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Abstract

The paper deals with an extension of aggregation
operators from the set of real numbers (or interval
[0, 1]) to the set of fuzzy truth values (fuzzy sets
in [0, 1]). We define so-called type-2 aggregation
operator and show that an extension of ordinary
aggregation operator by convolution is a type-2 ag-
gregation operator. Finally we show that ordinary
aggregation operator, as well as aggregation opera-
tor for intervals and for n-dimensional intervals are
special cases of our type-2 aggregation operator.

Keywords: Aggregation operator, Fuzzy truth val-
ues, Type-2 fuzzy sets, Type-2 aggregation opera-
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1. Introduction

At some point, aggregation plays a fundamental role
in all kinds of knowledge based systems [1], [2]. The
theory of aggregation of real numbers is well estab-
lished (see e.g. [3], [4], [5]) and is applied in fuzzy
logic systems based on (type-1) fuzzy sets.

Aggregation operators for real numbers were ex-
tended to the aggregation operators for intervals
([6], [7]). These generalized aggregation operators
are applicable in systems based on the interval-
valued fuzzy sets [8], Atanassov’s intuitionistic fuzzy
sets [9] and interval type-2 fuzzy sets [10]. Recently,
Shang et al. [11] generalized the concept of interval-
valued fuzzy sets to n-dimensional fuzzy sets (also
called fuzzy multisets) and Bedregal et al. [12] pro-
posed aggregation operator for n-dimensional inter-
vals. Note that the n-dimensional intervals are the
membership grades of n-dimensional fuzzy sets.

Zadeh [13] introduced the concept of type-2 fuzzy
sets as an extension of type-1 fuzzy sets. The mem-
bership grades of type-2 fuzzy sets are type-1 fuzzy
sets in [0, 1] (we will refer to as fuzzy truth val-
ues). The type-2 fuzzy sets are very useful in cir-
cumstances where it is difficult to determine an ex-
act membership function for a fuzzy set [14]. This
makes them to be an attractive tool in many real
problems. However, there is no theory allowing us
to aggregate fuzzy truth values. This is one of sev-
eral obstacles for applicability of the systems based
on type-2 fuzzy sets. Our goal is to overcome this
lack of knowledge.

This article is a first announcement of our re-
search activity concerning with aggregation of fuzzy

truth values. The aim of this paper is to propose an
aggregation operator for fuzzy truth values (type-2
aggregation operator), and to provide a theoretical
basis for the concept of type-2 aggregation oper-
ator. Moreover, we show that usual definition of
(ordinary) aggregation operator, the definition of
aggregation operator for intervals [6], and also the
definition of aggregation operator for n-dimensional
intervals [12] are special cases of our definition of
type-2 aggregation operator.

Finally, we show that an n-dimensional fuzzy set
can be interpreted as a class of α-cuts of some fuzzy
truth value. Thus, membership grades of type-2
fuzzy sets can be approximated via n-dimensional
fuzzy sets. Note that this approach corresponds to
α-plane representation [15] and zSlice representa-
tion [16] of type-2 fuzzy sets.

The paper is organized as follows. Section 2 con-
tains basic definitions and notations that are used in
the remaining parts of the paper. Section 3 presents
the extension of (ordinary) aggregation operator via
convolution. In Section 4, we provide the axiomatic
basis for type-2 aggregation operator and show that
the proposed extension satisfies stated axioms. In
Section 5 we show that ordinary aggregation oper-
ator, as well as aggregation operator for intervals
and for n-dimensional intervals are special cases of
our type-2 aggregation operator. The conclusions
are discussed in Section 6.

2. Preliminaries

In this section we present some basic concepts and
terminology that will be used throughout the paper.

A mapping f : X → [0, 1] is called a fuzzy
set (or type-1 fuzzy set) in a set X , the value
f(x) is called a membership grade of x. A fuzzy
set f in X is convex if for all λ ∈ [0, 1] holds
f(λx1 + (1 − λ)x2) ≥ min(f(x1), f(x2)) where x1,
x2 are arbitrary elements of X . A fuzzy set f in X
is normal if there exists x ∈ X such that f(x) = 1.
A crisp set Ker(f) = {x ∈ X | f(x) = 1} is called a
kernel of f . A crisp set fα = {x ∈ X | f(x) ≥ α},
where α ∈]0, 1] is called an α-cut of f .

