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Abstract

This paper is devoted to the use of the GAI (Gen-
eralized Additive Independence) model in a Multi-
Criteria Decision Making context. We first discuss
on some new conditions (concerning the sign and
monotonicity) to add on the terms appearing in a
GAI model. Secondly, we propose some algorithms
to propose the learning examples to change or re-
move, together with an explanation of this, when
there are inconsistencies in the learning data. Fi-
nally, we propose some importance and interaction
indices to interpret a GAI model.
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1. Introduction

Multi-Criteria Decision Making (MCDM) aims at
representing the preferences of a Decision Maker
(DM) regarding how to compare some options on
the basis of their values on several attributes. The
preferences of the DM can be projected to each at-
tribute separately. Depending on the type assump-
tions on these preferences over each attribute, two
lines of MCDM model can be defined. In the first
one (called attribute-decomposable), the overall as-
sessment of the options can be decomposed as an
aggregation function applied to partial utility func-
tions on each attribute. This representation implies
some commensurability among criteria in the sense
that the partial utility functions return an assess-
ment in the common evaluation scale (e.g. [0, 1] rep-
resenting a satisfaction degree). The simplest model
of this form uses the weighted sum model as an ag-
gregation function. In the second approach (called
additive-decomposable), there are still some utility
functions over the criteria, but it is not assumed
that they return a commensurate evaluation, and
one assumes some additivity in the overall utility.
The most well-known model is the additive utility.

The previous examples of models are both lin-
ear. It has been acknowledged that such a model
cannot represent many real-life decision strategies
called interaction among criteria. In the line of the
attribute-decomposable models, this has led to the
use of the Choquet integral [1]. It has the ability
to represent various important phenomena such as
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veto, favor, complementarity among criteria, among
others. In the line of additive-decomposable mod-
els, the GAI (Generalized Additive Independence)
model has been designed as a generalization of the
additive utility model [2, 3]. The GAI model has
recently increasing interest in the MCDM commu-
nity [2, 3, 4, 5]. References [4, 5] are interested in
learning a GAI model using linear programming.

We also consider the problem of using the GAI
model in a MCDM context. There are two major
phases in MCDM: learning the GAI model and then
explaining the model so-obtained. Our first contri-
bution is to provide a representation of 2-additive
GAI models (GAI models where interaction is lim-
ited to pairs of attributes). In particular, we show
that it is sufficient to consider only positive terms
in the expression of the GAI model. In the learning
context, we extend the approaches provided in [4, 5]
by providing in particular methods to handle incon-
sistent preferential information provided by the user
and explain these inconsistency. We provide a new
approach for explaining an inconsistency, based on
the Farkas lemma [6, pages 28-29]. In the context of
explaining the GAI model, we propose importance
and interaction indices relevant for the GAI model.
These indices are borrowed from what is used for
the Choquet integral.

2. GAI model

We are given a set of n attributes indexed by N =
{1,...,n}. Each attribute ¢ € N is represented by
a set X; which can be discrete or continuous (an
interval). The alternatives are characterized by a
value on each attribute, and are thus represented
by an element of X = X; x --- x X,,. We aim to
represent the overall assessment of a decision maker

U: X —=1R.

Many utility models can take this form. There are
basically two classes of utility models. The first
ones are called attribute-decomposable [7] and take
the form U(x) = F(ui(x1),...,un(xy,)), where the
u;'s + X; — IR are called the utility functions (also
called value functions) and F : IR" — IR is an ag-
gregation function. Examples of aggregation func-
tions are the weighted sum or the Choquet integral
[8, 1, 9]. The Choquet integral is a versatile aggrega-
tion function able to capture various decision strate-



gies representing interaction among criteria. How-
ever, the decomposable form forbid this model from
representing any type of preferences (see [10] to have
some examples of preferences not representable by
a decomposable model based on a Choquet inte-
gral). The main assumption for this model is that
the partial utility functions u; return evaluations in
the same scale. This means that if u;(z;) = u;(z;),
then value x; on attribute X; has the same satis-
faction/attractiveness as value x; on attribute X;.
This strong assumption is called commensurability.

