed to have strong scientific skills, a student
good in statistics is now preferred to one good in
languages. Following above arguments, C is pre-
ferred to D even though C has poor language skills:

C ≻ D (28)

As all attributes correspond to the same scale
[0, 20], one might think of applying the same utility
function on them. We just need to divide the marks
by 20 to obtain a satisfaction degree in [0, 1]:

∀ ∈ {1, 2, 3} ui(xi) =
xi

20
. (29)
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Let us indeed try to model (27) and (28) with
the help of the Choquet integral when normaliza-
tion (29) is applied. We have H(A) = 1

20

(
7 +

7µ ({M , S}) + 2µ ({S})
)

and H(B) = 1
20

(
8 +

6µ ({M , S}) + µ ({S})
)
. This shows that (27) is

equivalent to

µ ({M , S}) + µ ({S}) < 1.

Similarly, relation (28) is equivalent to µ ({M , S})+
µ ({S}) > 1, which contradicts previous inequality.
Hence, the Choquet integral cannot model (27) and
(28) with the simple normalization condition (29).

It is no surprise that the Choquet integral cannot
model both (27) and (28) when (29) is imposed.
This is due to the fact that the Choquet integral
satisfies comonotonic additivity [20]. In our exam-
ple, the marks of the four students A, B, C and D

are ranked in the same way (under the simple nor-
malization condition (29)): languages is the worst
score, mathematics is the second best score, and
statistics is the best score. Those four students are
comonotonic.

In order to represent (27) and (28), we need to
allow using different utility functions on each at-
tribute. This makes sense in our example since each
professor may apply different notation techniques
so that 12 in mathematics may not have the same
meaning as 12 in languages.

5.2. Result with our preference learning

algorithm

We apply our algorithm to this example. After 4
iterations of the main loop, we obtain the following
utility functions:

uM (14) = 0.995 uM (9) = 0.137
uS(17) = 0.294 uS(15) = 0.137
uL(8) = 0.137 uL(6) = 0

Here are the evaluations on the three sub-
jects and the global evaluation for each student:
({uM , uS , uL} ⇒ H(X)) :

• Student A = {0.995; 0.294; 0} ⇒ 0.632
• Student B = {0.995; 0.137; 0.137} ⇒ 0.682
• Student C = {0.137; 0.294; 0} ⇒ 0.187
• Student D = {0.137; 0.137; 0.137} ⇒ 0.137

We also obtain the following Möbius coefficients:
mM mS mL mM,S mM,L mS,L

0.635 0.635 0.001 -0.635 0 0.364

The aim of the algorithm is not to find the
most appropriate values of utility functions. It
only tries to check whether there exist values of the
parameters which fulfil the learning examples.

During the 4 iterations, the generated orders
among the utilities were:

• Iteration 1: uL(6) < uM (9) < uL(8) <

uM (14) < uS(15) < uS(17)

• Iteration 2: uM (9) < uS(15) < uL(6) <

uL(8) < uM (14) < uS(17)
• Iteration 3: uL(6) < uL(8) < uM (9) <

uS(15) < uM (14) < uS(17)
• Iteration 4: uL(6) < uL(8) < uM (9) <

uM (14) < uS(15) < uS(17)

The order of the results is the following:

• Results: uL(6) < uL(8) = uM (9) = uS(15) <

uS(17) < uM (14)

We can observe that this order is different from
the last initialization order, at the iteration 4. It
shows that the fixed-point algorithm tests various
non-strict orders from each initial order. In this ex-
ample, the number of iterations for each fixed-point
loop was between 2 and 6.

6. Limits and improvements

As presented in 2.3, the order of the utility val-
ues related to criteria with interaction is significant.
Therefore, the learning of the Möbius coefficients is
sensitive to the values of the utility functions and
in particular the order D among the values of the
attributes. It is then important to launch the fixed-
point algorithm from different orders D. Yet the
number of possible orders D is very large. For ex-
ample, a simple case with three attributes and 2 dis-
tinct values on each produces 90 possible orders. In
some real problems, the number of possible orders
is too large to be tested in a reasonable maximal
number of iterations with our algorithm. A sugges-
tion to improve this is to use evolutionary algorithm
to explore the set of possible orders D and converge
more easily to potential relevant orders. The evalu-
ation of each order R

û
can be provided by the result

of compM(û), where 0 is the value of the best utility
order, -1 is the value of the worst utility order, and
for positive values the satisfaction decreases. From
our experiment, we have noted that the final order
after the execution of the fixed-point algorithm is
different from the initial one. This suggests that it
is not necessary to launch the fixed-point algorithm
with all possible orders D. Our future research will
investigate this point more deeply.

We will also address the complexity issue of the
learning approach, and in particular the impact of
the number of learning examples, the number of cri-
teria, the kind of interactions among criteria and the
number of elements on the attributes.

The aim of this work is only to find values of the
utilities and of the capacity that fulfils the holistic
learning examples. However, these values may not
be suitable to generate recommendations for new
alternatives. For future research, we will also gen-
erate values of the parameters (starting from the
same order D) that can be used to generate recom-
mendations for the user.
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7. Conclusion

The algorithm presented in this paper aims at sim-
plifying the task of building a multi-criteria decision
model by using several preferences or evaluations,
instead of describing the utility on each attribute
and the importance of each attribute through the
Möbius coefficients. The objective is to find a cou-
ple of utilities and Möbius coefficients (û, m̂) that
fulfills all the constraints of monotonicity, normal-
ization and the constraints related to the learning
examples. As described, the problem is bilinear. To
try to find a solution, we propose to use a fixed-point
algorithm to alternatively find a m̂ according to a û

(denoted compU(m̂)), and find a û according to a m̂

(denoted compM(û)). Each problem can provide a
partial solution that does not validated all the con-
straints. This partial solution is then used in the
next problem to see if the change of variables can
provide a better solution. The solution is obtained
when all the constraints are validated with a couple
(û, m̂).
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