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Abstract

It is known that main drawbacks of the k-Nearest
Neighbors classifier are related to the need for keep-
ing all the training prototypes. Although there
are several approaches capable to significantly re-
duce the size of the case base, they damage the
classification accuracy. We propose a novel fuzzy
approach that significantly reduces the prototypes
base and also improves the classification accuracy.
Its good performance is evidenced by an experimen-
tal study involving 20 prototype based classifiers
and 30 databases, in which the proposal is the only
approach placed among the top performers in both
reduction and accuracy.

Keywords: Fuzzy Classifiers, Evolutionary Algo-
rithms, Nearest Neighbor, Instance Selection

1. Introduction

Prototype based classifiers classify instances by
comparing them with previously seen cases (pro-
totypes). This approach has shown good perfor-
mances in several domains due to the capability to
learn complex target functions. They are also pop-
ular for practical applications because they tend to
be easy to understand and to implement.
The most known prototype based classifier is k-

Nearest Neighbors (KNN) [1]; despite its age, it
remains as one of the most used classifiers and it
is frequently found as benchmark in experimental
studies in machine learning. Nevertheless, as KNN
keeps all training instances, it has large storage re-
quirements and needs large computational time for
classification. There are several proposals to speed
up KNN classification; some of them provide fast
search methods to find the nearest neighbors, while
others reduce the size of the case base and try to
keep the classification accuracy.

The latter approach is known as instance selec-
tion (IS); it is a research field that emerged almost
as soon as the prototype based classification, and
remains very active until present. Despite its valu-
able contributions, generally those instance selec-
tion methods that achieve high reductions in the
number of instances, damage the classification ac-
curacy in some degree. Exception to this rule, are
some evolutionary IS methods; nevertheless, their

high computational cost puts them at a disadvan-
tage compared to other approaches when it comes
to practical application.

In this paper we present FCore, a fuzzy proto-
type based classifier inspired on IS approaches. This
proposal has most of the attractive properties of
KNN, but it has none of the main drawbacks of this
classical classifier because its storage requirements
are quite lower. Furthermore, in an experimental
study involving 20 prototype based classifiers and
30 databases we found that FCore consistently out-
performed the accuracy of KNN, and it was the
only approach that achieved both high reduction
and high accuracy.

Due to the success of evolutionary techniques in
learning fuzzy and prototype based classifiers, we
propose also an extension of FCore that uses evolu-
tionary approaches to tune up the classifier. The re-
sulting learner can be viewed as a two-step method
having a first fast phase capable to produce a good
classifier, and a second optional tuning phase ca-
pable to improve the quality of the learned classi-
fier. For most applications the first phase should be
sufficient to satisfy the requirements, but for those
problems where small differences in accuracy are
more critical than the computational time, the sec-
ond phase can be a valuable tool.

The rest of the paper is organized as follows.
Section 2 reviews some background knowledge on
IS, fuzzy classification and evolutionary algorithms.
Section 3 depicts the proposal. Finally, in Section
4 we expose and analyze the results of the experi-
mental studies carried out to validate FCore.

2. Background

2.1. The IS approach for enhancing the
KNN algorithm

Several authors have proposed enhancements to the
KNN algorithm. We are specially interested in
those from the IS field [2, 3] because they are de-
voted to tackle simultaneously its two main known
drawbacks: the high cost of classifying new in-
stances and the huge storage requirements.

The IS field emerged from as early as the 60s of
last century. Several of the first approaches were
based in a strategy known as condensation [4, 5, 6]
which retains the class border instances and dis-
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cards the internal ones, these methods tend to be
extremely sensitive to noise. Edition [7, 8, 9] is an-
other pioneer strategy which, in opposition to con-
densation, discards the instances that are harmful
to the classification accuracy. This kind of methods
are mainly used as noise filters and achieve small
reductions in the number of instances.
After more than two decades of editing and

condensing proposals, a new trend known as hy-
brid emerged combining the best of both strate-
gies to offer noise tolerance and high reduction rates
[10, 11, 12, 13]. Most of the proposals from the last
two decades belong to this family.
In a radically different approach some authors

have proposed methods that replace the original in-
stances with new instances in the same vector space;
this strategy is known as prototype generation
(PG) [14, 15]. Closely related to PG is the use of
clustering algorithms. This strategy is character-
ized by high reductions, and although it is generally
used to complement PG, some times it is used as in-
dependent strategy [16, 17].

