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Abstract

The goal of this work is to prove a link between the
Fuzzy Mathematical Morphology and the L-fuzzy
Concept Analysis when we are using structuring re-
lations which represent the effect that we want to
produce over an initial fuzzy image or signal. In this
case, we prove that the problem of obtaining the L-
fuzzy concepts of an L-fuzzy context is equivalent
to the problem of finding fuzzy images or signals
that remain invariant under a fuzzy morphological
opening or closing.
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1. Introduction

The L-fuzzy Concept Analysis and the Fuzzy Math-
ematical Morphology were developed in different
contexts but in both cases the lattice theory is used
as algebraic framework.

In the case of the L-fuzzy Concept Analysis, we
define the L-fuzzy concepts using a fuzzy implica-
tion and a composition operator associated with it.
In the Fuzzy Mathematical Morphology, a fuzzy im-
plication is also used to define the erosion operator
but a t-norm also appears to introduce the dilation
operator.

On the other hand, both theories have been used
in knowledge extraction processes in data bases [17,
18, 19].

Recently, an interesting relation between L-fuzzy
concept lattices and fuzzy mathematical morphol-
ogy has been introduced in [1]. In this paper we
have extended this relation to the case of working
with any structuring relation R € LX*X which is
not necessarily obtained from a structuring image.

Next, we will show a brief description of these two
theories.
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2. Preliminary theories

2.1. L-fuzzy Concept Analysis

The Formal Concept Analysis was introduced by
R. Wille [30, 20] and, based on order theory and
complete lattices, tries to process knowledge and
represent the conceptual structures of a data set.

A formal context is defined as a triple (X,Y, R)
where X and Y are two finite sets of objects and
attributes respectively and R C X x Y is a binary
relation defined among them. The hidden informa-
tion is obtained by means of the formal concepts
that are pairs (A, B) with A C X, B C Y verify-
ing A* = B and B* = A, where * is the derivation
operator that assigns to every object set A the at-
tributes related to the elements of A, and to every
attribute set B the objects related to the attributes
of B. These formal concepts can be interpreted as a
group of objects A sharing a group of attributes B.
The set A is said to be the extension of the concept
and the set B is the intension.

The set of concepts derived from a formal con-
text (X,Y, R) is a complete lattice and it is usually
represented by a line diagram.

The first extension of the Formal Concept Analy-
sis to the fuzzy field, the L-fuzzy Concept Analysis,
is due to Burusco and Fuentes-Gonzélez [14, 15],
and its fundamental structures are fuzzy Galois con-
nections and fuzzy closure operators [6, 7]. This
theory takes as starting point an L-fuzzy context
(L, X,Y,R), where L is a complete lattice, X and
Y are sets of objects and attributes respectively and
R € LX*Y is a fuzzy relation that represents the re-
lationship between the elements of X and Y, taking
values in the complete lattice L.

To work with these L-fuzzy contexts, the deriva-
tion operators 1 and 2 are defined by means of the
following expressions:

VAcL* VBe LY A(y) = mig’({I(A(x),R(ac,y))}

By(x) = yigg{I(B(y% R(x,y))}

with I a fuzzy implication operator defined in the



lattice (L, <), which is decreasing in its first argu-
ment, and where A; represents the set of all the at-
tributes related to the objects of A in a fuzzy way,
and By, the objects related to all the attributes of
B.

In this work, we are going to use the following
notation for these derivation operators to stand out
their dependence to relation R:

VA € LX, VB € LY, we define the operators D, :
LX — LY and Dgror : LY — LX as follows:

Dr(A)(y) = Ai(y) = inf {T(A(2), R(z,v))}
Dien(B)(w) = Balw) = inf {I(B(y), R (3,2))}

where we denote by R°P the opposite relation of R,
that is, V(z,y) € X x Y, R?(y,z) = R(z,y).

The derivation operators are used to define the
constructor operators ¢ : LX — LX with p(A4) =
(A1)2 = A12 and ’l/) : LY — LY such that IZJ(B) =
(B2)1 = Ba.

