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Abstract

Walker et al. ([18], [19]) defined two families of
binary operations on M (set of functions of [0,1]
in [0,1]), and they determined that, under certain
conditions, those operations are t-norms (triangular
norm) or t-conorms on L (all the normal and con-
vex functions of M). We define binary operations
on M, more general than those given by Walker et
al., and we study many properties of these general
operations that allow us to deduce new t-norms and
t-conorms on both L, and M.

Keywords: Functions of [0,1] in [0,1], normal and
convex functions, t-norm and t-conorm.

1. Introduction

Type-2 fuzzy sets (T2FSs) were introduced by L.A.
Zadeh in 1975 [21], as an extension of type-1 fuzzy
sets (FSs). Whereas an element’s degree of member-
ship in type-1 fuzzy sets is determined by a value
in the interval [0,1], an element’s degree of mem-
bership in a T2FS is a fuzzy set in [0,1]. Then,
a T2FS is determined by a membership function
µ : X → [0, 1][0,1], where M = [0, 1][0,1] is the set
of functions of [0,1] in [0,1] (see [10, 12, 13, 18]).
In this paper, some general results in T2FSs with
degrees of membership in M will be obtained, as
well as particular results for T2FSs with degrees of
membership in the subset L of normal and convex
functions of M.

Triangular norms (t-norms) were introduced by
Menger [11], and later, B. Schweizer and A. Sklar
in [16, 15] gave the axiomatic currently used to
define t-norm. Because of the close connection be-
tween the theory of fuzzy sets and order theory (see,
eg, [6]), several authors have studied t-norms on
bounded partially ordered sets (bounded posets). In
this direction, in [4] and [3] the notion of t-norm was
generalized for bounded posets. More, in [14] the
extension of t-norm on bounded lattices was con-
sidered, establishing the axioms (hereinafter called
"basic" axioms), that match those given by [4] and
[3].

These definitions were also extended in [5] to
interval valued fuzzy sets (IVFSs), but other res-
trictions or properties were added to the "basic"
axioms, establishing the "restrictive" axioms. Later,
in [18, 19] the authors extended the "restrictive"

axioms to T2FSs, and presented two families of
binary operations on M, determining that, under
certain conditions, the operations are t-norms or t-
conorms on L. In this paper, we propose two fami-
lies of binary operations on M, more general than
those presented in [18, 19], and we analyze, among
other properties, in which conditions these families
satisfy each of the "restrictive" axioms on L or on
M. In particular, some sufficient requirements are
obtained in order the mentioned general binary ope-
rations are t-norms or t-conorms.

The article is organized as follows: Section 2
recalls some definitions and properties about FSs,
IVFSs, and T2FSs, provides background related to
t-norms and t-conorms on FSs, IVFSs and T2FSs,
and presents the "basic" and "restrictive" axioms. In
Section 3 the operations N and H (see Definition
14) are proposed. A deeply study is made in order
to obtain the necessary properties they have to sa-
tisfy to be t-norms or t-conorms both on L and on
M.

Last Section is devoted to expose some conclu-
sions.

2. Preliminaries

In this Section, we will recall some concepts and
results, in order to understand without difficulty the
rest of the paper. Through all the paper, let X ̸= ∅
represents the universe of discourse. Besides, the
standard order relation on the real numbers will be
denoted by ≤.

2.1. Some fuzzy sets extensions

Definition 1. ( [20]) A fuzzy set (FS), A, is cha-
racterized by a membership function µA,

µA : X → [0, 1],

where µA(x) is the degree of membership of an ele-
ment x ∈ X in the set A.

Definition 2. ( [1, 2, 17]) An interval-valued fuzzy
set (IVFS), A, is characterized by a membership
function σA,

σA : X → I = {[a, b]; 0 ≤ a ≤ b ≤ 1}.

So, the degree of membership of an element x ∈ X
is an interval in [0, 1].
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Definition 3. ( [12, 13]) A type-2 fuzzy set (T2FS),
A, is characterized by a membership function:

µA : X → M = [0, 1][0,1] = Map ([0, 1], [0, 1]).

