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Abstract 

Peer-assessment is a way to include evaluation as a 
part of the learning process and simultaneously to cut 
teacher load in grading of assignments. eLearning 
systems can be used to automate peer-assessment to a 
large extent. Peer-assessment benefits from multiple-
peer-assessment as it is likely to even-out outliers. 
Linguistic scorecards can be used to simplify 
assessment. The linguistic scales can be mapped to 
fuzzy scales and the results weighted and aggregated to 
derive an overall assessment. Sometimes ranking of the 
outcomes is needed. This paper presents the 
foundations of a system that uses linguistic scorecards 
in peer-assessment that uses self-evaluation in 
weighting results, and that ranks the assessments. A 
numerical example is used to illustrate the system. 

Keywords: Peer-assessment, linguistic variables, 
scorecard, Fuzzy OWA 

1. Introduction 

Having students perform peer assessment is known 
from previous research to have an important influence 
on learning  [1, 2]. Recommendations of involving 
students in assessment and feedback can be frequently 
found in the higher education literature [2-4]. The on-
line environment and various eLearning platforms 
allow for a high level of automation of tasks with 
regards to assessment, such as easy collection of 
answers, anonymization of results, and the possibility to 
create tools for collecting assessments [5]. Using 
assignments, exercises, and essays are a natural part of 
eLearning as the face-to-face interaction is often 
limited. Tools that facilitate the administration and 
increase the learning effect of these are most likely to 
be well received. 

The focus in this paper is presenting/proposing a 
linguistic scorecard-based system to assist student peer 
assessment, and to further allow an intelligent 
automatic aggregation of multiple assessments and the 
ranking of the aggregation results. Use of linguistic 
scales allows for the creation of an intuitively 
understandable, self-explanatory ranking tool - a 
scorecard that allows for estimation imprecision to be 
taken into consideration. The mapping of the linguistic 

terms to fuzzy numbers allows a precise representation 
of the imprecise information.  

When one is designing the linguistic terms in student 
peer evaluation and “tuning” the mapping of the terms 
to the fuzzy numbers, it is important that one is aware 
of the context. The correct assignment of terms to fuzzy 
scales may allow, for example, for the assessment of 
items with different difficulty and thus different scales 
to be accommodated by the structure of the mapping. 
Here the details of mapping are left outside the focus of 
the paper.  

Having students perform peer assessment one may 
benefit from multiple peers assessing each object 
(assignment / exercise): if the assessments differ 
radically from each other it may be used as a signal of 
the need for a moderator (teacher) to have a look at the 
object, and perhaps perform the assessment. Using 
multiple peers also allows for the inclusion of multiple 
points-of-view.  

When multiple (linguistic, fuzzy) evaluations are 
performed the assessments will need to be aggregated 
and perhaps weighted. We propose that weighting 
students’ evaluations is done by assigning the weights 
to each student’s evaluation based on their self-
evaluation in the “fact-based parts” of the same task. 
This means that an assessment by a student who reports 
good knowledge of the factual content of an assignment 
will receive a higher weight, than an assessment by a 
student reporting low knowledge.  

The multiple assessments must be aggregated to 
yield an overall assessment that will then serve in the 
grading of the performance of the students; most 
usually this means defuzzification of the overall 
assessment to yield a crisp pointage of the assessment 
used as a part of a course evaluation. If the best 
performance is rewarded (for example, with extra 
points towards the test) the overall assessments must be 
ranked. This means ranking the fuzzy overall 
assessments. 

Figure 1 shows a lay-out for the proposed system that 
includes the above-mentioned components of peer-
assessment, result aggregation, and overall result 
ranking. 
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Fig. 1: Blue-print of a proposed peer-assessment 
system 

 
This paper continues as follows: in the following 

section the mathematical background is introduced, 
then a numerical example of a peer assessment situation 
with the proposed tool is presented, finally the paper is 
closed with conclusions and discussion. 