The above strategies tend to produce classifiers
with lower classification accuracy than KNN, espe-
cially those that significantly reduce the number of
training instances. On the other hand, the use of
evolutionary approaches [18, 19] in IS has shown
excellent results both in classification accuracy and
database reduction. Nevertheless, as we said before,
their high computational cost is a main limitation
that puts them at a disadvantage compared to other
approaches when it comes to practical application.

2.2. Fuzzy classification

In fuzzy sets theory, objects belong to a set to a
given degree. Thus, given a domain D, a fuzzy
set is a mapping in the form D → [0, 1]. Apply-
ing this theory to classification, classes can be seen
as fuzzy sets. Hence, fuzzy classifiers assign to in-
put instances degrees of membership for each class
rather than a single class.
This kind of labeling can be especially useful in

problems where classes describe vague concepts or
have imprecise borders. In such contexts, an expert
system that gives degrees of membership is more
effective than others giving a single class output
(crisp). For example, a human expert can use the
fuzzy labeling to determine whether there are sev-
eral acceptable classes, a single one, or none, for
taking the appropriate decision in each case. On
the other hand, a crisp classifier assigns a single
class even if two or more classes seem to be accept-
able, and it gives no information warning the user
about this situation. Furthermore, fuzzy classifiers
are tolerant to the uncertainty and imprecision de-
rived from data collection and processing, which are
present in every real-world training data, even if the
concepts to learn are not inherently vague.

Fuzzy sets theory has been applied by several au-
thors to prototype based classification. Most works

have been focused on designing fuzzy KNN algo-
rithms [20, 21], or combining rough [22] and fuzzy
sets theories in order to build fuzzy-rough near-
est neighbor classifiers [23, 24]. All these propos-
als combine the advantages of fuzzy and prototype
based classification, but all of them have the same
drawbacks of KNN when the number of training in-
stances is high. In fact, their scalability can be lower
than that of KNN due to the use of more sophisti-
cated and costly classification criteria.

2.3. Evolutionary algorithms

The evolutionary algorithms (EA) are a family of
meta-heuristics inspired by the natural evolution.
In them, a set (population) of candidate solutions
(individuals) evolve along successive iterations (gen-
erations) by means of genetic operators.

The most common operators are mutation (ran-
dom variations), selection (choice of individuals)
and crossover (obtaining new individuals by mixing
others). The degree of fitness or goodness of the
solution represented by each individual is measured
by means of a fitness function, and the probability
for each individual to survive or participate in the
creation of new individuals is proportional to the
value of its fitness value.

EAs have been successfully used in machine learn-
ing. Specifically, they have been intensively used to
build fuzzy and prototype based classifiers [19, 25].
Thanks to their great ability to explore complex so-
lution spaces, they tend to be among the top perfor-
mance methods in terms of classification accuracy.

In this paper, we will use two of the most known
EAs, the classical generational and steady-state ge-
netic algorithms. The main differences between
them come from the way of changing the popula-
tion among iterations. In the generational genetic
algorithm (GGA) [18] the population is regenerated
completely on each iteration. On the other hand,
the steady-state genetic algorithm (SGA) [18] re-
places one or two individuals per iteration at most.

3. The classifier

3.1. Finding prototypes

The IS method that we propose for finding proto-
types, is based in the local-set concept proposed in
[12]. The local set (LS) of an instance e (LS(e)) is
the set of instances whose distance to e is smaller
than the distance between e and its nearest neigh-
bor from a different class (nearest enemy, ne(e)).
In this paper, we use also two concepts related to

LS: cardinality and radio. Given an instance e, its
LS cardinality (LSC) is the number of instances in
its LS (LSC(e) = |LS(e)|), while its LS radio (LSR)
is the distance between it and its nearest enemy
(LSR(e) = dist(e, ne(e))).

Figure 1 shows six instances in a two-dimensional
space. In this example we have that ne(A) = B,
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LSC(A) = 3 and LSR(A) = r.