That is, µA(x) is a fuzzy set in the interval [0, 1], and
is the degree of membership of an element x ∈ X in
the set A. Then

µA(x) = fx,

where
fx : [0, 1] → [0, 1].

The set of all type-2 fuzzy sets on X is denoted by
F2(X).

Definition 4. ([18]) Let a ∈ [0, 1]. The characte-
ristic function of a is a : [0, 1] → {0, 1}, where

a(x) =
{

1 if x = a
0 if x ̸= a

Let J ⊂ M be the set of all characteristic func-
tions of elements in [0, 1]. That is, J= {a : [0, 1] →
{0, 1} ; a ∈ [0, 1]}. Note that we could establish an
equivalence between J and the values of member-
ship of any fuzzy set.

Definition 5. ([18]) Let [a, b] ⊂ [0, 1]. The cha-
racteristic function of [a, b] is [a,b] : [0, 1] → {0, 1},
where

[a,b](x) =
{

1 if x ∈ [a, b]
0 if x /∈ [a, b]

Let K ⊂ M be the set of all characteristic func-
tions of subintervals of [0, 1]. Also, there exists an
equivalence between K and the values of member-
ship of any interval-valued fuzzy set.

Additionally, as justified in [18], operations in
Map(X, M) can be defined naturally from opera-
tions in M and satisfy the same properties. In this
paper, therefore, we will work on M as all the results
can be extended directly and easily to Map(X, M),
which is the set of membership functions of elements
in F2(X).

Definition 6. A decreasing function n : [0, 1] →
[0, 1] such that n(0) = 1 and n(1) = 0, is said to be
a negation. If, additionally, n(n(x)) = x holds for
all x ∈ [0, 1], it is said to be a strong negation.

Definition 7. ([8, 18]) The ⊔ (union), ⊓ (intersec-
tion) and ¬ operations and the elements 0̄ and 1̄ are
defined in M as follows:

(f ⊔ g)(x) = sup{f(y) ∧ g(z) : y ∨ z = x},

(f ⊓ g)(x) = sup{f(y) ∧ g(z) : y ∧ z = x},

¬f(x) = sup{f(y) : 1 − y = x} = f(1 − x),

0̄(x) =
{

1 if x = 0
0 if x ̸= 0 , 1̄(x) =

{
1 if x = 1
0 if x ̸= 1.

,

where ∨ and ∧ are maximum and minimum opera-
tions, respectively, in the lattice [0, 1]. Note that 0̄
and 1̄ are just the characteristic functions of 0 and
1, respectively.
It is easy to prove that ⊔ and ⊓ satisfy De Mor-
gan’s laws with respect to given operation ¬, but
M = (M, ⊔, ⊓, ¬, 0̄, 1̄) does not have a lattice struc-
ture, as the absorption law does not hold [8, 18].
Furthermore, the operations ⊔ and ⊓ satisfy the
properties required for each one to define a partial
order on M.

Definition 8. ([13, 18]) The following two partial
orders are defined on M:

f ⊑ g if f ⊓ g = f ;

f ≼ g if f ⊔ g = g.

Generally, these two orders are not the same
[13, 18]. 1̄ is the greatest element of the partial
order ⊑, because f ⊑ 1̄, ∀f ∈ M; and 0̄ is the
least element of the partial order ≼, as 0̄ ≼ f ,
∀f ∈ M ([18]). Moreover, the constant function
g = 0 (g(x) = 0, ∀x ∈ [0, 1]) is the least and
greatest element of ⊑ and ≼, respectively.

In order to facilitate the operations in M, the fol-
lowing Definition and Theorems were given in pre-
vious works.

Definition 9. ( [8, 18]) If f ∈ M, the functions
fL, fR ∈ M are defined as

fL(x) = sup {f(y) : y ≤ x},

fR(x) = sup {f(y) : y ≥ x}.

Now the following result can be established.

Theorem 1. ([8, 18]) Let f, g ∈ M. The equalities:

f ⊔ g = (f ∧ gL) ∨ (fL ∧ g) = (f ∨ g) ∧ (fL ∧ gL),

f ⊓ g = (f ∧ gR) ∨ (fR ∧ g) = (f ∨ g) ∧ (fR ∧ gR).

hold.