An alternative class of utility models does not
need the commensurability assumption. The most
well-known model of this class is the additive utility

model [7]

i€EN

Ulx) = (1)
where u; : X; — IR. This class is called additive-
decomposable.  Unlike the decomposable model
where the utility functions need to be commen-
surate, such an assumption is not required with
the additive utility model. It is apparent that the
weighted sum in the attribute-decomposable model
can be put in the form of (1). This model has been
generalized to allow some interaction among criteria
— under the name of the GAI (Generalized Additive
model) [2, 3]. The GAI model takes the form of the
sum of utilities over subsets of attributes:

U(x) = Z ug(zg)

Ses

(2)

where S is a set of subsets of N, Xg = HieS X,
rgs € X, is the restriction of x over attributes in
coalition S, and

ug : Xs — R.

Set S contains all subsets of attributes that interact
one another. Hence the additive model (1) is a par-
ticular case of the GAI model where S is composed
of only singletons.

We assume that we are given a preference relation
7; over each attribute i. We denote by >; and ~;
the asymmetric and symmetric parts of 77; respec-
tively. Utility U is assumed to fulfill the following

monotonicity conditions:

Ve,y € X with y; 7m, 2, Vie N, U(y) > U(x)
(3)

3. Background on the Choquet integral

3.1. Basic definitions

Definition 1 A fuzzy measure [11] or capacity [8]
on N is a set function p : 2V — IR satisfying

e AC B = u(A) < u(B),
o u(0) =0, u(N)=1.
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Capacity p is said to be non-normalized (it is also
called a game) if condition p(N) = 1 is relaxed. The
Mobius transform (see e.g. [12]) of p is defined by

mi(A) = > (=)MPlu(B). (4)
BCA

Reciprocally, p can be recovered from the Mobius
transform by

n(A) =

> m*(B).

BCA

()

The Choquet integral of @ € RY w.r.t. capacity p
(also called the Lovdsz extension) is defined by [8]

Z mt(A) - /\ a; , YaeR}  (6)

ACN icA

Cula) =

where m* is the Mobius transform of y, and A is the
min operator. An equivalent expression in terms of
the capacity p is

Cﬂ(a‘) = Z (G‘T(i) - aT(i—l)) 2 ({T(Z)a T 77—(”)}) ’

i=1
(7)
where a,(g) := 0 and 7 is a permutation on N such
that ar1) < ar2) <00 < Ap(py-

The discrete derivative of p w.r.t. a coalition P C
N at a coalition S, with S C N \ P, is recursively
defined by Apu(S) := Ai[Ap\iyp)(S) for all i € P
[13]. One has when SN P = [13]

Apu($) = 3 (~)/P (s U ).

TCP

The importance index, known as the Shapley im-
portance indez is defined by [14]

o) = > (n — IKlm— DIEL 5

KCN\i

(K) (8

The interaction index for a coalition ) # A C N of
criteria is [15]:

IMA) = )

KCN\A

(n—k — |A])K!

oA+ o SanE)

9)

This definition is due to Murofushi and Soneda [16]
for pairs of criteria. We also note that I*({i}) =
¢*(i). We have [17]

Ay = Y |

1
n
B+l M (AU B).
BCN\A

(10)

3.2. Two-additive model

Definition 2 [15] Let k € {1,...,n—1}. A capac-
ity p is said to be k-additive if I*(A) = 0 whenever
|A| > k, and there exists some A C N with |A| =k
such that I*(A) # 0.



= 0 when-
C N with

An equivalent definition is that m*(A)
ever |A| > k, and there exists some A
|A| = k such that m*(A) # 0.

The Choquet integral can be expressed using [
instead of i in a very instructive way when the mea-
sure is 2-additive [18]:

C%(alw..