Figure 1: A LS in a two-dimensional space.

In [26], a supervised clustering algorithm based
on LSs was proposed. It exploits the fact that LSs
contain instances sharing the same class and spa-
tially grouped. The algorithm (Algorithm 1) starts
with a filtering (performed by the edition method
ENN [7]) to eliminate noise and overlapping. Then
it computes the LSs and sorts the instances in de-
scendent order of their LSC. After that, each in-
stance is tested to determine whether it is included
in a previously detected cluster or selected as the
representative (core) of a new cluster. The inclu-
sion condition for an instance e is that a cluster c
exists such that e is in the LS of the core of c. Note
that instances with higher LSC are processed first
and have the best chances to be selected as cores.

Algorithm 1 Local set based clustering (LSClus-
tering).
Require: Instance set T
Ensure: Clusters is a set of clusters in T
T = ENN(T )
computeLocalSets(T )
sortDescByLSC(T )
Clusters = {}
for e ∈ T do
if ∃(c ∈ Clusters)[e ∈ LS(c.core)] then
c.members = c.members

⋃
{e}

else
newC.members = {e}
newC.core = e
Clusters = Clusters

⋃
{newC}

end if
end for

Figure 2 shows an example of how the clustering
algorithm behaves. Those instances in the figure
that are selected as cores have their LSs marked
with dashed lines. The first cores identified are A
and I in any order since both have the highest LSC
(LSC(A) = LSC(I) = 3). D and E will result in
the third and fourth cores, both with LSC = 2. The
other instances are not cores because they are in LSs
of other cores; hence, they become part of the corre-
sponding clusters. Note that C ∈ LS(A)

⋂
LS(D),

but as LSC(A) > LSC(D) the initial sorting causes
that C belongs to the cluster with core A.
From LSClustering we can get a straightforward

IS method just by selecting the cluster cores as
prototypes. Such method achieves high reductions

Figure 2: Using LS for clustering.

in the number of prototypes, but it loses all the
information about the class borders. Hence, in
those data sets having irregular and narrow borders,
where border instances are decisive in classification,
the classification accuracy will be poor.

Nevertheless, there is other output provided by
LSClustering that can be helpful to mitigate this
drawback without increasing the number of proto-
types: the LSR. It provides information about the
cluster borders and hence, about the class borders.
In fact, given a core c and its LSR, we can determine
whether an instance is inside or outside of LS(c).
Hence, a first approach could be labeling the in-
stances lying in LS(c) with the class label of c.

This approach produces full accuracy on non
noisy instances from the training set. Nevertheless,
almost never the unseen instances have exactly the
same distribution than training ones. Furthermore,
even in training data there are some instances noisy
or lying in overlapping regions that aren’t used to
find prototypes and may be misclassified. These
sources of uncertainty and imprecision make this
approach to achieve poor classification accuracies.

As stated before, fuzzy sets theory is an effective
tool to deal with uncertainty and imprecision. In
the next subsection we explain how to obtain fuzzy
sets from the selected prototypes in order to build a
fuzzy prototype based classifier capable to be more
accurate than KNN in classification.

3.2. From prototypes to fuzzy sets

The main idea behind a fuzzy classifier is to see
classes as fuzzy sets. In prototype based classi-
fiers, classes are described by means of prototypes.
Hence, it makes sense to describe the fuzzy repre-
sentation of classes by means of some fuzzy repre-
sentation of prototypes.

It can be said that each crisp prototype dominates
a region surrounding him, in such a way that every
instance lying inside this region belongs to its class.
The wideness of this region depends on the distance
to the nearest prototypes, which compete with him
in the classification of unseen instances.

Figure 3 shows two crisp prototypes from a hy-
pothetical two-dimensional database. Note that the
decision boundary is a line equidistant from them,
and it splits the plane in such a way that instances
in the left upper half will be labeled as black and
those in the right lower half will be labeled as white.
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Figure 3: Two crisp prototypes in a bidimensional
space.

Figure 4: Two fuzzy prototypes in a bidimensional
space.

