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Abstract

It is an open question whether a non-trivial convex
combination of triangular norms (resp. conorms)
can be a triangular norm (resp. conorm). We in-
vestigate the analogous question for S-implications
and R-implications.
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1. Fuzzy implications

The success of fuzzy set theory is mostly based on
systems which interpret human knowledge in terms
of fuzzy logic. Such systems imitate human way of
thinking using fuzzy IF-THEN rules. The interpre-
tation of these rules in terms of fuzzy logical con-
nectives requires fuzzy implications as operations
on the continuum of fuzzy truth values, usually the
real unit interval [0, 1]. In order to describe a wide
variety of reasoning mechanisms, we need a large
repertoire of fuzzy implications [12, 13]. We refer
to [5, 3, 4] for more arguments and discussion of
properties of fuzzy implications. For their general
mathematical properties, [6, 10, 11, 19] can be rec-
ommended.
We use the following general definition of a fuzzy

implication (see [5, 3]):

Definition 1 A function I : [0, 1]2 → [0, 1] is called
a fuzzy implication if it satisfies the following con-
ditions:

(I1) I is decreasing in the first variable,
(I2) I is increasing in the second variable,
(I3) I(0, 0) = I(1, 1) = I(0, 1) = 1, I(1, 0) = 0.

Thus we only require that I extends the classical
(Boolean) implication and preserves its monotonic-
ity. The conditions of Definition 1 are rather weak,
so we shall study more specific fuzzy implications in
the sequel.
Let us notice that the class of all fuzzy implica-

tions (in the sense of Definition 1) forms a convex
set of functions on [0, 1]2, i.e., if Ig, Ih are fuzzy
implications and c ∈ [0, 1], then If : [0, 1]2 → [0, 1]
defined by

If = c Ig + (1− c) Ih (1)

is a fuzzy implication, too. We investigate the
question which specific classes of fuzzy implica-
tions admit convex combinations. In particular,

we shall concentrate on so-called S-implications and
R-implications and briefly discuss Q-implications.
We are interested only in convex combinations (1)
which are non-trivial, i.e., Ig 6= Ih and c ∈ (0, 1), so
that Ig 6= If 6= Ih.
Our observations apply also to fuzzy equivalence

operations (=biimplications) derived from these im-
plications.

2. Basic definitions

The special classes of implication which are of
more interest are usually defined as operations de-
rived from other fuzzy logical operations, triangular
norms and conorms and fuzzy implications.

We recall that a triangular norm (a t-norm) T
is a commutative, associative, and non-decreasing
binary operation defined on the real unit interval
[0, 1] such that T (x, 1) = x holds for all x ∈ [0, 1]
(see [2, 10, 24]). Dually, a triangular conorm (a t-
conorm) S is a commutative, associative, and non-
decreasing binary operation defined on [0, 1] such
that S(x, 0) = x holds for all x ∈ [0, 1]. In this
paper, we will be dealing with continuous Archi-
medean t-norms and t-conorms only. A continuous
t-norm T , resp. a continuous t-conorm S, is called
Archimedean if for each x ∈ (0, 1), T (x, x) < x, resp.
S(x, x) > x. A continuous t-norm T , resp. a con-
tinuous t-conorm S, is called strict if it is strictly
increasing at every point of the open unit square
(0, 1)2; it is called nilpotent if it is Archimedean,
but not strict [2, 10, 24].

A fuzzy negation is a unary operation N : [0, 1]→
[0, 1] which is involutive and non-increasing, i.e.,
N(N(x)) = x and N(x) ≥ N(y) for all x, y ∈ [0, 1]
such that x ≤ y. In some papers and mono-
graphs (e.g. [7]), more general negations are allowed;
then our notion defines so-called strong or involutive
fuzzy negation. We shall deal only with involutive
fuzzy negations and emphasize this fact explicitly
only in formulations of the key problems and re-
sults.

