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Abstract

In our contribution we discuss the power stability
of 1-Lipschitz binary aggregation functions. The
main result is the characterization of power stable
quasi-copulas by means of their dependence func-
tions. The notions are illustrated by examples.
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1. Introduction

Power stable aggregation functions were investi-
gated and characterized in paper [7] containing a
general characterization of continuous power stable
binary aggregation functions, characterizations of
continuous power stable binary aggregation func-
tions with some additional properties, e.g., with
neutral element or annihilator, and also character-
ization of continuous power stable binary aggrega-
tion functions which are associative. In this pa-
per we will study 1-Lipschitz power stable binary
aggregation functions. We focus our attention on
the class of binary quasi-copulas (quasi-copulas for
short). Quasi-copulas can be defined in different
ways. Primarily, they were introduced as general-
izations of copulas based on the coincidence of val-
ues on tracks [1]. Note that a copula is an aggre-
gation function C : [0, 1]2 → [0, 1] with neutral el-
ement e = 1 satisfying the supermodular property,
i.e., for all x, y ∈ [0, 1]2,

C(x ∧ y) + C(x ∨ y) ≥ C(x) + C(y).

Quasi-copulas were also shown to be 1-Lipschitz
aggregation functions with neutral element e = 1
[4]. It is also known that the class of all quasi-
copulas is the lattice closure of the class of all copu-
las. Even more, for each quasi-copula Q there exist
systems of copulas (Ci)i∈I and (Dj)j∈J , such that

Q = sup
i∈I

Ci = inf
j∈J

Dj (the standard partial ordering

of 2-dimensional real functions is considered).
Characterization of power stable copulas which

are also known as Extreme Value copulas (EV-
copulas for short), is well known. For an exhaus-
tive overview of EV-copulas we refer to [6]. But no
attempt to characterize power stable quasi-copulas,
or more generally 1-Lipschitz power stable aggrega-
tion functions, has been made up to now.
The paper is organized as follows. In the next sec-
tion, we introduce basic notions and results con-
cerning power stable aggregation functions. Section
3 is devoted to the study of 1-Lipschitz power stable
aggregation functions, and especially power stable
quasi-copulas. Finally, some concluding remarks are
added.

2. Power stable aggregation functions

We start with recalling several definitions.
A function A : [0, 1]2 → [0, 1] is called an aggrega-
tion function if it is monotone (i.e., increasing in
each variable) and satisfies the boundary conditions
A(0, 0) = 0 and A(1, 1) = 1.
As we are working in the framework of aggregation
functions, we will use the following basic definition
of quasi-copulas.
A quasi-copula is an aggregation function
Q : [0, 1]2 → [0, 1] with neutral element e = 1
that is 1-Lipschitz wrt. L1-norm, i.e., for all
x = (x1, y1), y = (x2, y2) in [0, 1]2,

|Q(x) − Q(y)| ≤ ||x − y||1 = |x1 − x2| + |y1 − y2|.

Definition 1 An aggregation function A : [0, 1]2 →
[0, 1] is called power stable whenever for any con-
stant r ∈]0, ∞[ and all (x, y) ∈ [0, 1]2 it holds

A(xr, yr) = (A(x, y))r
. (1)

Continuous power stable binary aggregation func-
tions have been characterized in our recent paper
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[7]. The paper has not been published yet, therefore
we recall the following two results from [7], impor-
tant for our next investigation.

Proposition 1 A continuous function A : [0, 1]2 →
[0, 1] is a power stable aggregation function if and
only if there is a continuous non-zero function
d : [0, 1] → [0, ∞[ such that

(i) the function d+ : ]0, 1] → [0, ∞[, d+(t) = d(t)
t ,

is decreasing, and d(0) > 0 or lim
t→0+

d+(t) < ∞,

(ii) the function d− : [0, 1[→ [0, ∞[, d−(t) = d(t)
1−t ,

is increasing, and d(1) > 0 or lim
t→1−

d−(t) < ∞,

and for all (x, y) ∈]0, 1[2 it holds

A(x, y) = (xy)d( log x
log xy ). (2)

Functions d characterized in Proposition 1 are called
dependence functions, and the class of all such func-
tions d will be denoted by D.

Note that each power stable aggregation function
A is continuous on ]0, 1[2. Due to power stability,
A|]0,1[2 ≡ 0 or A|]0,1[2 ≡ 1 , or A is on ]0, 1[2 gener-
ated by a function d via (2). If the function d satis-
fies all conditions given in Proposition 1, then there
exists a continuous power stable aggregation func-
tion B : [0, 1]2 → [0, 1] such that B|]0,1[2 = A|]0,1[2 .
For more details we refer to [7].

Proposition 2 A continuous power stable aggrega-
tion function A generated by a dependence function
d ∈ D has neutral element e = 1 if and only if
d(0) = d(1) = 1.

Copulas are particular 1-Lipschitz aggregation
functions. EV-copulas were characterized in [2, 9]
as follows.