And we have a characterization for each of the
partial orders ⊑ and ≼.

Theorem 2. ([18]) Let f, g ∈ M. Then :

f ⊑ g ⇔ (fR ∧ g) ≤ f ≤ gR,

f ≼ g ⇔ (gL ∧ f) ≤ g ≤ fL.

Additionally, note that the characteristic function
of an interval [a, b] is just [a,b] = aL ∧bR (see [18]).

Next, we are going to consider a special kind
of functions in M. This will allow us to obtain a
bounded and complete lattice, and then construct
t-norms and t-conorms properly. Let us recall that:

Definition 10. Let f ∈ M. It is said that f is
normal if sup {f(x) : x ∈ [0, 1]} = 1.
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Let N be the set of all normal functions in M.
Note that if f ∈ M, then f ∈ N if and only if
fL ∨ fR = 1.
Definition 11. Let f ∈ M. It is said that f is
convex, if for any x ≤ y ≤ z, the inequality f(y) ≥
f(x) ∧ f(z) holds.

Let C be the set of all convex functions on M. If
f ∈ M, then f ∈ C if and only if f = fL ∧ fR.

The set of all normal and convex functions of
f ∈ M will be denoted L. The algebra L =
(L, ⊔, ⊓, ¬, 0̄, 1̄) is a subalgebra of M. In L, the
partial orders ⊑ and ≼ are equivalent, and L is
a bounded ( 0̄ and 1̄ are the minimum and the
maximum, respectively) and complete lattice (see
[7, 8, 13, 18]). Furthermore, that J ⊂ K ⊂ L ⊂ M
is obvious.

The following characterization will help to esta-
blish new results.
Theorem 3. ( [7, 8]) Let f, g ∈ L. f ⊑ g if and
only if

gL ≤ fL y fR ≤ gR.

2.2. T-norms and t-conorms

Up to now, we have only considered the operations
introduced in Definition 7. But from the Zadeh’s
Extension Principle [12, 13, 21] some new opera-
tions can be obtained using not only the minimum,
maximum, and standard negation, but also other
operations. In this direction, we introduced nega-
tions in partially ordered sets, and we gave some
negations in M.
Definition 12. Let M be the set of all fuzzy sets
on [0, 1] and n a suprajective negation in [0, 1]. The
operation Nn : M → M is given, for any f ∈ M by:

(Nn(f))(x) = sup{f(y) : n(y) = x} ∀x ∈ [0, 1].

We proved that Nn is a negation on L (that
is, decreasing in (L, ⊑) with Nn(0̄) = 1̄ and
Nn(1̄) = 0̄), that is strong (involutive) if and only
if n is strong.

On the other hand, recall that a t-norm ([9]) is a
binary operation T : [0, 1]2 → [0, 1], commutative,
associative, increasing on each argument, and with
neutral element 1. More, a t-conorm is a binary
operation S : [0, 1]2 → [0, 1], commutative, associa-
tive, increasing on each argument, and with neutral
element 0. Similar definitions apply to bounded lat-
tices. In [5, 19] this definition was extended both to
IVFSs and to T2FSs, adding some axioms in order
to collect some desirable properties. For example, as
J ⊂ K ⊂ L, it seems reasonable to demand t-norms
on L to be closed both on J and on K. Furthermore,
as t-norms on IVFSs satisfy T ([1, 1], [a, b]) = [a, b]
and T ([0, 0], [a, b]) = [0, 0], by analogy the condi-
tion T ([0, 1], [a, b]) = [0, b] is required. So the fol-
lowing "restrictive" axioms were established:

Definition 13. ([19]) The binary operation T :
L2 → L is a t-norm on L if:

1. T is commutative
2. T is associative.
3. T (f, 1̄) = f for any f ∈ L (neutral element).
4. If g ⊑ h then T (f, g) ⊑ T (f, h), for all f, g, h ∈

L (increasing on each argument).
5. T ((0L ∧ 1R), (aL ∧ bR)) = (0L ∧ bR).
6. T is closed in J.
7. T is closed in K.