Definition 1 A function A : [0, 1]n → [0, 1] is
called a type-1 aggregation operator on [0, 1] if and
only if it satisfies the conditions:

(A1) A(0, . . . , 0) = 0;
(A2) A(1, . . . , 1) = 1;
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(A3) x1 ≤ y1, . . . , xn ≤ yn implies A(x1, . . . , xn) ≤
A(y1, . . . , yn).

for all x1, y1, . . . xn, yn ∈ [0, 1].

A type-2 fuzzy set in X is a fuzzy set whose
membership grades are type-1 fuzzy sets in [0, 1].
Let F denotes a class of all type-1 fuzzy sets in
[0, 1]. Then type-2 fuzzy set in X is a mapping

f̃ : X → F and elements of F are called fuzzy truth
values. We denote by FN / FC / FNC a class of all
normal / convex / normal convex fuzzy truth val-
ues, respectively. The algebra of fuzzy truth values
F = (F , ⊔, ⊓, 0, 1, ⊑, �) is closely describe in [17]
and [18], whereas

(f ⊔ g)(z) = sup
x∨y=z

(f(x) ∧ g(y)),

(f ⊓ g)(z) = sup
x∧y=z

(f(x) ∧ g(y)),

f ⊑ g iff f ⊓ g = f,

f � g iff f ⊔ g = g,

0(x) =

{
1 , if x = 0,

0 , otherwise,

1(x) =

{
1 , if x = 1,

0 , otherwise.

Let f ∈ F . Then unary operations

fL(x) = sup
y≤x

f(y) and fR(x) = sup
y≥x

f(y).

enable us to express the operations ⊔, ⊓ and rela-
tions ⊑, � pointwise (see [19], [20], [18]):

f ⊔ g = (f ∧ gL) ∨ (fL ∧ g) = (f ∨ g) ∧ (fL ∧ gL),

f ⊓ g = (f ∧ gR) ∨ (fR ∧ g) = (f ∨ g) ∧ (fR ∧ gR),

f ⊑ g iff fR ∧ g ≤ f ≤ gR,

f � g iff f ∧ gL ≤ g ≤ fL.

Moreover, a fuzzy truth value f is convex if and
only if f = fL ∧ fR (Proposition 33 in [18]).

3. Extension of type-1 aggregation
operators

We extend a type-1 aggregation operator. After-
wards we show that under some conditions the ex-
tended type-1 aggregation operator preserves nor-
mality and convexity of fuzzy truth values.

According to Zadeh’s extension principle [13] n-
ary type-1 aggregation operator A : [0, 1]n → [0, 1]
can be extended by the convolution with respect
to minimum ∧ and maximum ∨ to n-ary operator
Ã : Fn → F as follows:

Ã(f1, . . . , fn)(y) = (1)

= sup
A(x1,...,xn)=y

(f1(x1) ∧ . . . ∧ fn(xn)),

where y, x1, . . . , xn ∈ [0, 1] and f1, . . . , fn ∈ F .
Our approach is a generalization of some exten-

sions of t-norms and t-conorms proposed in [18],
[21] and [22]. Different approach to the subject
used Zhou et al. [23] and proposed so-called type-1
OWA operators (although in our opinion the more
fitting name should be ’type-2 OWA operator’ and
the term ’type-1 OWA operator’ should stand for
ordinary OWA operator).
Example 1. An extension of arithmetic mean
A(x1, . . . , xn) =

∑n

i=1 xi/n is the following aggre-
gation operator for fuzzy truth values:

Ã(f1, . . . , fn)(y) = sup∑
n

i=1
xi

n
=y

(f1(x1)∧ . . .∧fn(xn)),

Let n = 2 and let f1, f2 be fuzzy truth values with
trapezoidal shapes given by f1 = (0.1, 0.3, 0.6, 0.7)

and f2 = (0.4, 0.5, 0.7, 0.9). Then Ã(f1, f2) is a
fuzzy truth value with trapezoidal shape given by
Ã(f1, f2) = (0.25, 0.4, 0.65, 0.8). See Figure 1. We
can see that in this case it is sufficient to compute
the arithmetic means of four parameters of trape-
zoids. We will closely discuss when it is possible to
consider just a few parameters instead of continu-
ous domain in an upcoming comprehensive article
on this subject. There we also give more examples
of various extended aggregation operators.
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Figure 1: Aggregation of trapezoidal fuzzy truth val-

ues f1, f2 by extended arithmetic mean Ã(f1, f2)(y) =
sup x1+x2

2
=y

(f1(x1) ∧ f2(x2)).