 
2. Mathematical background 

In the following some basic definitions, related to the 
concepts that are essential to the proposed fuzzy 
(multiple criteria, multiple peer) assessment support 
method are reviewed. 

It is supposed that the linguistic scales used in the 
scorecards are mapped to fuzzy scales that use 
triangular fuzzy numbers for representing each 
linguistic variable. 

Definition 1. A triangular fuzzy number A can be 
defined by a triplet A=(a1,a2,a3). The membership 
function µA(x) is defined as [6] 
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Definition 2. The α-cut of fuzzy number A is defined 

as 

 XxxxA iiAi  ,)(|  (2) 

 

where  1,0 . 

 
Aα is a non-empty bounded closed interval contained in 

X and it can be denoted by  .)(),( 
rl aaA   

For arithmetic operations for triangular fuzzy 
numbers we refer to [6]. One of the essential concepts 
that are used is the Fuzzy Ordered Weighted Averaging 
(FOWA) operator [7-9]. The FOWA operator is an 
aggregation operator that is here proposed to be used in 
the aggregation of the multiple linguistic fuzzy 
assessments.  

 

Definition 3. Let U be the set of fuzzy numbers. A 
FOWA operator of dimension n is a mapping FOWA: 
Un → U that has an associated weighting vector W of 
dimension n such that the sum of the weights is 1 and 

 1,0iw , then: 
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where bi is the ith largest of the ( naaa ˆ,,ˆ,ˆ 21  ), which 

are now fuzzy triangular numbers of form definition 1. 
FOWA will be applied later on in the aggregation over 
all the criteria in the decision matrix. Next, the attention 
is turned to two important issues of FOWA 1) how to 
form the weighting vector, and 2) how to form the 
ordering needed for fuzzy numbers. 

One of the most important issues of the theory of 
OWA operators is the determination of the associated 
weights in the weighting vector W. There are a number 
of approaches, for the development of the weights in 
the weighting vector, for example [10, 11]. One of the 
first methodologies for obtaining the weights was 
introduced in 1988 by O’Hagan [12]. His approach 
assumed that in the aggregation procedure one have 
predefined degree of orness, α, and then the weights are 
calculated in a manner that maximizes the entropy 
–∑ ௜ݓ ∙ ln ሺݓ௜ሻ

௡
௜ୀଵ . Algorithmically the solution is 

based on the constrained optimization problem. 
Mathematically it is: 
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There are many possibilities on how to solve this 

optimization problem. One is to use the method of 
Lagrange multipliers. In 2001, Fuller and Majlender 
[13] introduced the analytical solution to the above 
mentioned problem. They presented the following 
results: 
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Basically for obtaining the weights in a case, where 

n>2, the first step should be determining the first 
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weight. After that one can calculate the last weight of 
the weighting vector, and then the other weights. 

The FOWA operator also requires ordering of fuzzy 
numbers, and the selection of the ordering method to be 
used is the next step: this paper uses the method 
proposed by Kaufmann and Gupta in [14].  

A linear order of the fuzzy numbers can be found by 
focusing on selected properties fuzzy numbers, and 
using them as ordering criteria. If the first selected 
criterion does not give a unique linear order, then a 
second criterion should be used, and so forth. Next, 
three different criteria for ordering, used in this paper 
are presented: 

(i) First criterion, removal: Let us consider an 
ordinary number Rk   and a fuzzy number A. The 
left side removal of A with respect to k, denoted by 
Rl(A, k), is defined as the area bounded by k and the left 
side of the fuzzy number A. Similarly, the right side 
removal, Rr(A,k) is defined. The removal of the fuzzy 
number A with respect to k is defined as the mean of 
Rl(A, k) and Rr(A, k). Thus, 

 

 ܴሺܣ, ݇ሻ ൌ
ଵ

ଶ
൫ܴ௟ሺܣ, ݇ሻ ൅ ܴ௥ሺܣ, ݇ሻ൯ (6) 

 
The position of k can be located anywhere on the x-

axis including k=0. The areas, by definition, are 
positive quantities, but here they are evaluated by 
integration taking into account the position (negative, 
zero, or positive) of the variable x; therefore, R(A,k) can 
be positive, negative or null. 