The information stored in the context is visual-
ized by means of the L-fuzzy concepts that are the
pairs (A, A;) € (L%, LY) with A € fix(p), set of
fixed points of the operator ¢. These pairs, whose
first and second components are said to be the fuzzy
extension and intension respectively, represent a set
of objects that share a set of attributes in a fuzzy
way.

The set £ = {(A, A1)/A € fix(¢)} with the order
relation < defined as:

(A,Al) S (C,Cl) lfASC (0rA1 ch)
is a complete lattice that is said to be the L-fuzzy
concept lattice [14, 15].

The calculation of the L-fuzzy concept lattice is
reduced, as we mentioned above, to calculate the set
of fixed points of the constructor operator . If the
implication I used in the definition of the deriva-
tion operators is a residuated implication, then the
constructor operators ¢ and v are closure opera-
tors. Therefore, the use of residuated implications
will greatly facilitate the calculation of the L-fuzzy
concepts because VA € LX, the pair (A2, A1) is an
L-fuzzy concept of the L-fuzzy context.

Other important results about this theory are in
(2, 13, 27, 16, 26, 8].

A very interesting particular case of L-fuzzy con-
texts appears trying to analyze situations where
the object and the attribute sets are coincident
[3, 4], that is, L-fuzzy contexts (L, X, X, R) with
R € LX*X, In these situations, the L-fuzzy con-
cepts are pairs (A, B) such that A, B € L.

These are the L-fuzzy contexts that we are go-
ing to use to obtain the main results of this work.
Specifically, we are going to take a complete chain
(L, <) as the valuation set. Moreover, in the case
of the use of the L-fuzzy contexts (L, R™ R" R) or
(L,Z™, 7™, R), the L-fuzzy concepts (A, B) are in-
terpreted as signal or image pairs or digital versions
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of these signals or images, respectively. These L-
fuzzy contexts play an important role in our paper.

2.2. Mathematical Morphology

The Mathematical Morphology is a theory con-
cerned with the processing and analysis of images
or signals using filters and operators that modify
them. The foundations of this theory (initiated by
G. Matheron [24, 25] and J. Serra [28]), are in set
theory, integral geometry and e lattice algebra. Ac-
tually, this methodology is used in general contexts
related to activities as information extraction in dig-
ital images, noise elimination or pattern recognition.

2.2.1. Mathematical Morphology in binary images
and grey level images

In this theory, binary images A from X = R™ or
X = Z™ (digital images or signals when n=1) are
analyzed.

The morphological filters are defined as operators
F : p(X) = p(X) that transform, simplify, clean
or extract relevant information from these images
A C X, information that is encapsulated by the
filtered image F(A) C X.

These morphological filters are obtained by
means of two basic operators, the dilation 65 and
the erosion g, that are defined in the case of binary
images with the sum and difference of Minkowski
[28], respectively.

55(A)=Ae 8 = A,

sES
es(A)=A0 S =)A,
seé

where A is an image that is treated with another
S C X, that is said to be structuring element, or
with its opposite S = {—z/z € S} and where A,
represents a translation of A: A; = {a + s/a € A}.

The structuring image S represents the effect that
we want to produce over the initial image A.

These operators are not independent since they
are dual transformations with respect to the com-
plementation [29], that is, if A° represents the com-
plementary set of A, then:

es(A) = (05(A%))%, VA, S € p(X)

We can compose these dilation and erosion op-
erators associated with the structuring element S
and obtain the basic filters morphological opening
vs : 9(X) — o(X) and morphological closing
¢s: p(X) — p(X) defined by:

Vs =0s50€es ¢g=¢cg00s

The opening s and the closing ¢g over these
binary images verify the two conditions that char-
acterize the morphological filters: They are isotone



and idempotent operators, and moreover it is veri-
fied, VA, S € p(X):

i) vs(A) € A C ¢s(A)

it) 15 (A) = (¢s(A%))°
These operators will characterize some special

images (the S-open and the S-closed ones) that
will play an important role in this work.