Similarly, a binary operation S : L2 → L is a
t-conorm if it satisfies all the axioms of t-norm, but
the axiom 3 (as in this case the neutral element
should be 0̄), and the axiom 5 (that now will be
S((0L ∧ 1R), (aL ∧ bR)) = (aL ∧ 1R)). Axioms 1,
2, 3 and 4, will be called "basic" axioms.

3. T-norms and t-conorms on L

In [17, 18, 19] it was proved that the operations ⊓
and ⊔ satisfy the "restrictive" axioms of t-norm and
t-conorm on L, respectively, given in Definition 13.
More, two new families of operations, also satisfying
"restrictive" axioms on L, were introduced on M:

(fN̄g)(x) = sup{f(y) ∧ g(z) : y △ z = x},

(fH̄g)(x) = sup{f(y) ∧ g(z) : y▽z = x},

where △ and ▽ are continuous t-norm and
t-conorm, respectively, on [0,1].

In the following our main goal is to obtain a
broader set of operations on M, and study the
necessary requirements to in fact to be t-norms in
the restrictive sense. In this direction, let us begin
with the following definition.

Definition 14. Let ⋆ be a binary operation on
[0, 1], △ a t-norm and ▽ a t-conorm on [0, 1]. The
binary operations N and H on M are given for any
f, g ∈ M as:

(fNg)(x) = sup{f(y) ⋆ g(z) : y △ z = x},

(fHg)(x) = sup{f(y) ⋆ g(z) : y▽z = x}.

Note that N = N̄ and H = H̄, just in case ⋆ = ∧.

A first result is:

Theorem 4. (De Morgan’s Laws) Let n be a strong
negation on [0, 1]. If △ and ▽, are n-dual (for all
x, y ∈ [0, 1], n(x △ y) = n(x)▽n(y)), then

Nn(fNg) = Nn(f)HNn(g),

Nn(fHg) = Nn(f)NNn(g), ∀f, g ∈ M.

That is, N are H dual respect to Nn, provided △
and ▽ are dual respect to n.

The proofs of the two following propositions are
straightforward.
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Proposition 1. Let N and H as in Definition 14.
N and H are commutative if and only if ⋆ is com-
mutative.

Proposition 2. If the operation ⋆ in Definition 14
is continuous and increasing on each variable, then
N and H are associative if and only if ⋆ is associative.

Proposition 3. Let c ∈ [0, 1], and the function
c : [0, 1] → [0, 1] given ∀x ∈ [0, 1] as c(x) = c. Then
for all f ∈ M it is

(fNc)(x) = sup{f(y) ⋆ c : x ≤ y},

(fHc)(x) = sup{f(y) ⋆ c : x ≥ y}.

provided △ and ▽ are continuous in Definition 14.

Proof. (fNc)(x) = sup{f(y) ⋆ c(z) : y △ z = x} =
sup{f(y) ⋆ c : y △ z = x}. As △ is a t-norm (and
then △≤ Min), x = y △ z ≤ y ∧z and x ≤ y. More,
if x ≤ y then , by continuity, it exists a z ∈ [0, 1]
such that x = y △ z. Then, (fNc)(x) = sup{f(y) ⋆
c : x ≤ y}, ∀x ∈ [0, 1].
The proof of the second equality is similar.

Corollary 1. In the same conditions as in Propo-
sition 3,

1. If c is a neutral element of the operation ⋆, then
fNc = fR, and fHc = fL.

2. If ⋆ is a t-norm on [0, 1], then fN1 = fR, and
fH1 = fL, where 1 ∈ M is the function given
by 1(x) = 1 ∀x ∈ [0, 1].

3. If ⋆ is a t-conorm on [0, 1], then fN0 = fR, and
fH0 = fL, where 0(x) = 0 ∀x ∈ [0, 1].

4. If c is an absorbent element of the operation ⋆,
then fNc = c, and fHc = c.

5. If ⋆ is a t-norm on [0, 1], then fN0 = fH0 = 0.
6. If ⋆ is a t-conorm on [0, 1], then fN1 = fH1 =

1.