Proposition 3 A copula C : [0, 1]2 → [0, 1] is
power stable if and only if there is a convex function
d : [0, 1] → [0, 1] such that for all t ∈ [0, 1],

max{t, 1 − t} ≤ d(t) ≤ 1, (3)

and for all (x, y) ∈]0, 1[2,

C(x, y) = (xy)d( log x
log xy ) (4)

The dependence functions connected with EV-
copulas are the Pickands dependence functions, and
the class of all Pickands’ dependence functions will
be denoted by P.

3. 1-Lipschitz power stable aggregation
functions

It can be checked that for any continuous power sta-
ble aggregation function A : [0, 1]2 → [0, 1], the par-
tial functions A(0, .), A(., 0), A(1, .) and A(., 1) are
either constants 0 or 1, or they are power functions

tα with a positive α. If A is considered to be 1-
Lipschitz, then for the above partial functions there
are only the next possibilities: A(0, .), A(., 0) ∈
{0, id|[0,1]} and A(1, .), A(., 1) ∈ {1, id|[0,1]}. Thus,
using the monotonicity of aggregation functions, we
can divide all 1-Lipschitz power stable aggregation
functions into the next four classes. Namely, the
class of aggregation functions for which

(i) A(0, t) = A(t, 0) = 0 (and then A(1, t) =
A(t, 1) = t), i.e., 1-Lipschitz power stable ag-
gregation functions with neutral element e = 1,
which means that the first class is formed by
power stable quasi-copulas.

(ii) A(0, t) = A(1, t) = t, t ∈ [0, 1], which gives
A(x, y) = y, i.e., the second class contains the
projection to the second coordinate only, A =
PL.

(iii) A(t, 0) = A(t, 1) = t, t ∈ [0, 1], which gives
A(x, y) = x, i.e., the third class only contains
the projection to the first coordinate only, A =
PF .

(iv) A(0, t) = A(t, 0) = t (and then A(1, t) =
A(t, 1) = 1), t ∈ [0, 1]. Then A(t, t) = tα,
α > 0 and due to the 1-Lipschitz property of
A, for each t ∈ [0, 1] it holds

A(1, t) − A(t, t) = 1 − tα ≤ 1 − t,

i.e., α ∈]0, 1]. On the other hand, for each t ∈
[0, 1] it has to hold

A(t, t) − A(t, 0) = tα − t ≤ t,

which implies α = 1, and thus A(t, t) = t. Con-
sequently, A(x, y) = max{x, y}.

The previous discussion shows that the only non-
trivial case which has to be clarified, is case (i) con-
cerning power stable quasi-copulas.

Recall that each quasi copula Q : [0, 1]2 → [0, 1]
is a conjunctive aggregation function, i.e., for all
(x, y) ∈ [0, 1]2, Q(x, y) ≤ min{x, y}. Continuous
conjunctive power stable aggregation function can
be characterized by means of their dependence func-
tions as follows.

Proposition 4 A continuous power stable aggrega-
tion function A generated by a dependence function
d is conjunctive if and only if for each t ∈ [0, 1],

d(t) ≥ max{t, 1 − t}.

Proof.
As mentioned above, A is conjunctive aggrega-
tion function if and only if for all (x, y) ∈
[0, 1]2, A(x, y) ≤ Min(x, y).
Observe that the inequality A(x, y) ≤ x is for each
(x, y) ∈]0, 1[2 equivalent to

exp (log xy)d
(

log x

log xy

)
≤ exp log x
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and next to

d

(
log x

log xy

)
≥ log x

log xy
,

which can be written as d(t) ≥ t, t ∈ [0, 1].
Similarly, the inequality A(x, y) ≤ y is equivalent to
d(t) ≥ 1 − t.

�
Before giving a complete characterization of power
stable quasi-copulas, recall that a real function
φ : [a, b] → R is convex at a point t0 ∈ [a, b], if
for each t ∈ [a, b] and c ∈ [0, 1] it holds

f((1 − c)t0 + ct) ≤ (1 − c)f(t0) + cf(t).

The function φ is convex on [a, b] if and only if it is
convex at each t0 ∈ [a, b].
In the next characterization we will use the convex-
ity of a dependence function d ∈ D at the points 0
and 1, i.e., the properties

d(ct) ≤ (1 − c)d(0) + cd(t), (5)

and

d(ct + 1 − c) ≤ (1 − c)d(1) + cd(t), (6)

respectively, valid for all t ∈ [0, 1] and c ∈ [0, 1].

Theorem 1 A continuous function Q : [0, 1]2 →
[0, 1] is a power stable quasi-copula if and only if
it can be written in the form (2) for some depen-
dence function d ∈ D such that d(0) = d(1) = 1,
and d is convex at points 0 and 1.

Proof.
Sufficiency. First observe that for a dependence
function d ∈ D such that d(0) = d(1) = 1, the corre-
sponding power stable aggregation function is con-
junctive and thus, by Proposition 4, for all t ∈ [0, 1],
max{t, 1 − t} ≤ d(t). Next, for each u ∈]0, 1[, con-
sider the function du : [0, 1] → [0, 1], defined by

du(t) =
{

1 − t
u + t

u d(u) if t ≤ u,
1−t
1−u d(u) + t−u

1−u otherwise.

