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Abstract

This article discusses a new method for the con-
struction of non-functionally expressible fuzzy im-
plications. In a recent work, we have considered
non-functionally expressible fuzzy implications from
an implication function acting on the inputs fol-
lowed by an aggregation process. Now, we first per-
form an aggregation of the inputs and then an impli-
cation function between the aggregated values. The
main part is devoted to analyse under which condi-
tions the two construction processes coincide.
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tional equation.

1. Introduction

One of the most important problems in fuzzy logic
is the management of fuzzy conditionals of the type
“If p, then q" with p and q fuzzy statements. One
method commonly used to do this management is
through functions I : [0, 1] × [0, 1] → [0, 1] in such
a way that, the truth value of the conditional is
functionally stated from the truth values of the ini-
tial propositions p and q. These functions I are
called (fuzzy) implication functions. Traditionally,
it is accepted that any fuzzy concept must generalize
the corresponding crisp concept and consequently, it
is usually required to an implication function that
I(0, 0) = I(0, 1) = I(1, 1) = 1 and I(1, 0) = 0;
that is, its restriction to {0, 1}2 must coincide with
the classical material implication, p → q ≡ ¬p ∨ q.
Usually, antitonicity with the first variable and iso-
tonicity with the second one are also required to
implication functions leading to the most accepted
definition ([2, 6, 10, 12]). Of course, several other
conditions are also required to implication functions
depending on the context, generally taken out from
properties of the classical implication. This ap-
proach, known as the functionally expressible ap-
proach, is the most used in the literature and it has
been extensively developed in last decades (see for
instance the book [2] and the references therein).
Obviously the functionally expressible approach

is only one of the possible methods. Moreover, in
many cases fuzzy sets operations depend on the
complete information about the involved fuzzy sets
and thus, they need not be functionally expressible.

Alternatively, one can define fuzzy implications (as
well as conjunctions, disjunctions, and other logical
connectives) in an axiomatic way (see [11]), using
the most accepted axioms for fuzzy implications.
That is, decreasing in the first variable, increasing
in the second one, and satisfying that the fuzzy im-
plication must take crisp values (according to the
rule ¬p ∨ q) when the involved fuzzy sets take only
crisp values. It is proved in [11] that not all fuzzy
implications defined in this way are functionally
expressible and many examples are done. In fact
a method to construct non-functionally expressible
fuzzy implications from two implications functions
and an aggregation function having 0 and 1 as left-
absorbent elements is pointed out in the mentioned
paper. Specifically, given a fuzzy set A : X → [0, 1]
on a universe X, and a fuzzy set B : Y → [0, 1] on
a universe Y , one can take the fuzzy implication

(A→ B)(x, y) = F (I(A(x), B(y)), J(A(x0), B(y0))),
(1)

where I, J are implication functions, F is an aggre-
gation function with F (0, 1) = 0 and F (1, 0) = 1,
and x0, y0 are fixed points in the corresponding uni-
verses. The previous construction corresponds to
the idea of obtaining models of fuzzy implications
such that the value (A→ B)(x, y) depends not only
on the values taken by A and B at the points x and
y respectively (functionally expressible approach),
but also on their values at other fixed points x0 and
y0.

Keeping in mind the same idea we will present
in this paper a new method to construct non-
functionally expressible fuzzy implications using,
similarly to the method proposed in Equation (1),
two aggregation functions F, G with 1 and 0 as left
absorbing elements and an implication function I.
Moreover, if we consider the same implication and
aggregation functions in both approaches, we will
investigate when they coincide, at least for some
kinds of implication functions. In the case that the
implication function I satisfies the left neutrality
principle, we will derive that this occurs if and only
if the involved aggregation function F depends only
on the first variable, that is, when F (x, y) = f(x) for
all x, y ∈ [0, 1] being f an increasing function with
f(0) = 0 and f(1) = 1, that acts as a morphism of
the implication function I. This of course leads to
the study of morphisms of implication functions in
general.
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The paper is organized as follows. In the next
section we give some preliminaries that will be used
along the paper. In Section 3 we deal with the new
construction method previously mentioned, whereas
in Section 4 we investigate when both methods (the
one introduced here and the one studied in [11]) co-
incide, at least when the involved implication func-
tions satisfy the left neutrality principle (recall that
this is the case of the most used classes of implica-
tion functions), reducing such functional equation
to the study of morphisms of implication functions.
Then, the study of morphisms of implication func-
tions I when I lies in the class of (S, N)-implications
is managed in Section 5. In addition, some remarks
on morphisms of other classes of implication func-
tions are also pointed out. The paper ends with a
conclusion section where some possible future work
is also pointed out.

2. Preliminaries

In this section we recall some of the definitions and
results that will be used along the paper. Any other
basic facts not recalled here can be found in [9] for
the case of t-norms, t-conorms and fuzzy negations,
in [2] for implication functions, and in [3, 4, 8] for
aggregation functions.

Definition 1 ([4]) A binary function F : [0, 1]2 →
[0, 1] is said to be an aggregation function if it is
increasing in each variable and F (0, 0) = 0 and
F (1, 1) = 1.