For applications of type-2 fuzzy sets, the normal
and convex fuzzy truth values are of special signifi-
cance. So, it is important that normal convex fuzzy
truth values f1, . . . , fn give a normal convex fuzzy
truth value Ã(f1, . . . , fn) whenever Ã is an exten-
sion of some continuous n-ary type-1 aggregation
operator A.

Theorem 1 Let A be an n-ary type-1 aggregation
operator, let f1, . . . , fn be normal fuzzy truth val-
ues. Then Ã(f1, . . . , fn) given by (1) is normal
fuzzy truth value.

Proof. Let xp
i ∈ Ker(fi), for all i = 1, . . . , n. Let
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A(xp
1 , . . . , xp

n) = xp. Then

Ã(f1, . . . , fn)(xp) =

= sup
A(x1,...,xn)=xp

(f1(x1) ∧ . . . ∧ fn(xn)) =

= f1(xp
1) ∧ . . . ∧ fn(xp

n) = 1 ∧ . . . ∧ 1 = 1.

Thus, xp ∈ Ker(Ã(f1, . . . , fn)), consequently

Ã(f1, . . . , fn) is normal. q.e.d.

Theorem 2 Let A be a continuous n-ary type-1 ag-
gregation operator, let f1, . . . , fn be normal convex
fuzzy truth values. Then Ã(f1, . . . , fn) given by (1)
is normal convex fuzzy truth value.

Proof. We prove the proposition for n = 2, the
generalization for arbitrary n is straightforward.
From Theorem 1 it follows that Ã(f1, f2) is nor-
mal. It remains to show that it is also convex, i.e.,

Ã(f1, f2) =
(

Ã(f1, f2)
)L

∧
(

Ã(f1, f2)
)R

. The in-

equality ≤ follows from f ≤ fL, f ≤ fR for all
f ∈ F (Proposition 3 in [18]), so we are going to
show for all y ∈ [0, 1]:

Ã(f1, f2)(y) ≥

((
Ã(f1, f2)

)L

∧
(

Ã(f1, f2)
)R
)

(y).

(2)
From (2) we get:

((
Ã(f1, f2)

)L

∧
(

Ã(f1, f2)
)R
)

(y) =

=

(
sup

A(s1,s2)=y

(f1(s1) ∧ f2(s2))

)L

∧

∧

(
sup

A(t1,t2)=y

(f1(t1) ∧ f2(t2))

)R

=

=

(
sup
u≤y

sup
A(s1,s2)=u

(f1(s1) ∧ f2(s2))

)
∧

∧

(
sup
v≥y

sup
A(t1,t2)=v

(f1(t1) ∧ f2(t2))

)
=

=

(
sup

A(s1,s2)≤y

(f1(s1) ∧ f2(s2))

)
∧

∧

(
sup

A(t1,t2)≥y

(f1(t1) ∧ f2(t2))

)
,

where s1, s2, t1, t2 ∈ [0, 1]. We denote the very last
term by T erm. Then (2) can be expressed:

sup
A(x1,x2)=y

(f1(x1) ∧ f2(x2)) ≥ T erm, (3)

which we are going to prove. We will consider the
following three cases:

1. Let y ∈ Ker
(

Ã(f1, f2)
)

. This means that

sup
A(x1,x2)=y

(f1(x1) ∧ f2(x2)) = 1, hence, (3) holds.

2. Let y ≤ inf
(

Ker
(

Ã(f1, f2)
))

. Now let

A(s1, s2) ≤ y. Then (see Figure 2):
(i) Let s1 ≤ sup (Ker(f1)), s2 ≤ sup (Ker(f2)).

Then there exists numbers x0
1, x0

2 ∈ [0, 1] such that
A(x0

1, x0
2) = y and s1 ≤ x0

1 ≤ sup (Ker(f1)),
s2 ≤ x0

2 ≤ sup (Ker(f2)). Recall that f1, f2

are convex, so they are increasing on intervals
[0, sup (Ker(f1))], [0, sup (Ker(f2))], respectively.
Thus, f1(x0

1) ∧ f2(x0
2) ≥ f1(s1) ∧ f2(s2) and con-

sequently (3) holds.
(ii) Let s1 ≤ sup (Ker(f1)), s2 > sup (Ker(f2)).