Due to (5) and (6), du is a convex function sat-
isfying all requirements for Pickands’ dependence
functions, i.e., du ∈ P, and thus it generates via
(4) a copula Cu. Moreover, d = inf

u∈]0,1[
du and thus,

Q = sup
u∈]0,1[

Cu, i.e., Q is a quasi-copula.

Necessity. Observe that the property d(0) = d(1) =
1 follows from Proposition 2. Suppose that d is not
0-convex, i.e., there are t, c ∈]0, 1[ such that d(ct) >
1−c+cd(t). From the representation formula (2) we
can see that for any x, y ∈ [0, 1[ such that log x

log xy = t,
i.e., y = x(1−t)/t, it holds

Q(x, y) = Q
(

x, x(1−t)/t
)

=
(

xx(1−t)/t
)d(t)

= xd(t)/t.

Similarly, Q
(
x, x(1−ct)/ct

)
= xd(ct)/ct.

The 1-Lipschitz property of Q ensures that for all
x ∈]0, 1[,

Q
(

x, x(1−t)/t
)

− Q
(

x, x(1−ct)/ct
)

= xd(t)/t − xd(ct)/ct ≤ x(1−t)/t − x(1−ct)/ct.

Next, the continuity of Q implies that the function
f : ]0, 1] → R,

f(x) = xd(t)/t − xd(ct)/ct − x(1−t)/t + x(1−ct)/ct

has for each x ∈]0, 1] a non-positive value.
On the other hand, it holds f(1) = 0 and

f ′(1) = d(t)
t

− d(ct)
ct

− 1 − t

t
+ 1 − ct

ct

<
d(t)

t
− 1 − c + cd(t)

ct
− 1

t
+ 1

ct
= 0,

i.e., f is strictly decreasing on some neighbourhood
of the point 1. However, then necessarily f(x) > 0
for some x close to 1, which is a contradiction.

�

Example 1 Consider the Pickands dependence
functions d1, d2 ∈ P, given by

d1(t) = max
{

1 − t,
1 + t

2

}
, d2(t) = d1(1 − t).

Then d = min{d1, d2} ∈ D generates a proper power
stable quasi-copula Q (i.e., Q is not a copula) given
by Q(x, y) = max{C(x, y), C(y, x)}, where C is the
EV-copula generated by d1, C(x, y) = min{y, x

√
y}.

To see that Q is not a copula, it is enough to con-
sider the points x =

( 1
4 , 1

2
)

and y =
( 1

2 , 1
4
)
. Then

Q(x ∨ y) + Q(x ∧ y) = Q

(
1
2

,
1
2

)
+ Q

(
1
4

,
1
4

)
= 2

√
2 + 1
8

<
1
2

= Q(x) + Q(y),

which means that Q is not supermodular.

The next example shows the importance of the
convexity properties of d.

Example 2 Consider the function d defined by

d(t) =


1 − t t ∈ [0, 1/3],
1/3 + t t ∈]1/3, 1/2],
1 − t/3 t ∈]1/2, 3/4],
t t ∈]3/4, 1],

see Fig. 1. It is easy to see that d ∈ D, d(0) =
d(1) = 1, and that d is 0-convex, but not 1-convex
(e.g., for x = 5/12 and c = 6/7 the condition (6) is
not satisfied).
If we construct the aggregation function A using (2),
we obtain

A(x, y) =


y x ∈]0, 1[, 0 < y ≤ x2,
(x4y)1/3 x ∈]0, 1[, x2 < y ≤ x,
x2/3y x ∈]0, 1[, x < y ≤ 3

√
x,

x x ∈]0, 1[, 3
√

x < y < 1,
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Figure 1: The dependence function d from Example
2 that is not convex at point 1.

Figure 2: The aggregation function A generated by
the dependence function d from Example 2.

see Fig. 2.
A is 1-Lipschitz in the second variable, i.e., A(x, .)
is 1-Lipschitz for each x, but A is not 1-Lipschitz
in the first variable. Indeed, if we choose the
points u = (0.9, 0.81) and v = (0.81, 0.81), then
A(0.9, 0.81) = 0.81, A(0.81, 0.81) = 3

√
0.910 =

0.703842, and thus,

A(0.9, 0.81) − A(0.81, 0.81) = 0.106158
> 0.09 = 0.9 − 0.81,

which confirms that A is not 1-Lipschitz in the first
variable.

4. Concluding remarks

We have clarified the structure of the class of 1-
Lipschitz power stable aggregation functions, in-

cluding the prominent subclass of power stable
quasi-copulas. As the main result we have shown
the relationship of power stable quasi-copulas and
dependence functions convex at points 0 and 1, sat-
isfying the property d(0) = d(1) = 1. For more de-
tails and some other related results see [8]. In our
further investigation, we open the problem of char-
acterization of 1-Lipschitz power stable aggregation
functions of higher dimensions.
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