Remark 1. In [18], section 5, proposition 61, the
authors maintain that if ⋆ = ∧ and △ any t-norm,
then fN1 = fR for any f ∈ M. Nevertheless this
assertion is not correct, as the continuity of △ should
be demanded. In fact, let us consider, for example,
⋆ = ∧ and the non continuous t-norm

x △ y =

x if y = 1
y if x = 1
0 otherwise.

and the function

f(x) =
{

0.3 if x ̸= 0.5
1 if x = 0.5

In this case, (fN1)(0.1) = (f(0.1) ∧ 1(1)) ∨ (f(1) ∧
1(0.1)) = (0.3 ∧ 1) ∨ (0.3 ∧ 1) = 0.3 ̸= 1 = fR(0.1).

Corollary 2. Let N and H be the operations given
in Definition 14. ∀f ∈ M we have:

1. If u ⋆ 1 = u and u ⋆ 0 = 0 ∀u ∈ [0, 1], then
fN1̄ = f ,

(fN0̄)(x) =
{

sup f if x = 0
0 if x ̸= 0 ,

Additionally, if f ∈ N then fN0̄ = 0̄.
2. If u ⋆ 1 = 1 ∀u ∈ [0, 1], then fN1̄ = 1.
3. If u ⋆ 1 = 1 and u ⋆ 0 = u ∀u ∈ [0, 1], and △

is continuous, then fN0̄ = 0̄ ∨ fR.
4. If u ⋆ 1 = u and u ⋆ 0 = 0 ∀u ∈ [0, 1], then

fH0̄ = f ,

(fH1̄)(x) =
{

sup f if x = 1
0 if x ̸= 1 ,

Additionally, if f ∈ N then fH1̄ = 1̄.
5. If u ⋆ 1 = 1 ∀u ∈ [0, 1], then fH0̄ = 1.
6. If u ⋆ 1 = 1 and u ⋆ 0 = u ∀u ∈ [0, 1], and ▽

is continuous, then fH1̄ = 1̄ ∨ fL.

Proposition 4. Let △, ▽ and ⋆ the operations in
Definition 14. If △ and ▽ are continuous, and ⋆ is
commutative, associative, continuous, increasing in
each argument and with a neutral element c, then
∀f, g ∈ M,

(fNg)R = fNgR = fRNg = fRNgR,

(fHg)L = fHgL = fLHg = fLHgL.

Proof. Let c be the function given by
c(x) = c, ∀x ∈ [0, 1].
From Corollary 1, (fNg)Nc = (fNg)R holds.
By Proposition 2, (fNg)Nc = fN(gNc) = fNgR.
And, as operation ⋆ is commutative,
(fNg)Nc = (fNc)Ng = fRNg.
Then, (fNg)R = fNgR = fRNg, and
(fNg)R = ((fNg)R)R = (fNgR)R = fRNgR.

The rest of the equalities have similar proofs.

Due to limitation of the length of this work, the
following results will be stated without proof.

Proposition 5. If ⋆ is increasing on each argument,

∀f, g ∈ M (fHg)R = fRHgR ⇔ ⋆ is continuous.

Proposition 6. If ⋆ continuous and increasing on
each argument, then ∀f, g ∈ M

(fNg)L = fLNgL.

Proposition 7. If ⋆ is continuous, increasing on
each argument and satisfies 1 ⋆ 1 = 1, then both N
and H are closed on N.

Proposition 8. If ⋆ is increasing on each variable,
the following stamens

fN(g ∨ h) = (fNg) ∨ (fNh),

fH(g ∨ h) = (fHg) ∨ (fHh),
fN(g ∧ h) ≤ (fNg) ∧ (fNh),
fH(g ∧ h) ≤ (fHg) ∧ (fHh),

hold ∀f, g, h ∈ M, where ≤ is the usual order in
the set of functions ( f ≤ g if and only if f(x) ≤
g(x), ∀x).
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Corollary 3. If ⋆ is increasing on each argument,
then ∀f, g, h ∈ M, such that g ≤ h, the inequalities

(fNg) ≤ (fNh), (fHg) ≤ (fHh),

hold.