Then there exists x0
1, x0

2 ∈ [0, 1] such that
A(x0

1, x0
2) = y and s1 ≤ x0

1 ≤ sup (Ker(f1)),
s2 = x0

2. Recall that f1 is increasing on inter-
val [0, sup (Ker(f1))]. Thus, f1(x0

1) ∧ f2(x0
2) ≥

f1(s1) ∧ f2(s2) and consequently (3) holds.
(iii) Let s1 > sup (Ker(f1)), s2 ≤ sup (Ker(f2)).

Then there exists x0
1, x0

2 ∈ [0, 1] such that
A(x0

1, x0
2) = y and s1 = x0

1, s2 ≤ x0
2 ≤

sup (Ker(f2)). Recall that f2 is increasing on in-
terval [0, sup (Ker(f2))]. Thus, f1(x0

1) ∧ f2(x0
2) ≥

f1(s1) ∧ f2(s2) and consequently (3) holds.
From the previous three cases (i)-(iii) it follows:

sup
A(x1,x2)=y

(f1(x1) ∧ f2(x2)) ≥

≥ sup
A(s1,s2)≤y

(f1(s1) ∧ f2(s2)), (4)

for all y ≤ inf
(

Ker
(

Ã(f1, f2)
))

.

3. Let y ≥ sup
(

Ker
(

Ã(f1, f2)
))

. The proof of

sup
A(x1,x2)=y

(f1(x1) ∧ f2(x2)) ≥

≥ sup
A(t1,t2)≥y

(f1(t1) ∧ f2(t2)), (5)

is similar to item 2 with the exception that functions
f1, f2 are decreasing on intervals [inf (Ker(f1)) , 1],
[inf (Ker(f2)) , 1], respectively.

Finally, (4) and (5) implies (3). q.e.d.

4. Type-2 aggregation operators

In this section we propose a definition of so-called
type-2 aggregation operator, which is a generaliza-
tion of the standard definition of (type-1) aggrega-
tion operator on the set [0, 1] to aggregation opera-
tor on the set of fuzzy truth values.

Definition 2 Let (U , ⊔, ⊓, 0, 1, ⊑, �) be a subalge-

bra of F = (F , ⊔, ⊓, 0, 1, ⊑, �). A function Ã :
Un → U is called a type-2 aggregation operator on
U if and only if it satisfies the conditions (Ã1), (Ã2)
and, for all f1, . . . , fn, g1, . . . , gn ∈ U , at least one
of the conditions (Ã3), (Ã3′):

(Ã1) Ã(0, . . . , 0) = 0;

(Ã2) Ã(1, . . . , 1) = 1;

(Ã3) f1 ⊑ g1, . . . , fn ⊑ gn implies Ã(f1, . . . , fn) ⊑

Ã(g1, . . . , gn),
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Figure 2: Figure to the proof of Theorem 2.

(Ã3′) f1 � g1, . . . , fn � gn implies Ã(f1, . . . , fn) �

Ã(g1, . . . , gn).

Recall that for normal convex fuzzy truth values
the two orderings coincide, i.e. ⊑ = � (Proposition
19 and Proposition 37 in [18]).

The main result of this section shows that, on
the set of normal convex fuzzy truth values, the ex-
tended n-ary continuous aggregation operator given
by (1) is a type-2 aggregation operator.

Theorem 3 Let A be a continuous n-ary type-1 ag-
gregation operator, let FNC be the set of normal
convex fuzzy truth values. Then the extended aggre-
gation operator Ã : Fn

NC → FNC with

Ã(f1, . . . , fn)(y) = sup
A(x1,...,xn)=y

(f1(x1)∧. . .∧fn(xn)),

(6)
where y, x1, . . . , xn ∈ [0, 1] and f1, . . . , fn ∈ FNC,
is a type-2 aggregation operator.