>

14 ({i3})>0
(@i v a;)[I*({i, 7}

yan) = (@i A a;) " (i, j})

+ >
In({i,})<0
- Lo .
+ > ai(¢(i) - 52””({1,3})\) (11)
i=1 i
for all (a1,...,a,) € IR", with the property that

P (i) = 5 3 1 ({3,5})| > 0 for all .
Consider a 2-additive capacity . From (4), we
note that

m*({i, j}) = p({i, j}) — p{i}) = n({7})
m*({i}) = p({i})

By (10),
#(3) = u({i})
b5 i) - a) - uG)) (2)
JEN\{i}

"({i, j}) = p{i, 5}) — pid) —n({s})  (13)

4. Learning setting

We define in this section the necessary concepts to
describe how to learn the GAI model.

4.1. Unknowns of the model

In order to learn all utility functions ug, each at-
tribute is discretized. For attribute ¢ € N, we
keep only X; C X, with |X;| finite in the learn-
ing phase. The unknowns of the GAI model are
{us(zs) : S€S8,25 € Xs}, where Xg = [[,cq X
The elements of X; are denoted by al,a?, ... ab".
In order to differentiate with the model ug, we de-
note by

U:={ug(zs) : S€8,z25€ X5} (14)

the set of all unknowns. The number of unknowns

is M::ani.

SeSies

(15)

4.2. Computation of the overall utility after
elicitation

Once unknowns (14) are specified, let us determine

how the utility ug is computed for any zg € Xg.
Let us start with the simple case when S is a

single attribute 7. In order to deduce the value of

u; for all elements of X; from u;(a}), ..., u;(al"), we
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assume that wu; is piecewise affine. If X is discrete,
we can assume that this set is represented by integer
numbers (the integer represents the Id of a label)
so that interpolation still makes sense. Hence for
ab < z; < aftt we set

k
Ti—a; ., L a — X,
ui(x;) = (1]?‘:'17_;’? ;i ( Z-H) + l;-&-l a; u;(ay)
K3 K2 7
(16)

When S contains more than one attribute, the
idea is to perform multi-linear interpolation. Let

I={ieN : z; &X,}.
For 1 € N we set

z;, =argmax{z; € X; : z <z}

T; = argmin{z; € X; : z > x;}

Note that Z; = z; iff ¢ € N\ I. Then generalizing
(16), we obtain

ustes) = > [[[2=ox [ 2=2

X : X
ACINS €A™ TP ie(InS)\A

X Us(T 4, T(1nS)\A> xsv)} ;
(17)
where (2 4,T(1ns)\4;Ts\7) 15 an alternative that is
equal to z, if k € A, to T, itk € (INS)\ A, and

toxg if ke S\ T
Expression (17) can be put in the linear form

us(zs) = Y coefs, (Ts) is(@s)

zs€Xs

(18)

where coef g, (Ts) are non-negative coefficients.

4.3. Initial preferential information

The determination of the GAI model is carried out
through a learning phase on the basis of some pref-
erential information (learning data). These data are
of the following type

e z =y, where z,y € X, means that x is judged
at least as good as y;

e z>a (resp. x Ja), where 2 € X and o € R,
means that the overall evaluation of x is at least
(resp. at most) a.

The set of all preferential information provided
by the decision maker is denoted by P. Each piece
of preferential information P € P is turned into a
linear constraint T'(P,u) > 0. The expression of
T(P,u) is :

o T'(P,u) =U(z)—U(y) if P corresponds to da-
tum “x > y”,

o T(Pu)=U(x)—« (resp. T(P,u) =a—U(x))
if P corresponds to datum “x > «” (resp. “ax <
a’),



where U is related to @ by (2) and (17).
cases, we write (using (18)),

T(P,7) = Z Z coef p(S,Ts) us(Ts) + cp

ses

In both

;s€Xs

(19)

where coef p(S,Zs) are non-negative coefficients,
and cp € R.

5. Properties and conditions on ug

From Section 4, we are looking for u that fulfils the
monotonicity conditions (3) and T'(P,u) > 0 for all
P € P. First note that (3) can be rewritten as
follows:

VJJEXViENVyiEXZ‘WithyZ‘>-i:L‘i

U(yi, en\giy) = U(x) (20)

where (y;, N\{Z—}) denotes the compound alterna-
tive that is equal to y; on attribute ¢ and to z; on
attributes for j € N\ {i}. The number of elemen-
tary conditions contained in (20) is equal to

Slei-nx I

ieN JEN\{i

pl @
}

The following example shows that this number in-
creases very fast and is not tractable with linear pro-
gramming with a reasonable number of variables.
Hence we are looking for a simpler monotonicity
condition.