Two different fuzzy numbers can have the same 
removal with respect to the same k. In fact, this 
criterion decomposes a set of fuzzy numbers into 
classes having the same removal number. If the origin 0 
is conveniently moved to the left, it is possible, in this 
case that all of the fuzzy numbers will have positive 
removal numbers. Hence, the removal numbers become 
positive if k is correctly chosen. The removal number 
with respect to a given k, therefore, can be taken as a 
measure of distances, and can thus be used for ordering 
the fuzzy numbers. The removal number R(A,k) defined 
in this criterion, relocated to k=0 is equivalent to an 
"ordinary representative" of the fuzzy number. In the 
case of a triangular fuzzy number this ordinary 
representative is given by 

 

ሚܣ  ൌ
௔భାଶ௔మା௔య

ସ
   (7) 

 
where A = (a1, a2, a3). 
 
(ii) Second criterion, mode: In each class of fuzzy 

numbers one should look for the mode, and these 
modes will generate sub-classes. If the fuzzy numbers 
under consideration have a non-unique mode, one takes 
the mean position of the modal values. It must be noted 
that this is only one way of obtaining sub-classes, and 
one may need the following third divergence criterion 
for further sub-classification. 

(iii) Third criterion, divergence: If the divergence 
around the mode is considered for each sub-class, sub-
sub-classes can be obtained, and this criterion may be 

sufficient to obtain the final linear ordering of fuzzy 
numbers. 

When one orders fuzzy numbers to size order, one 
proceeds as follows: apply the above presented criteria 
in the order (i)-(ii)-(iii), such that if a unique linear 
order is not obtained, then use the next criterion. 

 
2.1. Proposed method 

The following general situation is considered, where a  

finite set of projects  miPP i ,,1|   exists that 

need to be evaluated by a committee of decision-
makers ܦ ൌ ሼܦ௟|݈ ൌ 1,2, … , ݇ሽ, by considering a finite 
set of given criteria ܥ ൌ ൛ܥ௝|݆ ൌ 1,2, … , ݊ൟ. A decision 
matrix representation of performance rating of each 
alternative project Pi is considered, with respect to each 
criterion Cj as follows: 

 

 ௟ܺ ൌ ൥

ଵଵݔ ⋯ ଵ௡ݔ
⋮ ⋱ ⋮

௠ଵݔ ⋯ ௠௡ݔ
൩  (8) 

  
where m lines represent m possible projects, n 

columns represents n relevant criteria and xij represents 
the performance rating of the i-th project with respect to 
j-th criterion Cj. These ratings are collected by using 
fuzzy scorecards, and are triangular fuzzy numbers. 

The above fuzzy decision matrix is formed for each 
decision maker Dl. These decision matrices are then 
weighted according to evaluated competences of the 
decision makers from the particular subjects. 

 
 ௟ܸ ൌ ሺݒ௜௝ሻ௠ൈ௡     (9) 

where ݒ௜௝ ൌ ௜௝ݔ ⋅   .௝ݓ

To aggregate the fuzzy decision matrices from each 
decision maker to one single decision matrix, the 
aggregation method proposed in [15] is used, where 
aggregated triangular fuzzy number R=(a,b,c) is 

calculated using ܽ ൌ ݉݅݊ሼܽ௟ሽ

݈
 , ܾ ൌ

ଵ

௞
∑ ܾ௟
௞
௟ୀଵ , ܿ ൌ

ሼܿሽݔܽ݉
݈

. This way aggregated fuzzy ratings xij of 

projects with respect to each criterion are nowݔ௜௝ ൌ

ሺܽ௜௝, ܾ௜௝, ܿ௜௝ሻ, where ܽ௜௝ ൌ
݉݅݊
݈
൛ܽ௜௝௟ൟ, ܾ௜௝ ൌ

ଵ

௞
∑ ܾ௜௝௟
௞
௟ୀଵ  , 

ܿ௜௝ ൌ
ݔܽ݉
݈
൛ܿ௜௝௟ൟ. 

