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Abstract

In our contribution we discuss the power stability
of 1-Lipschitz binary aggregation functions. The
main result is the characterization of power stable
quasi-copulas by means of their dependence func-
tions. The notions are illustrated by examples.
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1. Introduction

Power stable aggregation functions were investi-
gated and characterized in paper [7] containing a
general characterization of continuous power stable
binary aggregation functions, characterizations of
continuous power stable binary aggregation func-
tions with some additional properties, e.g., with
neutral element or annihilator, and also character-
ization of continuous power stable binary aggrega-
tion functions which are associative. In this pa-
per we will study 1-Lipschitz power stable binary
aggregation functions. We focus our attention on
the class of binary quasi-copulas (quasi-copulas for
short). Quasi-copulas can be defined in different
ways. Primarily, they were introduced as general-
izations of copulas based on the coincidence of val-
ues on tracks [1]. Note that a copula is an aggre-
gation function C: [0,1]?> — [0,1] with neutral el-
ement e = 1 satisfying the supermodular property,
i.e., for all x,y € [0,1]2,

CxAy)+C(xVy) > Cx)+ C(y).

Quasi-copulas were also shown to be 1-Lipschitz
aggregation functions with neutral element e = 1
[4]. Tt is also known that the class of all quasi-
copulas is the lattice closure of the class of all copu-
las. Even more, for each quasi-copula @) there exist
systems of copulas (C;)ier and (D;);es, such that
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Q=supC; =
il
of 2-dimensional real functions is considered).
Characterization of power stable copulas which
are also known as Extreme Value copulas (EV-
copulas for short), is well known. For an exhaus-
tive overview of EV-copulas we refer to [6]. But no
attempt to characterize power stable quasi-copulas,
or more generally 1-Lipschitz power stable aggrega-
tion functions, has been made up to now.
The paper is organized as follows. In the next sec-
tion, we introduce basic notions and results con-
cerning power stable aggregation functions. Section
3 is devoted to the study of 1-Lipschitz power stable
aggregation functions, and especially power stable
quasi-copulas. Finally, some concluding remarks are
added.

i_an’ D; (the standard partial ordering
VIS

2. Power stable aggregation functions

We start with recalling several definitions.

A function A: [0,1]?> — [0,1] is called an aggrega-
tion function if it is monotone (i.e., increasing in
each variable) and satisfies the boundary conditions
A(0,0) =0 and A(1,1) = 1.

As we are working in the framework of aggregation
functions, we will use the following basic definition
of quasi-copulas.

A quasi-copula is an aggregation function
Q:[0,1]> — [0,1] with neutral element e = 1
that is 1-Lipschitz wrt. Li-norm, i.e., for all
x = (z1,51),y = (¥2,%2) in [0,1]?,

Q(x) = QY)| < [[x —ylli = |z1 — x2| + [y1 — vl

Definition 1 An aggregation function A: [0,1]> —

[0,1] is called power stable whenever for any con-
stant r €]0,00[ and all (x,y) € [0,1]? it holds

A(z",y") = (A(z,y))" (1)

Continuous power stable binary aggregation func-
tions have been characterized in our recent paper



[7]. The paper has not been published yet, therefore
we recall the following two results from [7], impor-
tant for our next investigation.

Proposition 1 A continuous function A: [0,1]* —
[0,1] is a power stable aggregation function if and

only if there is a continuous non-zero function
d: [0,1] — [0, 00[ such that

(i) the function d:]0,1] — [0,00], d4(t) = @,

is decreasing, and d(0) > 0 or lim d(t) < oo,
t—0t

(i) the function d_: [0,1[— [0,00[, d_(t) = %%,

is increasing, and d(1) > 0 or 111{1 d_(t) < oo,
t—1-

and for all (z,y) €]0,1[* it holds

log x )

Ale,y) = (ay) (555

Functions d characterized in Proposition 1 are called
dependence functions, and the class of all such func-
tions d will be denoted by D.

Note that each power stable aggregation function
A is continuous on ]0,1[2. Due to power stability,
Aljpaz =0o0r Aljg12 =1, or Ais on ]0,1[% gener-
ated by a function d via (2). If the function d satis-
fies all conditions given in Proposition 1, then there
exists a continuous power stable aggregation func-
tion B: [0,1]2 — [0,1] such that Bljg 2 = A
For more details we refer to [7].

]071[2.

Proposition 2 A continuous power stable aggrega-
tion function A generated by a dependence function
d € D has neutral element e = 1 if and only if
d(0) =d(1) = 1.