This theory is generalized introducing some tools
to treat images with grey levels [28]. The images
A and the structuring elements S are now maps
defined in X = R"™ and with values in R = R U
{—00,400} or defined in X = Z™ and with values
in finite chains as, for instance, {0,1,...,255}. Now,
the erosion and dilation can be defined as follows:

es(A)(z) = inf{A(y) — S(y —z)/y € X}
d5(A)(z) = sup{A(y) + S(z —y)/y € X}

The previous definitions can be embedded in a
more general framework that considers each image
as a point z € L of a partially ordered structure
(L, <) (complete lattice), and the filters as opera-
tors F': L — L with properties related to the order
in these lattices [28, 22].

Now, the erosions € : L — L are operators that
preserve the infimum e(inf M) = infe(M),VM C L
and the dilations § : L — L, the supremum:
d(supM) = supd(M),YM C L. The openings
v : L — L and the closings ¢ : L — L are iso-
tone and idempotent operators verifying y(z) < z <
¢(z),Vz € L.

2.2.2. Fuzzy Mathematical Morphology

In this new framework and associated with lat-
tices, a new fuzzy morphological image processing
has been developed [9, 10, 5, 11, 12, 23] using L-
fuzzy sets A and S as images and structuring ele-
ments.

In this interpretation, the filters are operators
Fs: LX — LX where L is the chain L = [0,1] or a
finite chain L = Ly, = {0 = a1, ag, ..., ag—1, 0, = 1}
with 0 < oy < ... < age—1 < 1, and the set X = R?
or X =72

In all these cases, fuzzy morphological dilations
dg + LX — LX and fuzzy morphological erosions
es : LX — LX are defined using some operators of
the fuzzy logic [5, 9, 12].

In general, there are two types of relevant oper-
ators in the Fuzzy Mathematical Morphology. One
of them is formed by those obtained by using some
pairs (x, I) of adjunct operators related by:

(ax B <9) = (B<I(o,9))
The other type are the morphological operators
obtained by pairs (x, I) related by a strong negation
"L — L:

axf=(I(a,p)),¥(a,f) € LxL
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An example of one of these pairs that belongs
to both types is the formed by the t-norm and the
implication of Lukasiewicz.

In this paper, we will work taking the commu-
tative group (R™,+) or (Z",+) as (X, +), and the
complete chain L = [0, 1] or a finite chain as L =
Ly={0=a1,a9,.,ap_1,0p, =1} as (L, <), I, %),
with the Zadeh negation and (x, I) the Lukasiewicz
t-norm and implication:

a*xb=max(0,a+b—1),Ya,be L
I(a,b) = min(1,1 —a+b),Ya, b€ L

We interpret the L-fuzzy sets A : X — L and
S : X — L as n-dimensional images in the space
X = R" (or n-dimensional digital images in the
case of X = 7).

In the literature, (see [5, 9, 21]), fuzzy erosion and
dilation operators are introduced associated with
the residuated pair (x,I) as follows:

If S: X — L is an image that we take as struc-
turing element, then we consider the following defi-
nitions associated with (L, X, S) :

Definition 1 [9] The fuzzy erosion of the image
A € LX by the structuring element S is the L-fuzzy
set eg(A) € LY defined as:

es(A)(x) = inf{I(S(y—2z),Ay))/y € X} VreX
The fuzzy dilation of the image A by the struc-

turing element S is the L-fuzzy set ds(A) defined
as:

bs(A)(z) = sup{S(z —y) x A(y)/y € X} VeeX
Then, we obtain fuzzy erosion and dilation oper-
ators eg,0g : LX — LX.

3. Structuring relations

We are interested in the application of this theory to
the more general contexts without the use of com-
mutative group structures, laws as sums or differ-
ences, and translation operators. In this way, we are
going to use structuring relations R € LX*X that
represent different effects that we want to produce
over an initial fuzzy image or signal A € LX.