Proposition 9. If ⋆ is continuous and increasing
on each argument, then , ∀f, g, h ∈ M

fN(g ⊔ h) ≤ (fNg) ⊔ (fNh),

fH(g ⊓ h) ≤ (fHg) ⊓ (fHh).

Proposition 10. Let consider △ and ▽ conti-
nuous. And let ⋆ be an operation commutative,
associative, continuous, with neutral element and
increasing on each argument. ∀f, g, h ∈ M, the
inequalities

fN(g ⊓ h) ≤ (fNg) ⊓ (fNh),

fH(g ⊔ h) ≤ (fHg) ⊔ (fHh),

hold.

Although Propositions 9 and 10 only establish
inequalities, the following results will provide some
sufficient conditions in order to N and H satisfy the
distributivity laws respect to ⊓ and ⊔, and the in-
creasing monotonicity.

Proposition 11. Let △ and ▽ continuous. And ⋆
commutative, associative, continuous, with neutral
element and increasing on each argument. Given
f, g, h ∈ M,
- if g ⊑ h, and gR ≤ h or gR ≥ h, then

(fNg) = (gNf) ⊑ (fNh) = (hNf).

- if g ≼ h, and hL ≤ g or hL ≥ g, then

(fHg) = (gHf) ≼ (fHh) = (hHf).

Proposition 12. Let △ and ▽ continuous. And
let ⋆ continuous, increasing on each argument, such
that a ⋆ (b ∧ c) ≥ (d ⋆ b) ∧ (e ⋆ c), provided that
a ≥ (d ∧ e). For all f ∈ C and g, h ∈ M, the
equalities

fN(g ⊔ h) = (fNg) ⊔ (fNh),

fH(g ⊓ h) = (fHg) ⊓ (fHh).

hold. Additionally, if ⋆ is commutative, associative
and with neutral element, then we have that

fN(g ⊓ h) = (fNg) ⊓ (fNh),

fH(g ⊔ h) = (fHg) ⊔ (fHh).

Corollary 4. Let △ and ▽ continuous. And let ⋆
continuous, commutative, increasing on each argu-
ment, and such that a ⋆ (b ∧ c) ≥ (d ⋆ b) ∧ (e ⋆ c),
provided that a ≥ (d ∧ e). For all f ∈ C and

g, h ∈ M,
- if g ≼ h, then

(fNg) = (gNf) ≼ (hNf) = (fNh).

- if g ⊑ h, then

(fHg) = (gHf) ⊑ (hHf) = (fHh).

Additionally, if ⋆ is associative and with neutral
element,
- if g ⊑ h, then

(fNg) = (gNf) ⊑ (hNf) = (fNh),

- if g ≼ h, then

(fHg) = (gHf) ≼ (hHf) = (fHh).

Remark 2. • The Minimum t-norm ∧ fulfills all
conditions of Proposition 12, and consequently,
if both △ and ▽ are continuous, and f is con-
vex, we can assert that N and H, determined
by ⋆ = ∧, are distributive respect to ⊓ and ⊔,
as showed in [18].

• The only t-norm on [0,1] satisfying the condi-
tion a ⋆ (b ∧ c) ≥ (d ⋆ b) ∧ (e ⋆ c), provided that
a ≥ (d ∧ e), is the Minimun. Because if ⋆ is not
the Minimun, there exist a, b ∈ [0, 1], such that
a⋆b < Min(a, b) (recall the Min is the greatest
t-norm). For these values we have

a ⋆ (1 ∧ b) = a ⋆ b < a ∧ b = (a ⋆ 1) ∧ (1 ⋆ b),

and, however, a > (a ∧ 1).
• If α is an automorphism on [0, 1], the operation

⋆ given by x⋆y = α(x)∧α(y), for all x, y ∈ [0, 1],
is continuous, commutative and increasing on
each variable, and α(a) ∧ α(b ∧ c) ≥ (α(d) ∧
α(b)) ∧ (α(e) ∧ α(c)), provided that a ≥ (d ∧ e),
but it is not associative.

• The operation x ⋆ y = x ∨ y (Maximum t-
conorm) does not fulfill the condition a ⋆ (b ∧
c) ≥ (d ⋆ b) ∧ (e ⋆ c), provided that a ≥ (d ∧ e).
For example, (0.5 ∨ (0.1 ∧ 0.8) = 0.5 �
(1 ∨ 0.1) ∧ (0.4 ∨ 0.8) = 0.8.