We shall need the following lemma which is
proved in the Appendix:

Lemma 2 Let I be an interval and f, g, h : I → I
monotonic bijections. Suppose that there exists c ∈
(0, 1) such that

f = c g + (1− c)h . (2)

and
f−1 = c g−1 + (1− c)h−1 . (3)

Then f = g = h.
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The conjunction of assumptions (2), (3) may look
strange and applicable rather rarely. However, it is
the case if we study convex combinations of func-
tions which are involutive, i.e., inverse to themselves
(=satisfying ∀t ∈ I : f(f(t)) = t).

Corollary 3 Let I be an interval and f, g, h : I →
I decreasing involutive bijections. Suppose that
there exists c ∈ (0, 1) such that (2) holds. Then
f = g = h.

This applies to fuzzy negations:

Corollary 4 No fuzzy negation is a non-trivial
convex combination of involutive fuzzy negations.

3. S-implications

Throughout this section, IS,N (possibly with in-
dices) will be an S-implication defined by

IS,N (x, y) = S(N(x), y) ,

where S is a continuous Archimedean t-conorm and
N an (involutive) fuzzy negation. This is a nat-
ural fuzzification of the simplest Boolean formula
expressing the implication in terms of commutative
operations. We have freedom in the choice the t-
conorm S and negation N . We ask whether some
choice gives rise to a non-trivial solution to (1).

Problem 5 Find an (involutive) fuzzy negation N ,
different t-conorms Sf , Sg, Sh, and a constant c ∈
(0, 1) such that

ISf ,N = c ISg,N + (1− c) ISh,N . (4)

Condition (4) means that, for all x, y ∈ [0, 1],

Sf (N(x), y) = c Sg(N(x), y) + (1− c)Sh(N(x), y) .

Substituting z = N(x), we ask if, for all z, y ∈ [0, 1],

Sf (z, y) = c Sg(z, y) + (1− c)Sh(z, y) .

Thus Problem 5 is equivalent to the following:

Problem 6 Find a t-conorm which is a non-trivial
convex combination of two t-conorms.

By duality, this problem is equivalent to an anal-
ogous problem, where we consider t-norms instead
of t-conorms. This has been published, e.g., in
the list of open problems by Alsina, Frank, and
Schweizer [1]. Partial results were obtained in
[8, 15, 20, 21, 25, 26]. According to [16, 18, 22], this
cannot happen for nilpotent t-norms or t-conorms
and some classes of strict t-norms or t-conorms. Ac-
cording to our knowledge, the problem for general
strict t-norms and t-conorms is still open.

If we fix the t-conorm and admit different fuzzy
negations, we may formulate the following:

Problem 7 Find a continuous Archimedean t-
conorm S, different (involutive) fuzzy nega-
tions Nf , Ng, Nh, and a constant c ∈ (0, 1) such
that

IS,Nf
= c IS,Ng

+ (1− c) IS,Nh
. (5)

Condition (5) means that, for all x, y ∈ [0, 1],

S(Nf (x), y) = c S(Ng(x), y) + (1− c)S(Nh(x), y) .

Substituting y = 0, we ask if, for all x ∈ [0, 1],

Nf (x) = cNg(x) + (1− c)Nh(x) .

Thus Corollary 4 gives the negative answer to Prob-
lem 7.

In general, we may choose both t-conorms and
fuzzy negations and ask the following:

Problem 8 Find continuous Archimedean t-
conorms Sf , Sg, Sh, (involutive) fuzzy nega-
tions Nf , Ng, Nh, and a constant c ∈ (0, 1) such
that

ISf ,Nf
= c ISg,Ng

+ (1− c) ISh,Nh
. (6)

and S-implications ISf ,Nf
, ISg,Ng

, ISh,Nh
are not

equal.

A positive answer to Problem 6 would also answer
Problem 8 in the positive. We leave these questions
for further study.