In this new framework, we can redefine the fuzzy
erosion and dilation associated with the pair (x,I)
as follows: Vr € X,

er(A)(z) = inf{I(R(y, ), A(y))/y € X}
= inf{I(R(z,y), A(y))/y € X}
6r(A)(z) = sup{R(z,y) x A(y)/y € X}
We remark that, in this paper, we are using the

Lukasiewicz operators.
We have the following result in this case:



Proposition 1 If A’ is the negation of A defined
by A'(z) = (A(z))', Vo € X and if R € LX*X rep-
resents the structuring relation, then it is verified:

er(A’) = (Oror(A4))
0r(A") = (eren(A))
Proof: Let be z € X.

es(A)(z) = nf{I(R(y, ), A'(y))/y € X}
inf{I(R(z,y), A'(y))/y € X}
inf{ (R (z,y) * A(y))'/y € X}
(sup{R(z,y) * A(y)/y € X})'
= (0per (A)())" = (drer (A)) (2)

The second equality is proved analogously.

O

Using these fuzzy erosion and dilation operators,
we are going to define the basic morphological fil-
ters: the fuzzy opening and the fuzzy closing (see
[5, 9, 21]) for an structuring relation.

Definition 2 The fuzzy opening of the image A €
LX by the structuring relation R € LX*X is the
fuzzy subset yr(A) that results from the composition
of the fuzzy erosion eg(A) of A by R followed by its
fuzzy dilation:

Yr(A) = 6r(er(A)) = (Or 0 €r)(A)

The fuzzy closing of the image A € LX by the
structuring element R € LX*X is the fuzzy subset
dr(A) that results from the composition of the fuzzy
dilation dr(A) of A by R followed by its fuzzy ero-
sion:

¢r(A) =¢er(6r(A4)) = (erodr)(A)

It can be proved that the operators v and ¢g
are morphological filters, that is, they preserve the
order and they are idempotent, that is,

VA,A:[,AQ S LX,VR € LX*X .

i) Ay < Ay = yr(A1) < vr(A2)
i) A1 < Ay = ¢r(A1) < ¢r(A2)
ii1) Yr(YrR(A)) = Yr(A)

w) ¢r(¢r(A)) = dr(A)

Moreover, these filters verify that:
Yr(A) < A< ¢r(A) VAe LX VRec L**X

Analogous results to those obtained for the fuzzy
erosion and dilation operators can be proved for the
fuzzy opening and fuzzy closing:

Proposition 2 If A’ is the negation of A defined

by A'(z) = (A(z))’ Vx € X, then, VA€ LX VR €
LXXX,

Proof: By proposition 1,

Yr(A") = dr(er(A")) = 6r((dror (A))")
= (eror (Oror(A))) = (prer (A))’

The other equality can be proved in an analogous
way.

O

Since the operators vr and ¢g are increasing in
the complete lattice (LX, <), the respective fixed
points sets are complete lattices (by Tarski’s the-
orem) and therefore, non empty sets. These fixed
points will be used in the following definition:

Definition 3 An image A € LX is said to be R-
open if yr(A) = A and it is said to be R-closed if

pr(A)=A
These R-open and R-closed sets provide a connec-
tion between the Fuzzy Mathematical Morphology

and the L-fuzzy Concept Analysis, as we will see
next.

4. Relation between both theories

Given the structuring relation R € LX*X and its
strong negation R’ € LX*X  we can associate with
the triple (L, X, R) an L-fuzzy context (L, X, X, R')
where the sets of objects and attributes are coinci-
dent.