Proof. Omitted for the reason of space. The proof
will be given in an upcoming comprehensive article
on this subject.
Example 2. In Example 1 we showed extended
arithmetic mean A(x1, . . . , xn) =

∑n

i=1 xi/n, for
n = 2, which is a type-2 aggregation operator for
each n = 1, 2, . . . Arithmetic mean is a continuous
aggregation operator, so, it preserves convexity and
normality of fuzzy truth values (see Figure 1).

Now we give an example of discontinuous aggre-
gation operator whose extension is not a type-2 ag-
gregation operator and does not preserve the con-
vexity. Let A be a binary aggregation operator with:

A(x1, x2) =





0 , if (x1, x2) ∈ [0, 0.5] × [0, 0.5],

0.3 , if (x1, x2) ∈ [0, 0.5]×]0.5, 1],

0.7 , if (x1, x2) ∈]0.5, 1] × [0, 0.5],

1 , if (x1, x2) ∈]0.5, 1]×]0.5, 1]

and f1, f2, g1, g2 be trapezoidal fuzzy truth
values with the following parameters f1 =
(0.3, 0.4, 0.6, 0.7), f2 = (0.1, 0.3, 0.4, 0.6), g1 =
(0.35, 0.45, 0.65, 0.75), g2 = (0.6, 0.7, 0.8, 0.9).

Clearly f1 ⊑ g1 and f2 ⊑ g2. Values of Ã(f1, f2)

and Ã(g1, g2) are in the second and third row of the

following table. Values of Ã(f1, f2) ⊓ Ã(g1, g2) are
in the fourth row:

y 0 0.3 0.7 1

Ã(f1, f2)(y) 1 0.5 1 0.5

Ã(g1, g2)(y) 0 1 0 1(
Ã(f1, f2) ⊓ Ã(g1, g2)

)
(y) 1 1 1 0.5

We can see that neither Ã(f1, f2) nor Ã(g1, g2) is

convex. Moreover, Ã is not type-2 aggregation op-

erator, because
(

Ã(f1, f2) ⊓ Ã(g1, g2)
)

6= Ã(f1, f2),

i.e. Ã(f1, f2) ⊑ Ã(g1, g2) does not hold.

5. Type-2 aggregation operators on various
subalgebras of F

In this section we show that the ordinary aggre-
gation operator, as well as the aggregation oper-
ator for intervals and for n-dimensional intervals
are special cases of our type-2 aggregation operator.
We discuss the relation between our generalized ag-
gregation operator given by Definition 2 and some
known aggregation operators on the sets isomorphic
to some subalgebras of F .

5.1. Fuzzy grades of (type-1) fuzzy sets

Let S be a set of all the singletons from F , i.e.,

f ∈ S iff f(x) =

{
1 , if x = a,

0 , otherwise,

for some a ∈ [0, 1].
Then S = (S, ⊔, ⊓, 0, 1, ⊑) is a subalgebra of F

isomorphic with the algebra ([0, 1], ∨, ∧, 0, 1, ≤) (see
[18]), i.e. isomorphic with the fuzzy grades of type-
1 fuzzy sets. If U = S, Definition 2 coincides with
the usual notion of n-ary aggregation operator (e.g.
[3], [2]).

5.2. Fuzzy grades of interval-valued fuzzy
sets

Let I be a set of all the characteristic functions of
closed subintervals of [0, 1], i.e.,

f ∈ I iff f(x) =

{
1 , if x ∈ [a, b],

0 , otherwise,

for some [a, b] ⊆ [0, 1].
Then I = (I, ⊔, ⊓, 0, 1, ⊑) is a subal-

gebra of F isomorphic with the algebra
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([0, 1]2, ∨, ∧, [0, 0], [1, 1], ≤) (see [18]), i.e. iso-
morphic with the fuzzy grades of interval-valued
fuzzy sets under standard maximum ∨, minimum
∧ and ordering ≤ for intervals. If U = I, Definition
2 coincides with the definition of n-ary aggregation
operator for intervals (e.g. [6], [7]).