Example 1 Consider an example with n = 10 at-
tributes and 5 unknowns per attribute (p; =5). As-
sume that S is composed of all singletons and pairs
of attributes. Then the overall number of unknowns
is 1125 whereas the number of monotony constraints
in (21) is 78125000.

5.1. Justification of assumptions under
restrictive interaction

Without loss of generality, one can assume that
U(z) > 0 for all x € X (provided that the a co-
efficients in the learning data are non-negative) and
X is bounded.

In [4], the terms ug can take both positive and
negative signs. Let us start from the following ex-
ample of a non-negative function U(x1,x2) having
a negative term:

U(xy,x2) = 221 + 22 — max(x1, ). (22)
From the relation

min(x1, x2) + max(zy, x2) = x1 + T2,
(22) can be replaced by the equivalent expression:

U(z1,22) = x1 + min(zy, z2). (23)

182

In this illustrative example, the negative term has
been replaced by a positive one. One wonders now
if this process can be generalized to any function U.
In other way, is it possible to transform any given
GAI model in such a way that all terms become
non-negative?

We focus here in a specific type of GAI model
encompassing examples (22) and (23) — namely
when interaction is allowed only among pairs of at-
tributes. Before stating this result, let us first define
the concept of 2-additive GAI model.

Definition 3 A owverall assessment function U is
said to be 2-additive if for every i,j € N, x;,y; €
X, Tj,Y; € Xj and Z_ij,t_ij € X_iyj

Ui, yj> 2—i5) — Ui, y5,2—i5) — Uy, x5, 2—i )
+U (2,25, 2-45) = Uy, yj, t—ij) — Ulwi, ys,t i 5)
—U(yi, g, t—ij) + Ulwg, x5t 5)

The following results both provides a representa-
tion of 2-additive GAI models and shows that any
2-additive GAI model can be represented by only
non-negative terms.

Proposition 4 U is 2-additive if and only if for
every t € X, there exists non-negative functions
Uij : Xi x Xj = Ry (for every {i,j} € N) and
U, : X; = IRy (for every i € N) such that for all
x € X with z; 7; t; for alli € N

U(éL‘) = U(t) + Z Uz<.’17l) + Z Ui’j(.’L‘i,.’L‘j). (24)

Assume for simplicity that each attribute X; is
finite, 77;=> (the larger the value on the attribute
the better), and a} is the smallest value of X;, then
taking t = (a},...,al), expression (24) hods for all

r - 'n

x € X, with U(t) > 0.

5.2. Assumption on ug

Generalizing Proposition 4, it suggests that if we
have an expression of U with some negative terms
ug, one could find another expression where all ug
are non-negative. We also make a further assump-
tion that each ug appearing in U is monotonic, in
order to reduce the overall number of monotonicity
conditions. We make thus the following assumption.

Assumption 1 For every S € S we assume that
(i) Vrs € Xs, us(zs) >0,

(ii) wug is monotonic w.r.t. 7Z; for alli € S.



5.3. Monotonicity conditions

If X; is an interval, we assume to have
aj <a? <---<al.

If X; is a discrete set of labels, the ordering of the

values a;, a?,...,a" is arbitrary (one can follow for
instance the order in which the labels are stored in
Xi).

Assumption 1 turns into the following monotonic-
ity conditions: Vi € N VS € § with i € S5,

ng\{i} € )?S\{i} Vke{l,...,p; — 1},

af =i aft = Us(al,zs\ ) > Us(al T 2e\4y)
(25)
af <; it = AUs(al,ze\ ) < Us(af Tz i)
(26)
af = af™ = Ug(af,ze 1)) = Us(al ™ 2s4y)
(27)

We denote by M= the set of 4-uplet (S, 1, k, TS\ {i})
such that (25) or (27) hold. We write these inequal-
ities as

D 0 sk, (25) Us(zs) > 0.

zs€Xs

(28)

we denote by M~ the set of 4-uplet (5,4, k, x5\ 14})
such that (26) holds. We write these equalities as

D c0efs sy (25) Us(zs) = 0. (29)

z2s€Xs

6. Elicitation of a GAI model

The elicitation problem amounts basically in finding
i € RM (see (14) and (15)) such that T(P,a) > 0
for all P € P and the monotonicity conditions (25),
(26) and (27) are satisfied. This problem may not
have solution. So, we first solve this problem.