The next step for the decision matrix is to form a 
linear scale transformation to transform the various 
criteria scales into comparable scales. The criteria set 
can be divided into a benefit criteria (larger the rating, 
the greater the preference) and a cost criteria (the 
smaller the rating, the greater the preference). 
Therefore, the normalized fuzzy decision matrix can be 
represented as 

 
 ܴ ൌ ሺݎ௜௝ሻ௠ൈ௡     (10) 

where B and C are the sets of benefit criteria and cost 
criteria, respectively, and 
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This normalized decision matrix will then be 

aggregated with regards to criteria in the following 
way, by using FOWA. 

  
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n
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1
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where bj is the j-th largest of the vector

 inii rrr ,,, 21  . Ordering is done by using the 

ordering method given by Kaufman and Gupta in [6], 
and shortly presented in previous subsection. In 
addition, O’Hagan’s method is applied to generate the 
weights. 

This results in a triangular fuzzy number for each 
alternative that is considered. Next step in the decision 
making process is the determination of the order of the 
resulting fuzzy numbers. This can be done, for 
example, by applying the ordering of fuzzy numbers 
again. 

 
3. Numerical example 

Each student has to anonymously assess three (same) 
essay assignments by their peers on a given topic, based 
on five criteria with a linguistic scorecard. Each essay 
will receive three assessments of which the scores are 
aggregated. All the essays need to be ranked based on 
the assessments, as a wanted number of best essays will 
receive extra points for the test. The required contents 
of the essay assignment have been well specified and 
are available for reference during the evaluation. In this 
numerical illustration only three assessed essays are 
used as an example; in reality there would be a larger 
number of essays. The hierarchical structure of this 
decision problem is shown in Fig 1. The proposed 
method is applied to solve the problem and 
computational procedure is summarized as follows: 

Step 1: The assessment starts by the students’ self-
assessment on how well they fared on three fact-based 
issues that they are asked to peer assess. The three self-
evaluation criteria are: 

 
 

1) How well did I understand and answer to issue 1 
(SC1) 
2) How well did I understand and answer to issue 2 
(SC2) 
3) How well did I understand and answer to issue 3 
(SC3) 

 

Self-assessment result is used in setting the weights 
for the assessments of the three first criteria of the peer 
assessment. Table 1 reports the self-assessments. 

 
 SC1 SC2 SC3 

Student1 (0.4,0.7,0.9) (0.7,0.9,1) (0.3,0.5,0.8) 
Student2 (0.7,0.9,1) (0.9,1,1) (0.7,0.8,1) 
Student3 (0.9,1,1) (0.5,0.7,0.8) (0.7,0.8,1) 
Sum1-3  (2,2.6,2.9) (2.1,2.6,2.8) (1.7,2.1,2.8) 
 

Table 1: Self-assessment scores and overall score 
 
The self-assessment scores are scaled (or internally 

weighted) by dividing them with the sum of scores for 
each self-assessed criterion, see Table 2. Standard 
division of fuzzy numbers is used. The two remaining 
criteria (C3 and C4) are not separately weighted. 

 
 SC1 SC2 SC3 

Student1 (0.14,0.27,0.45) (0.25,0.35,0.48) (0.11,0.24,0.48) 
Student2 (0.24,0.35,5) (0.32,0.38,0.48) (0.25,0.38,0.59) 
Student3 (0.31,0.38,0.5) (0.18,0.27,0.38) (0.25,0.38,0.59) 

 
Table 2: Scaled self-assessment scores. 