Copulas are particular 1-Lipschitz aggregation
functions. EV-copulas were characterized in [2, 9]
as follows.

Proposition 3 A copula C: [0,1]> — [0,1] is

power stable if and only if there is a convex function

d: [0,1] — [0,1] such that for allt € [0,1],
max{t,1 —t} <d(t) <1,

(3)
and for all (z,y) €]0, 1,

log x )

Cla,y) = (vy) iz (4)

The dependence functions connected with EV-
copulas are the Pickands dependence functions, and
the class of all Pickands’ dependence functions will
be denoted by P.

3. 1-Lipschitz power stable aggregation
functions

It can be checked that for any continuous power sta-
ble aggregation function A: [0,1]2 — [0, 1], the par-
tial functions A(0,.), A(.,0), A(1,.) and A(.,1) are
either constants 0 or 1, or they are power functions
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t* with a positive a. If A is considered to be 1-
Lipschitz, then for the above partial functions there
are only the next possibilities: A(0,.), A(.,0) €
{O,Zd [071]} and A(l, .), A(., 1) S {17ld‘[071]} Thus,
using the monotonicity of aggregation functions, we
can divide all 1-Lipschitz power stable aggregation
functions into the next four classes. Namely, the
class of aggregation functions for which

(i) A(0,t) = A(t,0) = 0 (and then A(1,t) =
A(t,1) = t), i.e., 1-Lipschitz power stable ag-
gregation functions with neutral element e = 1,
which means that the first class is formed by
power stable quasi-copulas.

A(0,t) = A(L,t) = t, t € [0,1], which gives
A(z,y) =y, i.e., the second class contains the
projection to the second coordinate only, A =
Py

A(t,0) = A(t,1) = t, t € [0,1], which gives
A(z,y) = x, i.e., the third class only contains
the projection to the first coordinate only, A =
Pr.

A(0,t) = A(t,0) = t (and then A(1l,t) =
A(t,1) = 1), t € [0,1]. Then A(t,t) = t,
« > 0 and due to the 1-Lipschitz property of
A, for each t € [0,1] it holds

AL t) — A(t,t) =1 —t* <1 —t,

i.e., @ €]0,1]. On the other hand, for each t €
[0,1] it has to hold

A(t,t) — A(t,0) = t* —t < t,

which implies @ = 1, and thus A(t, t) = ¢. Con-
sequently, A(z,y) = max{x,y}.

The previous discussion shows that the only non-
trivial case which has to be clarified, is case (i) con-
cerning power stable quasi-copulas.

Recall that each quasi copula Q: [0,1]% — [0,1]
is a conjunctive aggregation function, i.e., for all
(zr,y) € [0,1?, Q(x,y) < min{x,y}. Continuous
conjunctive power stable aggregation function can
be characterized by means of their dependence func-
tions as follows.

Proposition 4 A continuous power stable aggrega-
tion function A generated by a dependence function
d is conjunctive if and only if for each t € [0,1],

d(t) > max{t,1 —t}.

Proof.

As mentioned above, A is conjunctive aggrega-
tion function if and only if for all (z,y) €
[0,1]%, A(z,y) < Min(,y).

Observe that the inequality A(x,y) < z is for each
(z,y) €]0,1[% equivalent to

log x
log zy

exp (log zy)d < ) < explogz



and next to

log
log zy’

d ( log z ) o
logay /) —
which can be written as d(t) > ¢, t € [0,1].
Similarly, the inequality A(z,y) < y is equivalent to
d(t) >1—t.
U
Before giving a complete characterization of power
stable quasi-copulas, recall that a real function
¢: [a,b] — R is convex at a point ¢ty € [a,b], if
for each t € [a,b] and ¢ € [0,1] it holds

F((L=o)to +ct) < (1 =) f(to) +cf (D).

The function ¢ is convex on [a, b] if and only if it is
convex at each ty € [a, b].
In the next characterization we will use the convex-
ity of a dependence function d € D at the points 0
and 1, i.e., the properties

d(ct) <

(1 —1¢)d(0) + cd(t), (5)

and

dlct+1—1¢) < (1—2¢)d(1) + cd(t), (6)

respectively, valid for all ¢ € [0, 1] and ¢ € [0, 1].

Theorem 1 A continuous function Q: [0,1]*> —
[0,1] is a power stable quasi-copula if and only if
it can be written in the form (2) for some depen-
dence function d € D such that d(0) = d(1) =1
and d is convex at points 0 and 1.

Proof.