Corollary 5. Let N and H be the operations de-
termined by △ and ▽ continuous, and by ⋆(x, y) =
α(x) ∧ α(y), for all x, y ∈ [0, 1], where α is an au-
tomorphism on [0, 1]. For all f ∈ C and g, h ∈ M,
the assertions

fN(g ⊔ h) = (fNg) ⊔ (fNh),

fH(g ⊓ h) = (fHg) ⊓ (fHh),

if g ≼ h ⇒ (fNg) = (gNf) ≼ (hNf) = (fNh),

if g ⊑ h ⇒ (fHg) = (gHf) ⊑ (hHf) = (fHh),

hold.
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Proposition 13. Let △ and ▽ be continuous ope-
rations, and ⋆ an operation continuous, increasing
on each argument, such that u ⋆ 1 = u and u ⋆ 0 =
0, ∀u ∈ [0, 1], and satisfying a⋆(b∧c) ≥ (d⋆b)∧(e⋆c),
provided that a ≥ (d ∧ e). Let f ∈ M. Then
∀g, h ∈ M

fN(g ⊔ h) = (fNg) ⊔ (fNh),

fH(g ⊓ h) = (fHg) ⊓ (fHh),

if and only if f is convex.

Proof. Similar to given in [18], in Theorem 63.

Proposition 14. Let △ and ▽, continuous, and
⋆ continuous, commutative, increasing on each ar-
gument, and satisfying a ⋆ (b ∧ c) ≥ (d ⋆ b) ∧ (e ⋆ c),
provided a ≥ (d ∧ e). Then N and H are closed on
C.

Additionally, if 1 ⋆ 1 = 1 holds, then N and H
are closed on L, and increasing respect to the partial
order of L.

Now we consider two particular operations:

(f ⊖ g)(x) = sup{f(y) ∨ g(z) : y ∧ z = x},

(f ⊕ g)(x) = sup{f(y) ∨ g(z) : y ∨ z = x},

and we give the following characterizations:

Proposition 15. For all f, g ∈ M, the equalities

f ⊖ g = (f ∨ gR) ∨ (fR ∨ g) = fR ∨ gR = (f ∨ g)R ,

f ⊕ g = (f ∨ gL) ∨ (fL ∨ g) = fL ∨ gL = (f ∨ g)L ,

hold.

Although the operation ⋆ = ∨ do not fulfill the
conditions of the Proposition 12, the following re-
sults can be proved.

Proposition 16. ∀f, g, h ∈ M

f ⊖ (g ⊓ h) = (f ⊖ g) ⊓ (f ⊖ h),

f ⊕ (g ⊔ h) = (f ⊕ g) ⊔ (f ⊕ h).

Corollary 6. The operations ⊖ and ⊕ are in-
creasing respect to ⊑ and ≼, respectively. That
is, given f, g, h ∈ M,

if g ⊑ h ⇒ (f ⊖ g) ⊑ (f ⊖ h).

if g ≼ h ⇒ (f ⊕ g) ≼ (f ⊕ h).

Proposition 17. Let f, g ∈ M, then

(f ⊖ g) ∈ C , (f ⊕ g) ∈ C.

From Propositions 7 and 17, it is straightforward
the following.

Corollary 7. ⊖ and ⊕ are closed on L.

Furthermore operations ⊖ and ⊕ are increasing
respect to the partial orden on L.

Corollary 8. Consider f, g, h ∈ L, such that g ⊑ h
(⊑ is the partial order on L). Then

(f ⊖ g) ⊑ (f ⊖ h), (f ⊕ g) ⊑ (f ⊕ h).

Proof. Straightforward from the Corollaries 6 and
7.

In the following, some properties of N and H in
the sets J and K will be faced.