6.1. Inconsistency check and analysis
6.1.1. Inconsistency repair

The set of constraints may be inconsistent in the
sense that there is no solution to them. The so-
lution consists in remove some constraints. Yet
the user may enforce that some constraints in P
must be fulfilled. We denote by P7 C P the flex-
ible constraints (those that can be relaxed) and by
PNF = P\ P7 the non flexible constraints (those
that must be kept).

The standard way to solve a potential inconsis-
tency is to introduce {0,1} slack variables on the
flexible constraints. We introduce the following
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MILP noted LP1:

Minimize E ep
Pep”

under | 7 e RM
(25), (26) and (27)
VP ePF epe{0,1}

VYPeP? T(PU)+Mep>0
VP e PNF T(P,i) >0

where M is a large number (larger than the largest
possible value of U).

The set of constraints in P is consistent if all val-
ues of € are equal to 0: ep =0 for all P € P7. In
the alternative case, all the constraints for which e
is equal to 1 shall be removed or modified in order
to recover consistency.

The user may not wish to modify all these con-
straints. Hence it is worth generating another pos-
sible set of constraints to be modified. Once LP1
is solved, we set A\(V) = {P € PF ep = 1}
Once we have found A", ... A\(@ we find the next
repair solution by solving the following program
LP1(AD, ... @)

Minimize E ep

Pep”
under | @ € RM
(25), (26) and (27)
VP e P epe{0,1}

VP ePF T(Pa)+Mep>0
VP e PN T(P,a) >0
Vk € {1,...,6]} ZPGP}',Ag):l(E‘D_l) <1

The last constraint ensures that the new solution e
is different from AV, ... A(@).

The set of the ¢ simplest repairs is generated by
the following algorithm.

Algorithm 1 Function getRepairs():
If LP1 optimal functional is 0 then
‘ Return 0;
Else
R+ { AW}, where NV = {P € P ep =1}
and ¢ 1is solution to LP1;
For k€ {2,...,q}
If LP1(R) is infeasible then
‘ Return R;
Else
R+ RU{NF}, where
AF) =P e PP ep=1} and
e 1is solution to LP1(R);

At the end, the user shall choose one repair among
AL A

Example 2 Let N = {1,2,3,4}, X; =
Xo, X3, X4 ={0,1}, Z1=Z2=73=7Z4=2> and
S :{{1}7 {2}, {3}7 {4}7 {la 2}a {27 3}7 {27 4}7
{3,4},{1,3,4}}.

Consider the following learning examples



o Exl: (1,1,1,1)>1
e Ex2: (0,0,0,0) <0
e Ez3: (0,1,1,1) <0
e Ezj: (1,0,1,1) <0
e Ez5: (1,1,0,1) <0
o Ez6: (1,1,1,0) <0

The previous set of constraints is inconsistent with
the GAI representation under structure S. Running
the previous algorithm, if the user only wants to see
5 alternative suggestions, we obtain the following re-
pairs (ordered according to the level of complexity):

e Remove constraint Exl ((1,1,1,1)>1);

e Remove constraint Exj ((1,0,1,1) <0);

e Remove the two constraints Ex3 ((0,1,1,1)<0)
and Ex5 ((1,1,0,1) <0);

e Remove the two constraints Ex3 ((0,1,1,1)<0)
and Ex6 ((1,1,1,0) <0);

o Remove the two constraints Exz5 ((1,1,0,1)<0)
and Ez6 ((1,1,1,0) <0).