We will use this representation to prove the most
important results that connect both theories:

Theorem 1 Let (L, X, R) be the triple associated
with the structuring relation R € LX*X. Let
(L, X, X, R') be the L-fuzzy context whose incidence
relation R' € LX*X s the strong negation of the
structuring relation R. Then the fuzzy erosion e
and fuzzy dilation 0 operators en (L, X, R) are re-
lated to the derivation operators Dgr and Dpgror in
the L-Fuzzy context (L, X, X, R’) by:

ER(A) =Dpg (A/) VA € LX

0r(A) = (Dror(A)) VA e LX
Proof: Taking into account the properties of the

Lukasiewicz implication operator, for any = € X, it
is verified that:

er(A)(x) = mE{I(R(y, x), A(y))/y € X}
— mf{I(A'(y), R'(y,2))/y € X} = D (A)(a)

Analogously,

5r(A)(z) = sup{R(z,y) * A(y)/y € X}
= sup{({(R(z,y), A'(y)))'/y € X}
(inf{I(R(z,y), A'(y))/y € X})'
(inf{I(A(y), R'(z,y))/y € X})’
(inf{I(A(y), R (y,2))/y € X})'
(Drrer(A))(2)) = (Drren(A)) ()

O

/—\"



As a consequence, we obtain the following result
which proves the connection between the outstand-
ing morphological elements and the L-fuzzy con-
cepts:

Theorem 2 Let us consider the structuring rela-
tion R € LX*X. The following propositions are
equivalent:

1. The pair (A, B) € LX x LX is an L-fuzzy con-
cept of the context (L, X, X, R') where R’ is the
negation of the structuring relation R.

2. The pair (A,B) € L* x LX is such that the
negation A’ of A is R-open (yr(A') = A’)
and B is the fuzzy erosion of A’ (that is, B =
er(A)).

3. The pair (A, B) € LX x LX is such that B is
R-closed (¢r(B) = B) and A is the negation of
the fuzzy dilation of B (that is, A = (6r(B))’).

Proof:

1 = 2) Let be R € LX*¥ the structuring rela-
tion. Let us consider an L-fuzzy concept (A, B)
of the L-fuzzy context (L, X, X, R'). By the
definition of L-fuzzy concept, it is verified that
B =Dg/(A) and A = Dgrer(B), and, applying
the previous theorem,

€R(A/) = DR/(A) =B.
Moreover, it is fulfilled that

Yr(A") = dr(er(A")) = 6r(B) = (Drrer(B)) =
— A

which proves that A’ is R-open.

2 = 3) Let us suppose that the pair (A, B) €
LX x L¥ is such that yg(A’) = A’ and B =
er(A”")). Then,

¢r(B) = er(dr(B)) = er(dr(cr(4")))
=er(yr(4") =er(A') =B
which proves that B is R-closed.

On the other hand, from the hypothesis B =
er(A’) can be deduced that

0r(B) = dr(er(A")) = vr(A")

and consequently, taking into account that A’
is R-open, that

Sr(B) = A’

and finally,
A= (6r(B))
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3 = 1) Let (A,B) be a pair fulfilling that
¢r(B) = B and A = (0g(B))’. Let us con-
sider the L-fuzzy context (L, X, X, R’). Then,
by the previous theorem we can deduce that

(Drrer(B)) = (6r(B)) = A

On the other hand, applying the previous the-
orem and the hypothesis,

Dr(A) =er(A’) = er(6r(B)) = ¢r(B) = B

therefore, as B is the derived set of A, the pair
(A, B) is an L-fuzzy concept of the L-fuzzy con-
text (L, X, X, R').

Let us see now some examples.

Example 1 Interpretation of some binary images
as formal concepts.

Let us consider the binary image represented in

Figure 1.

Figure 1: Binary image

Let us suppose the referential set X = R? and w
a fixed positive number. We will define the struc-
turing relation R C R? x R? as:

Y(x1,22), (y1,92) € R? x R?
(z1,22)R(y1,92) <= ((x1 —11)* + (22 — 92)? < w?)

By the results of Theorem 2, the pair (4, B)
showed in Figure 2 and related to Figure 1 is a
formal concept of the formal context (R? R2, R'),
because yr(A") = A’ and B = er(A’) is fulfilled.