Proposition 18. Let △ and ▽ continuous. And
let ⋆ be an operation satisfying 1 ⋆ 0 = 0 ⋆ 1 = 0,
1 ⋆ 1 = 1, and 0 ⋆ 0 = 0. If a ≤ b and c ≤ d, we
have that

(aL ∧ bR)N(cL ∧ dR) = eL ∧ fR,

where e = (a △ c) ≤ f = (b △ d). And

(aL ∧ bR)H(cL ∧ dR) = eL ∧ fR,

where e = (a▽c) ≤ f = (b▽d).
That is, N and H are closed on K, provided the
conditions of the formulation.

Proof. Similar to that given in [18], in Section 5.2.

Corollary 9. In the same conditions as in the pre-
vious Proposition 18, we obtain

(0L ∧ 1R)N(aL ∧ bR) = 0L ∧ bR.

(0L ∧ 1R)H(aL ∧ bR) = aL ∧ 1R,

Corollary 10. In the same conditions as in the
Proposition 18, we obtain

(aNc) = e,

were e = a △ c. That is, N is closed on J.

(aHc) = m,

were m = a▽c. That is, H is closed on J.

Proposition 19. Let △ and ▽ continuous, and let
⋆ be a t-conorm in [0, 1]. If a ≤ b and c ≤ d, then

(aL ∧ bR)N(cL ∧ dR) = 0L ∧ fR,

where f = b ∨ d.

(aL ∧ bR)H(cL ∧ dR) = fL ∧ 1R,

where f = a ∧ c. That is, N and H are closed
on K provided △ and ▽ are continuous, and ⋆ is a
t-conorm.

176



Corollary 11. In the same conditions as in the
previous Proposition 19, we have that

(0L ∧ 1R)N(aL ∧ bR) = 0L ∧ 1R.

(aNc) = 0L ∧ fR,

where f = a ∨ c. That is, N is not closed on J.

(0L ∧ 1R)H(aL ∧ bR) = 0L ∧ 1R.

(aHc) = fL ∧ 1R,

where f = a ∧ c.That is, H is not closed on J.

Summarizing this Section 3, if ⋆ is not commu-
tative, N and H are not commutative, therefore,
they are not t-norm neither t-conorm, respectively,
on both L and M. More, if ⋆ is a t-conorm in [0, 1],
then N and H do not satisfy axioms 3, 5 and 6 of
the definition 13.

If △ and ▽ are continuous, and x⋆y = α(x)∧α(y),
for all x, y ∈ [0, 1], where α is an automorphism on
[0, 1], then N and H satisfy all "restrictive" axioms of
t-norm and t-conorm on L, respectively, except the
associativity and the neutral element. The problem
of obtaining a binary operation ⋆, apart from the
Minimum, in order to N and H be t-norm and t-
conorm, respectively, on L, has not been solved yet.

Moreover, if △ is continuous, and ⋆ is a continuous
t-norm, then N is commutative, associative, 1̄ is the
neutral element, and , given f, g, h ∈ M,
- if g ⊑ h, and gR ≤ h or gR ≥ h, then

(fNg) ⊑ (fNh).

Namely, in these conditions, N fulfills all "basic"
axioms of t-norm on (M, ⊑). Similarly, if ▽ is con-
tinuous, and ⋆ is a continuous t-norm, then H is
commutative, associative, 0̄ is the neutral element,
and, given f, g, h ∈ M,
- if g ≼ h, and hL ≤ g or hL ≥ g, then

(fHg) ≼ (fHh).

That is, in these conditions, H fulfills all "basic"
axioms of t-conorm on (M, ≼).

4. Conclusions

In this study the operations N and H have been de-
fined on M. They are more general than those given
in [18]. Among other properties, it has been studied
in which conditions each of the "restrictive" axioms
of t-norm and t-conorm, is satisfied. This deeply
analysis has been made on L as well as on M. From
this study it has been determined, for example, that
if ⋆ is not commutative, or if it is a t-conorm, then N
and H are not t-norm and t-conorm, respectively.
However, new t-norms and t-conorms have been de-
ducted according to the "basic" axioms. Further,
new operations are determined that satisfy the dis-
tributive laws respect to ⊓ and ⊔.
An open problem is to determine different opera-
tions to N̄ and H̄ be t-norm and t-conorm, respec-
tively, in the "restrictive" sense, on L.
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