6.1.2. Inconsistency explanation

From the algorithms described in the previous sec-
tion, the DM has chosen a repair . Let P¢ = {P €
pr ep = 0} be the set of constraints in P
that can be kept. Hence constraints P€ UPN7 can
be kept (they are consistent together) and all con-
straints in P7 \ PC shall be changed or removed.

We now wish to explain why any constraint P* €
P\ PC is inconsistent with P¢ U PN and (25),
(26), (27). Finding an explanation of this incon-
sistency amounts to finding the smallest subset of
PC U PN that is inconsistent with P*. More pre-
cisely, we wish to find the smallest subset Q@ C
PC€ U PN (w.rt. set inclusion) such that the fol-
lowing set of constraints is inconsistent:

aeRM

(25), (26) and (27)
T(P*,3) >0

YPeQ T(Pa) >0

(30)

Proposition 5 Let y be wariables defined by
YS,ik,zs iy JOT (5,0, K, 25\(5}) € MZ U M=, yp for
all P € PCUPNZ U{P*}. Then Q is the set of
constraints P in P€ UPNT s.t. yp > 0, where one
minimizes
€p
PePCUPNFU{P*}

under the following constraints

VP e PCUPNT
Yypx > 0

V(S,i,k, ze\ (i) € MZ YSiikzen sy =0
VP e PCUPNF

yp >0 (31)
(32)
(33)
ep €40,1} and M yp > ep

(34)
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VS esS Vas(fb'\s)

>

PePCUPNFU{P*}

+ § : YS,ik,zs\ (1} CoefS,i,k,zs\{,‘,) (xs) =0
(S,i7k725\{i})€MZUM:

>

PePCUPNFU{P*}

yp coefs . (Ts)

(35)

ypcp <0 (36)

where M is a large number.

6.2. Minimizing the size of S

Once we have remove inconsistency constraints, we
can simply the set of coalitions in S [4]. The idea is
to remove all coalitions S in S that are not necessary
to represent the preferential information P.

S is composed of two sets: some of them are com-
pulsory (e.g. for singletons), and the other ones
shall be kept only when it is necessary. We write
S = 87 USNF, where superscript F denotes the
flexible coalitions (those that can be removed) and
NF denotes the non flexible coalitions (those that
must be kept).

Let

Vie{l,...,n}  nbc(i)=|{S€ST : |S| =i}

We define the coefficient sequence ¢(1),...,c(n) by

e(l)=0
c(4) nbe(j) +1

-
|

Vie{2,...,n} c(i) =

J
We define the following linear program LP2:

Minimize Z c(|S)) es
Ses”
VS eST e5€{0,1}
VS e ST Vg € )?S as(l‘s) < Meg
(25), (26) and (27)
VPeP T(Pu)>0

under

Lemma 6 Minimizing ) g g7 c(|S|) es in LP2 is
equivalent to minimizing first the number of term of
cardinality n, then minimizing the number of term
of cardinality n — 1, ..., and finally minimizing the
number of term of cardinality 2.

At the end, we replace S” by

{(SeS8T,es =1}

7. Interpretation of a GAI model

As we already discussed, in reference [4], the terms
ug can take both positive and negative signs, and
the authors state that the sign of ug (when S is
a pair) corresponds to the sign of the interaction



among the attribute in S. Going back to our pre-
vious example where (22) and (23) are two equiva-
lent expressions of the same function U. From the
interpretation given in [4], the interaction between
attributes 1 and 2 is negative in (22) and is posi-
tive in (23). Hence the sign of the interaction does
not correspond to the sign of the terms in the GAI
decomposition.

We rather generalize the approaches used in the
context of the Choquet integral to interpret a capac-
ity in terms of importance and interaction indices
(see Section 3). First, we interpret the importance
and interaction indices defined from a capacity to
indices defined from the Choquet integral (see Sec-
tion 7.1). Then, we define general importance and
interaction indices for any GAI function. Finally,
we provides the expressions for a 2-additive GAI
model.

7.1. Importance and interaction indices for
the Choquet integral

In the context of MCDA, the Shapley value can be
seen as the mean importance of criteria and is thus
a useful tool to interpret a capacity [1, 18]. The
Shapley value is usually interpreted in the context
of Cooperative Game Theory, that only from the
capacity pu. This is completely satisfactory in the
context of MCDA since it completely ignores the
use of the Choquet integral.