A natural fuzzy extension for a prototype is a
fuzzy set where the maximal membership degree
corresponds to the prototype and the minimal de-
grees correspond to the furthest instances. The
fuzzy representation of a class will be the union of
all the fuzzy prototypes from this class. Thus, the
membership degree of an instance i to a class C
(µC(i)) is the maximum membership degree of i to
the fuzzy representations of prototypes from C as
shown in Equation 1, where µp denotes the mem-
bership function for the fuzzy set corresponding to
the prototype p, that is computed by equation 2.

µC(i) = max
p∈prototypes(C)

(µp(i)) (1)

µp(i) = e
−1∗ln 2∗

(
d(i,p)

rp

)2

(2)

In (2), d(i, p) is the distance from i to p, and rp is
the radius of the hyperspherical region containing
the 0.5-cut of the fuzzy set 1. As reader may note,
the natural value for rp is LSR(p), which guarantees
that every instance in LS(p) has at least a member-
ship degree of 0.5 to the corresponding fuzzy set and
all the others have memberships under 0.5.
Figure 4 shows two fuzzy prototypes from a hypo-

thetical two-dimensional database. The concentric
circles enclose four α-cuts for each prototype (0.75,
0.50, 0.25 and 0.10). Note that the diameter of cir-
cles depends on the rp parameter in Equation 2,
which is specific for each prototype. This way, the
highest membership degree for an instance will not
be necessarily to the class of the nearest prototype.

1The α-cut of a fuzzy set is the crisp set of elements having
membership degrees greater or equal than α.

The classifier thus obtained (because it is fuzzy)
assigns to instances a membership degree to each
class instead of a single class. However, when a
crisp output is required, it can be obtained in a
very direct and intuitive way by assigning the class
to which the instance has the greatest membership
degree. This is the approach we will use in the ex-
perimental section in order to compare its perfor-
mance with other classifiers.

3.3. The genetic tuning

The fuzzy classifier described in the previous sub-
section offers good results in classification accuracy
using only a small portion of the training dataset as
will be shown in the experimental section. Never-
theless, due to the known effectivity of EAs in the
building of fuzzy and prototype based classifiers, we
consider interesting to explore the possibility of us-
ing such techniques to tune up the classifier in order
to improve its classification accuracy.

As it is known that EAs tend to be computation-
ally costly, the idea is to provide a two-step classifier
having a first fast phase and a second optional tun-
ing phase. The first phase should be capable of of-
fering good results to release the practitioners from
the need to spend valuable computational time in
most practical applications. On the other hand, the
tuning phase must be capable of improving classifi-
cation accuracy and will be reserved to problems in
which there are no time constraints, or a small im-
provement in accuracy is desirable even at the cost
of a significant increasing in time cost.

The parameter that we have tuned up using the
GA is rp (see equation 2). As each prototype p has
its own rp, there is a vector to tune which has a
component for each prototype. Increasing (decreas-
ing) rp, increases (decreases) the influence of p in
the classification of unseen instances. We have fol-
lowed an approach in which each individual encodes
a candidate classifier. Thus, the chromosome is a
real valued vector whose ith component is the value
of rpi, with pi being the ith prototype.

The fitness function is the percent accuracy in
the classification of the training set. Note that if all
training instances are used to build the prototypes,
the maximal fitness value is already achieved; but
actually, several instances are discarded before com-
puting the LSs because they are likely to be noisy
or lying in overlapping regions. Hence, if some of
these instances are not really harmful, the genetic
tuning is a kind of “second opportunity” for taking
them into account in the training of the classifier.

As evolutionary strategy, we have implemented
the classical GGA and SGA (see section 2.3). In
both cases, the crossover operator is the BLX − α
[27] (with α = 0.5) due to the use of real-coded
chromosomes. The mutation operator modifies a
single randomly selected gen, which is modified to
a new value between the 50% and 150% of the cur-
rent one. The initial population is built from the
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classifier learned by the first step. A seed individual
encoding this classifier is used to generate all the in-
dividuals in the population by modifying every gen
to a new random value in the range 50%-150% of
the current one in the SGA version and 50%-250%
in GGA. The ranges differ because preliminary ex-
perimental results suggested us that GGA needs a
greater initial diversity than SGA.