 
Step 2: The students perform peer-assessment of 

three essays by using a linguistic scorecard that uses 
(for example) five linguistic terms and considers five 
different criteria:  

 
1) Correctness of the factual contents (issue 1) (C1) 
2) Correctness of the factual contents (issue 2) (C2) 
3) Correctness of the factual contents (issue 3) (C3) 
4) Logic of reaching, and sensibility of conclusions (C4) 
5) Quality of used language and understandability (C5) 

 
Peer-assessments of the alternatives with respect to 

each criterion are presented in Table 3. 
 

Peer1: C1 C2 C3 C4 C5 
A1 (4,7,9) (7,9,10) (3,5,8) (9,10,10) (3,5,6) 
A2 (7,9,10) (9,10,10) (7,8,10) (9,10,10) (8,9,10) 
A3 (9,10,10) (5,7,8) (7,8,10) (5,8,10) (7,9,10) 

Peer2: C1 C2 C3 C4 C5 
A1 (7,9,10) (4,7,9) (7,9,10) (7,9,10) (3,5,6) 
A2 (7,9,10) (9,10,10) (9,10,10) (9,10,10) (4,7,9) 
A3 (7,9,10) (7,9,10) (4,7,9) (9,10,10) (7,9,10) 

Peer3: C1 C2 C3 C4 C5 
A1 (4,7,9) (3,5,8) (7,9,10) (9,10,10) (3,5,6) 
A2 (4,7,9) (9,10,10) (7,9,10) (9,10,10) (7,9,10) 
A3 (3,5,8) (9,10,10) (9,10,10) (4,7,9) (4,7,9) 

 
Table 3: Peer assessments of all 5 criteria. 

 
Step 3: Formation of weighted decision matrices 

from peer-assessment, results are visible Table 4. 
Step 4: Aggregation of decision matrices of the 

decision makers into one decision matrix, result visible 
Table 5. 

Step 5: Calculation of normalized fuzzy decision 
matrices, visible in Table 6. 
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Peer1: C1 C2 C3 C4 C5 

A1 (0.6,1.9,4.1) (1.8,3.1,4.8) (0.3,1.2,3.8) (3,3.3,3.3) (1,1.7,2) 

A2 (1.0,2.4,4.5) (2.3,3.5,4.8) (0.8,2.1,4.7) (3,3.3,3.3) (2.7,3,3.3) 
A3 (1.2,2.7,4.5) (1.3,2.4,3.8) (0.8,1.9,4.7) (1.7,2.7,3.3) (2.3,3.0,3.3) 

Peer2: C1 C2 C3 C4 C5 
A1 (1.7,3.1,5.0) (1.3,2.7,4.3) (1.8,3.4,5.9) (2.3,3.0,3.3) (1.0,1.7,2.0) 
A2 (1.7,3.1,5.0) (2.9,3.8,4.8) (2.3,3.8,5.9) (3,3.3,3.3) (1.3,2.3,3) 
A3 (1.7,3.1,5.0) (2.3,3.5,4.8) (1.0,2.7,5.3) (3,3.3,3.3) (2.3,3,3.3) 

Peer3: C1 C2 C3 C4 C5 
A1 (1.2,2.7,4.5) (0.5,1.3,3.0) (1.8,3.4,5.9) (3,3.3,3.3) (1,1.7,2) 
A2 (1.2,2.7,4.5) (1.6,2.7,3.8) (1.8,3.4,5.9) (3,3.3,3.3)  (2.3,3,3.3) 
A3 (0.9,1.9,4) (1.6,2.7,3.8) (2.3,3.8,5.9) (1.3,2.3,3) (1.3,2.3,3) 

 
Table 4: Weighted peer assessment for all 5 criteria. 