5.3. Fuzzy grades of n-dimensional fuzzy
sets

Shang et al. [11] introduced an n-dimensional fuzzy
set A on Z as a mapping A : Z → [0, 1]n, where
A(z) = (A1(z), . . . , An(z)) with A1(z) ≤ A2(z) ≤
. . . ≤ An(z) is called an n-dimensional interval. Re-
call that type-1 fuzzy sets and interval-valued fuzzy
sets are special cases of n-dimensional fuzzy sets for
n = 1 and n = 2, respectively. One of the possible
interpretations is: an n-dimensional interval can be
seen as a chain of nested intervals of length k = n

2
(for even n) or k = n+1

2 (for odd n) representing dif-
ferent uncertainty levels on the membership degree
[12]. Now, let us interpret these nested intervals as
α-cuts of some fuzzy truth value f (fuzzy grade of
type-2 fuzzy set for some z ∈ Z) for α = 1

k
, 2

k
, . . . , 1:

f 1
k

= [A1(z), An(z)], f 2
k

= [A2(z), An−1(z)], . . .

. . . , f1 = [Ak(z), An−k+1(z)],

for even n, and

f 1
k

= [A1(z), An(z)], f 2
k

= [A2(z), An−1(z)], . . .

. . . , f1 = [Ak(z), Ak(z)],

for odd n. Now, let V be, for some fixed n, a subset
of F given by:

g ∈ V iff g(x) =





1
k

, if x ∈ f 1
k

− f 2
k
,

2
k

, if x ∈ f 2
k

− f 3
k
,

...
k−1

k
, if x ∈ f k−1

k

− f1,

1 , if x ∈ f1,

for some f ∈ F .
For example of 6-dimensional fuzzy set and cor-

responding g ∈ V see Figure 3. Clearly, V =
(V , ⊔, ⊓, 0, 1, ⊑) is a subalgebra of F isomorphic
with the algebra ([0, 1]n, ∨, ∧, [0, . . . , 0], [1, . . . , 1], ≤
), i.e. isomorphic with the fuzzy grades of n-
dimensional fuzzy sets under standard maximum
∨, minimum ∧ and ordering ≤ for n-dimensional
intervals. If U = V , Definition 2 coincides with
the definition of n-ary aggregation operator for n-
dimensional intervals (Definition 3.1 in [12]).

Thus, membership grades of type-2 fuzzy sets can
be approximated via n-dimensional fuzzy sets, i.e.
as classes of α-cuts of fuzzy truth values. Conse-
quently, various applications of n-dimensional fuzzy
sets can be adapted as an approximate applications
for type-2 fuzzy sets. For instance, the example

0 0.2 0.4 0.6 0.8 1
0

1/3

2/3

1

f

f
2/3 f

1/3
f
1

0 0.2 0.4 0.6 0.8 1
0

1/3

2/3

1

g

Figure 3: A trapezoidal fuzzy truth value f
with parameters (0.1, 0.4, 0.6, 0.9). Its α-cuts
f 1

3
= [0.2, 0.8], f 2

3
= [0.3, 0.7] and f1 =

[0.4, 0.6] produce 6-dimensional fuzzy set A(z) =
(0.2, 0.3, 0.4, 0.6, 0.7, 0.8). Corresponding fuzzy
truth value g ∈ V .

of fuzzy multicriteria decision making based on n-
dimensional fuzzy sets in Section 5 of [12] can be
used as an approximate procedure for multicriteria
decision making based on type-2 fuzzy sets.

Note that this approach corresponds to α-plane
representation [15] and zSlice representation [16] of
type-2 fuzzy sets.

6. Conclusions

We proposed a new concept of type-2 aggregation
operator. These operators aggregate fuzzy truth
values, so it is a step to developing fuzzy logic sys-
tems based on type-2 fuzzy sets. Type-2 aggre-
gation operator is an extension of known aggrega-
tion operators for real numbers, intervals and n-
dimensional intervals. We also showed that an n-
dimensional fuzzy set can be interpreted as a class
of α-cuts of fuzzy truth values. Thus, the mem-
bership grades of type-2 fuzzy sets can be approxi-
mated via n-dimensional fuzzy sets. Consequently,
various applications of n-dimensional fuzzy sets can
be adapted as an approximate applications for type-
2 fuzzy sets.

This paper is a first announcement of our research
activity concerning with aggregation of fuzzy truth
values. Our emphasis was on the theoretical side.
In an upcoming comprehensive article on this sub-
ject we will develop the theoretical aspects in more
details, we will also give more examples of various
extended aggregation operators, and mainly we will

169



study a techniques for computation of type-2 ag-
gregation operators for some specific kinds of fuzzy
truth values, e.g. triangular, trapezoidal, gaussian
shapes.
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