4. Experiments

4.1. Experimental setup

This experimental study includes 20 prototype
based classifiers. For analytical purposes, they have
been grouped into 4 families:

• The FCore family includes the proposals from
this paper: FCore corresponds to running only
the first step of the fuzzy classifier, whereas FG-
GACore and FSGACore correspond to the same
classifier tuned by GGA and SGA respectively.

• The Non IS family includes three classifiers
that retain all the training instances as knowl-
edge base: KNN, CenterNN [28] and KNNAdap-
tive [29].
• In the IS edition family we included 7 edition
IS methods: AllKNN [30], ENN [7], ENNTh [9],
ENRBF [31], MENN [32], Multiedit [33] and NC-
NEdit [8]. They were grouped in a family apart
from other IS methods because their behaviors
are opposite in the sense that edition methods
tend to remove small portions of the training
data and to improve the classification accuracy of
KNN, whereas other approaches tend to remove
great portions of the training data and to damage
the classification accuracy.

• The other IS methods in the study are included
in the IS non edition family, they are CNN
[4], CPruner [13], DROP3 [11], Explore [34], IB3
[10], ICF [12] and PSC [17].

In all cases we employed the implementations pro-
vided by KEEL software [35] and we assigned to the
parameters (when necessary) the values proposed
by their respective authors. The distance function
used in the proposal was the following:

D =

√√√√ M∑
a=1

d(xa, ya)2 (3)

where d(xa, ya) is the distance for attribute a and
is defined as:

d(xa, ya) =


1, if xa or ya is unknown
V DMa(x, y), if a is nominal
|xa−ya|

(Maxa−Mina) , if a is numerical
(4)

where V DMa(x, y) is the Value Difference Metric
[11], whileMaxa andMina are maximum and min-
imum values for attribute a respectively. Its ability

Short name Inst #A #R #I #N #C

abalone 4174 8 7 0 1 28
appendicitis 106 7 7 0 0 2
balance 625 4 4 0 0 3
banana 5300 2 2 0 0 2
breast 286 9 0 0 9 2
cleveland 303 13 13 0 0 5
contraceptive 1473 9 0 9 0 3
dermatology 366 34 0 34 0 6
ecoli 336 7 7 0 0 8
glass 214 9 9 0 0 7
haberman 306 3 0 3 0 2
heart 270 13 1 12 0 2
hepatitis 155 19 2 17 0 2
housevotes 435 16 0 0 16 2
ionosphere 351 33 32 1 0 2
iris 150 4 4 0 0 3
mammographic 961 5 0 5 0 2
movement_libras 360 90 90 0 0 15
newthyroid 215 5 4 1 0 3
phoneme 5404 5 5 0 0 2
pima 768 8 8 0 0 2
sonar 208 60 60 0 0 2
spectfheart 267 44 0 44 0 2
vowel 990 13 10 3 0 11
wdbc 569 30 30 0 0 2
wine 178 13 13 0 0 3
winequality-red 1599 11 11 0 0 11
winequality-white 4898 11 11 0 0 11
wisconsin 699 9 0 9 0 2
yeast 1484 8 8 0 0 10

Table 1: Databases used in the experiments.
Columns show the short name, number of at-
tributes, real attributes, integer attributes, nominal
attributes and classes in this order.

to handle both numeric and nominal attributes, as
well as missing values, makes it broad enough for
our purposes.

In the genetic tuning we set the population size to
20 in GGA and 50 in SGA. In both cases, the maxi-
mum number of evaluations has been 10000 and the
mutation probability 0.1.

Table 1 shows the databases used in the experi-
ments, taken from the repository KEEL [36]. All of
them correspond to well-known classification prob-
lems, and as can be seen, there are among them a
wide diversity in the number of instances, number
and type of attributes, and number of classes. In
order to facilitate replications and comparisons, the
partitions used are those provided by the repository.

We ran each classifier on each database using the
10-fold cross-validation scheme. The parameters
under study were the ratio of correctly classified
instances on the test set (Accuracy) and the ratio
of instances removed from the training set (Reduc-
tion). On the observed performances we carried out
the Friedman test2 with significance level α = 0.05,
and the null hypothesis was the absence of differ-
ences between classifiers. To find the significant dif-
ferences when present, we used the post hoc Holm’s
test [37] for multiple comparisons between multiple
methods with the same value of α.