G={x ) y<=w’}

@)@

Formal Concept (4,B)=(1H, 1)

Figure 2: A formal concept of the context (R?,R? R')

However, if we take now the set D represented in
Figure 3,

Figure 3: Image defined by set D.

calculating the fuzzy opening, we can verify that
vr(D') # D’. That is, D’ is not an R-open set (see
Figure 4).

Figure 4: D’ is not an R-open set.

Therefore, there is no formal concept in the for-
mal context (R?,R?, R’) which extension is the set
D.

Example 2 Interpretation of some open digital
signals as L-fuzzy concepts.
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If X CZand L ={0,0.1,0.2,...,0.9,1} then, the
maps A : X — L can be interpreted as 1-D discrete
signals.

Let wus consider the referential set X =
{0,1,2,...,20} and the discrete signal represented
by the L-fuzzy set A (see Figure 5):

A ={0/0.3,1/0.3,2/0.3,3/0.6,4/0.6,5/0.5,6/0,
7/0,8/0,9/0,10/0,11/0,12/0.5,13/0.8,14/1,
15/1,16/0.5,17/0.5,18/0.5,19/0.5,20/0.9}

o T em
09}
08 | A rJ r
07 |
06 |
05+
04}
033
02+
01+
0

8 10 12 14 16 18 20

X

Figure 5: Discrete signal A as an L-Fuzzy set
The structuring relation R € LX*¥X is defined as:

0 ifjlz—yl >2
05 ifl<|z—y| <2
1 iflza—yl <1
Let us consider now the negation of the signal
represented by the L-fuzzy set A (see Figure 6):

R(iL’, y) =

A’ ={0/0.7,1/0.7,2/0.7,3/0.4,4/0.4,5/0.5,6/1,
7/1,8/1,9/1,10/1,11/1,12/0.5,13/0.2, 14/0,
15/0,16/0.5,17/0.5,18/0.5,19/0.5,20/0.1}

—

8 10 12 14 16

18 20
X

Figure 6: Negation of the discrete signal A

and let us calculate the fuzzy erosion of the negation
of the signal. The obtained signal B is showed in
Figure 7.



B =ex(A") = {0/0.7,1/0.7,2/0.4,3/0.4,4/0.4,5/0.4,
6/0.5,7/1,8/1,9/1,10/1,11/0.5,12/0.2, 130,
14/0,15/0,16/0,17/0.5,18/0.5,19/0.1,20/0.1}

LT
09t
08 L
07 %
0,6 I
0,5 T
04t
03+
02+
014

12 14 16

18 20
X

0 2 4 6 8 10

Figure 7: Discrete signal B = er(A")

If we take now this last signal and calculate its
fuzzy dilation, we can see that

Yr(A") = dr(er(A") = A'.

Then, the set A’ is an R-open set.

Therefore, by the Theorem 2, the pair (4,er(A4"))
represented in Figure 8 is an L-fuzzy concept of the
associated L-fuzzy context (L, X, X, R').

LT
0,9 I
08 I
0,7 I
06 |
05 I
04 ]
03 %
0,2 I
0,1 I

0] S
0 2 4 6 8

A -

10 12 14

16 18 20

X

A ’=5R(;R(A ") =__y__R(A ’)

JAy
09+
081
07 %
0,6 ¥
0,5 I
0,4 I
0,3 I
0,2 T
0.1 I

0
0 2 4 6 8 10 12

§B=8R(A )

14 16 18 20
X

Figure 8: The pair (A, B) is an L-Fuzzy concept of
the L-Fuzzy context (L, X, X, R')
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5. Conclusions and Future work

The main results of this paper show an interest-
ing relation between the L-fuzzy Concept Analysis
and the Fuzzy Mathematical Morphology. So, we
can apply the algorithms for the calculus of L-fuzzy
concepts in Fuzzy Mathematical Morphology and
vice versa.

In future works, we want to extend these results
to other type of operators as other implications, t-
norms, conjunctive uninorms etc... and to some L-
fuzzy contexts where the objects and the attributes
are not related to signal or images. Moreover, we
will study the use of complete lattices different from
the chains considered in this paper.
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