4. R-implications (residuated implications)

Throughout this section, IT (possibly with an in-
dex of T ) will be an R-implication (also residuated
implication) defined by

IT (x, y) = max {z ∈ [0, 1] | T (x, z) ≤ y} ,

where T is a continuous Archimedean t-norm. R-
implications appear naturally in logical foundations
of fuzzy set theory (see [7]) and in the algebraic
theory of residuated lattices. We ask whether some
choice of the t-norm T gives rise to a non-trivial
solution to (1):

Problem 9 Find different continuous Archime-
dean t-norms Tf , Tg, Th and a constant c ∈ (0, 1)
such that

ITf
= c ITg + (1− c) ITh

. (7)

This problem has the negative answer:

Theorem 10 Let ITf
, ITg

, ITh
be R-implications

induced by continuous Archimedean t-norms
Tf , Tg, Th, respectively. Suppose that there exists
c ∈ (0, 1) satisfying (7). Then ITf

= ITg = ITh
.
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Proof. Let us suppose that the assumptions of
Theorem 10 are satisfied. We assume that there are
x, y ∈ [0, 1] such that ITf

(x, y) 6= ITg (x, y) and we
shall derive a contradiction. Without loss of gener-
ality, we assume ITf

(x, y) > ITg
(x, y). (Otherwise,

we interchange ITg
and ITh

and replace c by 1 − c,
then we continue in the same way.)
The case x ≤ y leads to ITf

(x, y) = 1 = ITg (x, y),
a contradiction. Thus we suppose x > y.

We define interval I = [y, 1] and functions
f, g, h : I → I as follows:

f(t) = ITf
(t, y) ,

g(t) = ITg
(t, y) ,

h(t) = ITh
(t, y) .

Functions f, g, h are decreasing bijections. To prove
that they are also involutive, notice that, for each
t ∈ I, z = ITf

(t, y) is the unique element of I
such that Tf (t, z) = y. Similarly, for each z ∈ I,
t = ITf

(z, y) is the unique element of I such that
Tf (z, t) = Tf (t, z) = y. Thus

t = ITf
(z, y) = ITf

(ITf
(t, y), y) = f(f(t)) .

Thus we may apply Corollary 3 to interval I,
functions f, g, h, and constant c ∈ (0, 1). We ob-
tain f = g = h, in particular

f(t) = g(t) = h(t)
= ITf

(t, y) = ITg
(t, y) = ITh

(t, y) ,

a contradiction.

5. Q-implications

Following [11, 19], a Q-implication IS,T,N (pos-
sibly with indices) is defined by the formula
IS,T,N (x, y) = S(N(x), T (x, y)), where S is a t-
conorm, T is a t-norm, and N is a fuzzy nega-
tion. This formula is inspired by implications used
in quantum logic [9, 14].

Problem 11 Find t-conorms Sf , Sg, Sh, t-norms
Tf , Tg, Th, (involutive) fuzzy negations Nf , Ng, Nh,
and a constant c ∈ (0, 1) such that

ISf ,Tf ,Nf
= c ISg,Tg,Ng

+ (1− c) ISh,Th,Nh
. (8)

and Q-implications ISf ,Tf ,Nf
, ISg,Tg,Ng

, ISh,Th,Nh

are not equal.

Defining a Q-implication, the choice of three
fuzzy operations gives us much more freedom. This
increases the possibility that a non-trivial convex
combination can be found among them. We leave
this question for further research. Notice that a pos-
itive answer to Problem 6 would answer also Prob-
lems 5 and 11 in the positive.

6. Conclusions

We proved that no non-trivial convex combination
of R-implications is an R-implication. Partial re-
sults towards this directions were obtained for S-
implications. Some instances of this problem are
equivalent to the open problem whether a t-norm
can be a non-trivial convex combination of t-norms.
There is still an open possibility of existence of
an easier counterexample for S-implications if the
choices of a t-conorm and a fuzzy negations are used
simultaneously. Further continuation could be stud-
ied for Q-implications, where we have more freedom
of choice of a t-conorm, t-norm, and a fuzzy nega-
tion.

We hope that our technique of proving the main
lemma could find application to other problems in
the study of fuzzy logical operations and convex
combinations.

Appendix

Proof of Lemma 2. Let us suppose that the as-
sumptions of Lemma 2 are satisfied. We define the
set

U = {t ∈ I | f(t) = g(t)} .
Then also

U = {t ∈ I | f(t) = h(t)}
= {t ∈ I | g(t) = h(t)} .

We assume that U 6= I and we shall derive a con-
tradiction.