The interpretation of the Shapley value (and the
Shapley interaction indices) for the Choquet inte-
gral is basically due to J.L. Marichal who noticed
that (see [19, proposition 5.3.3 page 141] and also
[20, Definition 10.41 and Proposition 10.43 page
369))

Is(p) = / AgC,(2)dz
[0’1]71

where, for any function f, Ag f is defined recursively
by

Asf(z) = Ai(As\iyf)(z) foranyie S
Aif(z) = f(zlzi =1) = f(z|zi = 0)

The Shapley value appears as the mean of relative
amplitude of the range of C', w.r.t. criterion ¢, when
the remaining variables take random values. What
is true with Shapley value is also true for interaction
indices.

The following relation is not difficult to prove:

Is(p) = /
[0,1]™

where the partial derivative is piecewise continuous.
Here the partial derivative is the local importance
of €}, at point z.

olslc,

d
D75 z)dz

(37)
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7.2. Importance and interaction indices for
the GAI model

Firstly, we generalize expression (37) to function
U. Compare to the case of an aggregation func-
tion from [0, 1]" onto [0, 1], functions maps X onto
IR,. Hence the integral shall be applied on X (as-
suming that the attribute correspond to intervals).
More precisely, we restrict ourselves to the
V= [a’%aa}lgl] X X [a;,aﬁ"].

For the sake of simplicity, we assume that —;=>
for all attributes i. Generalizing (37), we define the
interaction among criteria in .S by

S|
1 0 U()dz

IS(U):W Viazs z

(38)

7.3. Expression of the importance index for
a 2-additive GAI model

We set ¢;(U) := I;1(U). By (24), U is 2-additive
iff U takes the form

Ulx) =C+ Z Ui(x;) + Z Uij(zi, ;) (39)

1 1

where C is a constant (we take t = (af,...,q,) in

Proposition 4). We only need to compute ¢;(Uy)
and ¢i(Uj,k)~

Proposition 7 We have

¢i(U) = i(Ui)+ > 6i(Us;)

JEN\{i}
where
Ou(U) = g [A(a?") — i (a})]
al’ —a} ’
and
#i(Ui ;)
1 R art e
= 7 1 Z
ajj - aj m’=1 2
[@i,j(afia a) = j(al, a)
al" —a}
~ ) ’ R /
Ui j(af, al* ) =1 j(af, 0" )
+ api _ al
) )

7.4. Expression of the interaction index for
a 2-additive GAI model

We set [; ;(U) := I 53(U).



Proposition 8 We have
Ii;(U) = 1;,;(Ui;)
where
1

(a7 — aj)(a}’ — aj)

L j(Uij) =

[ﬁz‘,j (ai,a}) — U (aj,a’’)

— Uy j(al”, a}) + s j(al", a?? )}

8. Conclusion

This paper is devoted to the use of the GAI model
in a MCDM context.

Firstly, the problem of which conditions are rel-
evant to add on the GAI model to make it more
easy to learn and interpret is addressed. From a
user point of view, the partial utility functions ug
appearing in a GAI model are more easily inter-
preted if there are non-negative and monotonic. We
consider a particular case of 2-additive GAI, where
the definition is borrowed from the Choquet integral
setting. In particular, we show that it is sufficient
to consider only positive terms in the expression of
a 2-additive GAI model.

Secondly, we are interested in the learning phase.
As in references [4, 5], we interpret the learning ex-
amples provided by the user as constraints, which
yields the use of linear programming to learn a GAI
model. Our contribution is on handling inconsis-
tent learning examples. We first generate several
possible repairs (set of learning examples that need
to be changed or removed to recover consistency).
We also provide a new approach for explaining an
inconsistency, based on the Farkas lemma.

Finally, we propose some indices to interpret a
GAI model, based on a generalization of importance
and interaction indices already at work for the Cho-
quet integral. The give the expression of these in-
dices for 2-additive GAI models.
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