  
 C1 C2 C3 C4 C5 

A1 (0.6,2.6,5.0) (0.5,2.4,4.8) (0.3,2.7,5.9) (2.3,3.2,3.3) (1,.1.7,2) 

A2 (1.0,2.7,5.0) (1.6,3.3,4.8) (0.8,3.1,5.9) (3,3.3,3.3) (1.3,2.8,3.3) 

A3 (0.9,2.6,5.0) (1.3,2.9,4.8) (0.8,2.8,5.9) (1.3,2.8,3.3) (1.3,2.8,3.3)  

 
Table 5: Aggregated decision matrix of the peer-assessments   

   
 C1 C2 C3 C4 C5 

A1 (0.11,0.51,1) (0.11,0.5,1) (0.05,0.46,1) (0.7,0.97,1) (0.3,0.5,0.6) 

A2 (0.19,0.55,1) (0.34,0.7,1) (0.13,0.53,1) (0.9,1,1) (0.4,0.83,1) 

A3 (0.19,0.52,1) (0.26,0.60,1) (0.13,0.47,1) (0.4,0.83,1) (0.4,0.83,1) 

 
Table 6: Normalized decision matrix 

 
Step 6: Aggregation of the decision matrix using 

FOWA over all criteria for each assignment (essay), 
with optimal weight for pre-chosen orness value, results 
visible in Table 7. In this example case 7.0 . 

 
Candidate FOWA(C1,C2,C3,C4,C5) 

A1 (0.26, 0.59, 0.92) 
A2 (0.39, 0.72, 1) 
A3 (0.28, 0.65, 1) 

 
Table 7: Aggregate assessment for the essays by 

using FOWA 
 
Step 7: Defuzzification and scaling of the fuzzy 

numbers for each essay’s peer-assessment for grading  
The standard centroid of the area of triangular fuzzy 

numbers is used for the defuzzification. The resulting 
crisp number is scaled to interval [0,5] and rounded to 
nearest integer for grading, see Table 8 for results. The 
scaling can be done to any scale needed. 

 
 

Candidate Defuzzified no scaled and rounded 
A1 0.586 3 
A2 0.703 4 
A3 0.639 3 

 
Table 8: Defuzzified and rounded grades 

 
Step 8: Calculate overall rank of the assignments  
 
The essay assignments are ranked by order them 

according to the aggregated (fuzzy number) 
assessments into a descending order by using removal, 
mode, and divergence, see Table 9. Using  

 
Essay Removal 

no 
divergence mode Order 

A1 0.59 0.66 0.59 3 
A2 0.71 0.61 0.72 1 
A3 0.64 0.72 0.65 2 

 
Table 9: Ranking the assignments 
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Using this, the ranking A2>A3>A1 is obtained. Now, 
the essays have been graded and the wanted number of 
best essays can be selected for extra points. 

 
4. Summary and conclusions  

In this paper a multiple criteria multiple peer 
assessment system that is based on a scorecard with 
linguistic inputs was introduced. The proposed system 
is such that it can be used peer-assessment in on-line 
eLearning environments, and will assist trainers / 
teachers in (dramatically) reducing the workload 
connected to student assignments. It also allows the use 
of peer-evaluation to become a part of the learning 
process, an issue that is as important, or even more 
important, than the issue of facilitating assessment and 
reducing the work load for the teacher.  

The linguistic scales used in the on-line scorecard are 
mapped to fuzzy scales. The resulting fuzzy 
assessments from each peer are combined into a 
decision making matrix. This matrix is weighted for 
each decision maker by a self-assessment of expertise. 
The decision matrices are combined into one matrix 
and the assessments are aggregated by FOWA. The 
well-known O’Hagan’s method is used for the 
weighting of the criteria. 

The FOWA operator is a relatively new method, and 
so far its usage in on-line peer-assessment systems has, 
to the best of our knowledge, not been studied. It differs 
from conventional aggregation operators in the sense 
that it aggregates fuzzy numbers instead of crisp 
numbers. The use of the method provided by Kaufman 
and Gupta with FOWA was proposed for ordering of 
fuzzy numbers. 

As an avenue for further research, we observe that 
the problem of finding suitable total ordering is 
essential in this type of an approach, and that 
researching total ordering is an interesting future 
research direction. 
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