Sufficiency. First observe that for a dependence
function d € D such that d(0) = d(1) = 1, the corre-
sponding power stable aggregation function is con-
junctive and thus, by Proposition 4, for all ¢ € [0, 1],
max{t,1 —t} < d(t). Next, for each u €]0,1[, con-

sider the function d,,: [0,1] — [0, 1], defined by
Ld(u) ift <u,
du(t) = { =t Zd( ) =1 otherwise.

Due to (5) and (6), d, is a convex function sat-
isfying all requirements for Pickands’ dependence
functions, i.e., d, € P, and thus it generates via

(4) a copula C,,. Moreover, d = i%fl[du and thus,
ue|0,

Q = sup Cy, ie., @ is a quasi-copula.

u€]0,1]
Necessity. Observe that the property d(0) = d(1) =
1 follows from Proposition 2. Suppose that d is not
0O-convex, i.e., there are ¢, ¢ €]0, 1[ such that d(ct) >
1—c+cd(t). From the representation formula (2) we
can see that for any x,y € [0, 1] such that logz ¢

logzy ~—
ie., y=a1"9/ it holds

Qlz,y) = Q(x7m(1—t)/t) _ (m(l_t)/t)d(t)
s
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Similarly, @ (x, x(l—ct)/ct) — gdlet)/ct
The 1-Lipschitz property of ) ensures that for all
z €]0, 1],

Q (%x(l—t)/t) —Q (x7x(1—ct)/ct)

240/t _ gdlet)/et < 2=/t _ p(1=ct)/ct.
Next, the continuity of () implies that the function
f:10,1] = R,

Fla) = 24O/ _ gaten/et _

L=/t 4 (1—ct)/ct

has for each z €]0, 1] a non-positive value.
On the other hand, it holds f(1) = 0 and

dit) d(et) 1—-t 1—ct
/1 A S _
f() t ct t + ct
dit) l—c+cd(t) 1 1
- N7 7:0
< ct t+ct ’

i.e., f is strictly decreasing on some neighbourhood
of the point 1. However, then necessarily f(x) > 0
for some x close to 1, which is a contradiction.

|

Example 1 Consider the Pickands
functions dy,dy € P, given by

dependence

di (£) = max {1 : 12”} L do(t) = dy (1 — 1),

Then d = min{dy,ds} € D generates a proper power
stable quasi-copula @ (i.e., @ is not a copula) given
by Q(z,y) = max{C(z,y),C(y,x)}, where C is the
EV-copula generated by dy, C(x,y) = min{y, z,/y}.
To see that Q is not a copula, it is enough to con-

sider the points x = (47 2) andy = (%,i) Then

Q(xVy)+Q(xAy)=Q(;’;>+Q<411’411)

2\f+1

which means that Q s not supermodular.

The next example shows the importance of the
convexity properties of d.

Example 2 Consider the function d defined by

1—t tel0,1/3],
) BT €31/,
=3 1"¢3  tei/2.3/4),
t t €]3/4,1],

see Fig. 1. It is easy to see that d € D, d(0) =
d(1) = 1, and that d is 0-convez, but not 1-convex
(e.g., for £ =5/12 and ¢ = 6/7 the condition (6) is
not satisfied).

If we construct the aggregation function A using (2),
we obtain

Y z €]0,1], 0 <y < 2?,

4y)L/3 €o,1], 2 <y<z

A — (1‘ x s 41 y=>z,
@9 =9 228y e w<y< ¥a,
x z €]0,1[, Yx<y<1,
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Figure 1: The dependence function d from Example
2 that is not convex at point 1.

13

(xéy)jff

Figure 2: The aggregation function A generated by
the dependence function d from Example 2.

see Fig. 2.

A is 1-Lipschitz in the second variable, i.e., A(x,.)
is 1-Lipschitz for each x, but A is not 1-Lipschitz
in the first variable. Indeed, if we choose the

points u = (0.9,0.81) and v = (0.81,0.81), then
A(0.9,0.81) = 0.81, A(0.81,0.81) V0.910 =

0.703842, and thus,

A(0.9,0.81) — A(0.81,0.81) = 0.106158
> 0.09=0.9—081,

which confirms that A is not 1-Lipschitz in the first
variable.

4. Concluding remarks

We have clarified the structure of the class of 1-
Lipschitz power stable aggregation functions, in-
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cluding the prominent subclass of power stable
quasi-copulas. As the main result we have shown
the relationship of power stable quasi-copulas and
dependence functions convex at points 0 and 1, sat-
isfying the property d(0) = d(1) = 1. For more de-
tails and some other related results see [8]. In our
further investigation, we open the problem of char-
acterization of 1-Lipschitz power stable aggregation
functions of higher dimensions.
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