2This nonparametric test is recommended (see [37]) to
be used in studies involving machine learning problems in-
stead of the well known ANOVA, whose assumptions are
most probably violated in these domains
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Classifier Family Accuracy Reduction

FCore FCore 0.7793 0.9157
FGGACore FCore 0.7810 0.9157
FSGACore FCore 0.7831 0.9157
KNN Non IS 0.7615 0.0000
CenterNN Non IS 0.7439 0.0000
KNNAdaptive Non IS 0.7869 0.0000
AllKNN IS edition 0.7745 0.3166
ENN IS edition 0.7766 0.2323
ENNTh IS edition 0.7731 0.4146
ENRBF IS edition 0.6803 0.3242
MENN IS edition 0.7714 0.4282
Multiedit IS edition 0.7537 0.3149
NCNEdit IS edition 0.7818 0.2165
CNN IS non edition 0.7306 0.6049
CPruner IS non edition 0.6925 0.9076
DROP3 IS non edition 0.7296 0.8373
Explore IS non edition 0.7357 0.9810
IB3 IS non edition 0.7140 0.7093
ICF IS non edition 0.6856 0.7567
PSC IS non edition 0.6719 0.7199

Table 2: Average results by classifier.

4.2. Results and discussion

Table 2 shows, for each classifier, the average re-
duction and accuracy achieved on the 30 databases.
FCore, FGGACore and FSGACore are among the
top performers in both parameters; furthermore,
they are the only ones in this situation. Apart from
them, the exceptionally high reduction achieved by
Explore deserves to be mentioned; it has a great
merit considering that it outperforms several meth-
ods also in accuracy. On the other hand, the highest
accuracy is achieved by KNNAdaptive, but it is not
as surprisingly because it uses all the training in-
stances to classify each new one.

From the families point of view, the results are
as expected. The Non IS methods achieved high
accuracies due to the use of the whole database.
The IS edition methods were also characterized by
their high accuracies whereas their reductions were
quite low. It is interesting that none member from
this family outperformed KNNAdaptive in accu-
racy, when their main objective is to remove those
instances that are supposed to be harmful to clas-
sification accuracy. It is remarkable also the poor
performance of ENRBF, which is among the worst
methods in accuracy despite the high portion of
database that it retains. As regard to the IS non
edition family, they achieved high reductions at the
expense of losses in the accuracy.

According to the global averages, the FCore fam-
ily outperformed the other three, being the only
one that achieved high accuracies and reductions si-
multaneously. Within it, the tuned classifiers were
slightly better in accuracy than the base FCore.

In general, FCore methods outperformed most of
the others in accuracy. It is remarkable because sev-
eral of the outperformed methods kept most, if not
all, of the training instances while the FCore family
reduced more than 91% of them. Only KNNAdap-
tive and NCNEdit slightly outperformed the FCore
familly in accuracy. However, the first of them did

Algorithm Ranking Better than Worse than

FSGACore 6.15 7 0
KNNAdaptive 6.43 7 0
NCNEdit 6.47 7 0
ENN 6.90 7 0
FGGACore 6.92 7 0
AllKNN 7.33 7 0
ENNTh 7.42 7 0
FCore 7.53 7 0
MENN 7.65 7 0
Explore 9.30 3 0
Multiedit 9.32 3 0
KNN 10.62 2 0
CenterNN 11.50 1 0
ENRBF 13.28 0 9
CNN 14.22 0 9
DROP3 14.35 0 9
CPruner 14.40 0 9
IB3 15.95 0 11
ICF 16.17 0 12
PSC 18.10 0 13

Table 3: Friedman test rankings and Holm’s post
hoc comparisons. Accuracy.

not reduce the sizes of databases at all, and the
other reduced them only 21.65%.

Regarding reduction, only Explore outperformed
the FCore family. In turn, it was outperformed by
them and other nine methods in accuracy. Very
close to the FCore’s reduction was that of CPruner,
but its accuracy was even worse than that of Ex-
plore. All the other methods were clearly outper-
formed by FCore family in reduction.