We find an x ∈ I \ U . It follows from the conti-
nuity of f, g, h and from the definition of U (by an
equation) that U is closed. Thus the set

{t ∈ U | t < x}

has a greatest element; we denote it by

u = max{t ∈ U | t < x} .

Obviously u 6= x. The restrictions of f, g to the
interval (u, x] satisfy either

g�(u,x] < f�(u,x]

or
g�(u,x] > f�(u,x] .

Replacing g by h, we obtain the reverse ordering.
We assume the former case, thus

g�(u,x] < f�(u,x] < h�(u,x] .

(See Figure 1.) We may use this assumption with-
out loss of generality; in the other case, we inter-
change g and h and replace c by 1 − c, then we
continue as follows.

The convexity condition (2) allows us to quantify
the latter inequality:

f(t) = c g(t) + (1− c)h(t) ,
c (f(t)− g(t)) = (1− c) (h(t)− f(t)) .
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Figure 1: Test of the (im-)possibility of satisfaction
of the same convexity relations for the functions and
their inverses.

All these functions are continuous, thus we may in-
tegrate the latter formula and obtain

c

∫ x

u

(f(t)− g(t)) dt︸ ︷︷ ︸
G

= (1− c)
∫ x

u

(h(t)− f(t)) dt︸ ︷︷ ︸
H

, (9)

Using the notation

G =
∫ x

u

(f(t)− g(t)) dt , (10)

H =
∫ x

u

(h(t)− f(t)) dt

(see Figure 2), we may write (9) in a simplified form

cG = (1− c)H , (11)

Now we shall repeat the above procedure for the
inverse functions f−1, g−1, h−1 with arguments
within the interval swith bounds

η = f−1(u) = g−1(u) = h−1(u) ,
ξ = f−1(x)

(see Figure 3).
According to our assumptions,

g−1�[ξ,η) < f−1�[ξ,η) | < h−1�[ξ,η)

and this inequality can be again quantified using (2)
for all τ ∈ [ξ, η):

f−1(τ) = c g−1(τ) + (1− c)h−1(τ) ,
c
(
f−1(τ)− g−1(τ)

)
= (1− c)

(
h−1(τ)− f−1(τ)

)
.

Figure 2: Integrals of differences of functions.

Integrating the latter equality, we obtain

c

∫ η

ξ

(
f−1(τ)− g−1(τ)

)
dτ︸ ︷︷ ︸

G′

= (1− c)
∫ η

ξ

(
h−1(τ)− f−1(τ)

)
dτ︸ ︷︷ ︸

H′

, (12)

Using the notation

G′ =
∫ η

ξ

(
f−1(τ)− g−1(τ)

)
dτ ,

H ′ =
∫ η

ξ

(
h−1(τ)− f−1(τ)

)
dτ

(see Figure 3), we may write (12) in a simplified
form

cG′ = (1− c)H ′ , (13)

The integral G from (10) can be split (see Fig-
ure 2)

G =
∫ x

u

(f(t)− g(t)) dt

=
∫ η

ξ

(
f−1(τ)− g−1(τ)

)
dτ︸ ︷︷ ︸

G′

+
∫ ξ

g(x)

(
x− g−1(τ)

)
dτ︸ ︷︷ ︸

D

= G′ +D ,

where

D =
∫ ξ

g(x)

(
x− g−1(τ)

)
dτ > 0 .
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Figure 3: Integrals of differences of inverse functions.

(See Figure 4.)
Similarly for H ′:

H ′ =
∫ η

ξ

(
h−1(τ)− f−1(τ)

)
dτ

=
∫ x

u

(h(t)− f(t)) dt︸ ︷︷ ︸
H

+
∫ h−1(ξ)

x

(h(t)− ξ) dt︸ ︷︷ ︸
D′

= H +D′ ,

where

D′ =
∫ h−1(ξ)

x

(h(t)− ξ) dt > 0 .

Combining (11), (13), we obtain

cG′ = (1− c)H ′ = (1− c) (H +D′)
> (1− c)H = cG = c (G′ +D)
> cG′ ,

a contradiction. The proof is finished.
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