Our proposal looks good in global averages; nev-
ertheless, they are not enough to make sound con-
clusions. They may be biased, for example, by an
extremely good (or bad) performance in a particular
database. It is useful to see other perspectives such
as the average rankings and to verify the soundness
of observations by means of some statistical test.

Table 3 shows the classifiers sorted by their aver-
age ranking in accuracy. According to these rank-
ings the Friedman test reveals that exist significant
differences. The post hoc Holm test shows where
the differences are; they are summarized in columns
three and four of the table. The “better than” col-
umn shows the number of classifiers that the clas-
sifier in the row significantly outperformed whereas
the column “worse than” shows the number of them
that outperformed him.

Note that the first 9 classifiers (including the
members of the FCore family) outperformed the
same number of rivals. All IS non edition classi-
fiers are out of this group as expected, but it is
interesting that even some IS edition and Non IS
classifiers are out. Such cases are: Multiedit, KNN,
CenterNN and ENRBF. It is remarkable also the
gap between this group and the next two classifiers
(Explore and Multiedit) that comparatively outper-
formed less than a half of rivals.

Table 4 is equivalent to the previous one but it
is focused in reduction. The Non IS classifiers were
excluded from this analysis as it makes no sense for
them. Also, the three FCore proposals are analyzed
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Algorithm Ranking Better than Worse than

Explore 1.07 11 0
FCore 2.57 10 0
CPruner 3.47 8 0
DROP3 4.20 8 0
ICF 6.23 5 1
IB3 7.00 5 2
PSC 7.10 5 2
MENN 8.33 2 4
ENNTh 9.10 2 4
CNN 9.43 2 4
AllKNN 11.00 0 7
Multiedit 11.17 0 7
ENRBF 11.57 0 7
ENN 13.83 0 10
NCNEdit 13.93 0 10

Table 4: Friedman test rankings and Holm’s post
hoc comparisons. Reduction.

Figure 5: Accuracy vs. reduction graph.

as a single one because all of them produce the same
reduction. Note that the first classifier is Explore,
which is the only one outperforming 11 rivals. Very
close to it is FCore, that outperformed 10. Other
two methods with remarkable results are CPruner
and DROP3, that complete the group of classifiers
having 0 in the column “worse than”.
The average rankings and statistical tests con-

firm that FCore classifiers are the only ones among
the top performers in both accuracy and reduction.
Before concluding, we will graphically show the su-
periority of such classifiers in Figure 5. This graph
corresponds to the bi-objective problem of maximiz-
ing both accuracy and reduction. It can be said that
a solution is as good as its closeness to the top-right
corner. From this point of view, the FCore classi-
fiers are the obvious winners. On the other hand,
a more conservative analysis can be made from the
Pareto’s perspective, where a solution is said to be
non dominated if there is not any other solution
that outperforms it in all objectives. In such case,
FSGACore is non dominated, and any Fcore clas-
sifier is non dominated if we ignore the other two.
Furthermore, apart from FSGACore only Explore
and KNNAdaptive are non dominated, but they are

clearly biased towards one single objective.

5. Conclusion

We have presented FCore, a novel prototype based
classifier inspired by instance selection, that uses
fuzzy concepts to tackle the main drawback of such
approaches: the accuracy loss. We also provided
foundations to extend it to a two-step classifier hav-
ing a genetic tuning phase.

In the experimental study, FCore achieved better
accuracies than KNN using only a small portion of
prototypes. It performed at the level of the best
methods in reduction and accuracy, and it was the
only one placed among the top performers in both
objectives. The genetic tuning provided slight im-
provements in accuracies to the base method, but
due to the known computational cost associated to
evolutionary algorithms we recommend to use it
with caution and only in those problems in which
the time is not critical.

In future work we will investigate the behavior
of FCore in some special kinds of problems such
as imbalanced and highly noisy databases. We are
also interested in exploring more sophisticated evo-
lutionary strategies to be used in the tuning phase.
With them we expect to increase the contribution
of this phase to the accuracy of the classifier.
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