Given a non-empty set X, the collection of fuzzy
subsets of X can be represented by the set [0, 1]X
of functions from X to the unit real interval [0, 1].
In addition, given k ∈ [0, 1] we will denote by kX

the fuzzy set A such that A(x) = k for all x ∈ X.
Special examples of these constant fuzzy sets will
be 0X and 1X , the fuzzy sets A and B such that
A(x) = 0 and B(x) = 1 for all x ∈ X, respectively.

Definition 2 (Definition 5 and Remark 1 in [11])
An operation [0, 1]X × [0, 1]Y −→ [0, 1]X×Y :
(A, B) −→ A → B is a fuzzy implication if the
following conditions hold:

Im1) If A ≤ A′ then A → B ≥ A′ → B for all
B ∈ [0, 1]Y , i.e., → is decreasing in the first
variable.

Im2) If B ≤ B′ then A → B ≤ A → B′ for all
A ∈ [0, 1]X , i.e., → is increasing in the second
variable.

Im3) If A ∈ {0, 1}X and B ∈ {0, 1}Y then

(A→ B)(x, y) =
{

0 if A(x) = 1 and B(y) = 0,
1 otherwise.

i.e., → extends the crisp implication.

Definition 3 (Definition 1.15 in [6]) A binary op-
erator I : [0, 1]2 → [0, 1] is said to be an implication
function if it satisfies:

(I1) I(x, z) ≥ I(y, z) when x ≤ y, for all z ∈
[0, 1].

(I2) I(x, y) ≤ I(x, z) when y ≤ z, for all x ∈
[0, 1].

(I3) I(0, 0) = I(1, 1) = 1 and I(1, 0) = 0.

Definition 4 (Definition 3 in [11]) We will say
that an implication function I : [0, 1]2 → [0, 1] is
trivial when it takes only the values 0 and 1. That
is, when

I(x, y) ∈ {0, 1} for all x, y ∈ [0, 1].

Definition 5 (Definition 8 in [11]) A binary op-
eration F : [0, 1]X × [0, 1]Y −→ [0, 1]X×Y is said
to be functionally expressible (f.e. for short) if
there exists a function f : [0, 1] × [0, 1] −→ [0, 1]
such that for all A ∈ [0, 1]X and B ∈ [0, 1]Y it
holds that F (A, B)(x, y) = f(A(x), B(y)) for all
(x, y) ∈ X × Y .

Proposition 1 (Proposition 5 in [11]) A fuzzy
implication → is functionally expressible if, and
only if, there exists an implication function I :
[0, 1] × [0, 1] −→ [0, 1] such that (A → B)(x, y) =
I(A(x), B(y)) for all A ∈ [0, 1]X , B ∈ [0, 1]Y , and
(x, y) ∈ X × Y .

Obviously not all fuzzy implications are func-
tionally expressible and many examples were given
in [11]. In particular, the following construction
method was proved in [11].

Proposition 2 (Proposition 13 in [11]) Given two
implication functions I, J , an aggregation function
F with F (0, 1) = 0 and F (1, 0) = 1, and fixed points
x0 ∈ X and y0 ∈ Y , then the function

→(F,I,J): [0, 1]X × [0, 1]Y → [0, 1]X×Y

defined by the expression (A →(F,I,J) B)(x, y) =
F (I(A(x), B(y)), J(A(x0), B(y0))) for all A ∈
[0, 1]X and B ∈ [0, 1]Y , is a fuzzy implication.

Just some minimal properties on the aggrega-
tion function F and the implication function I are
needed to derive non-f.e. fuzzy implications through
this method.

Proposition 3 (Proposition 14 in [11]) Let I, J
be two implication functions and F an aggrega-
tion function with F (0, 1) = 0, F (1, 0) = 1 and
F (x, 0) < F (x, 1) for all x ∈ (0, 1). Then the fol-
lowing statements are equivalent:

1. →(F,I,J) is non-functionally expressible.
2. I is non-trivial.

We will give in the next section an alternative
method to construct non-functionally expressible
fuzzy implications from the same functions F and
implication functions I, J .
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3. New construction method of non-f.e.
fuzzy implications

Note that with the method presented in Proposition
2, the value of the constructed fuzzy implication at
point (x, y) is obtained by applying the aggregation
function F to the value of I at point (A(x), B(y))
and the value of J at point (A(x0), B(y0)). A differ-
ent but similar possibility consists on applying an
aggregation function F to the values A(x), A(x0),
an aggregation function G to the values B(y), B(y0),
and finally an implication function I to the aggre-
gated values. Specifically,

Definition 6 Given two aggregation functions F
and G, an implication function I, and fixed points
x0 ∈ X and y0 ∈ Y , we define the function

→(I,F,G): [0, 1]X × [0, 1]Y → [0, 1]X×Y

by the expression
(A→(I,F,G) B)(x, y) =

I(F (A(x), A(x0)), G(B(y), B(y0)))
for all A ∈ [0, 1]X and B ∈ [0, 1]Y .

In most of the cases it can be proved that the
previous construction gives an implication function.

Proposition 4 Let F, G be aggregation functions,
I an implication function, and x0, y0 arbitrary but
fixed points of the corresponding universes X, Y , re-
spectively. If F, G satisfy F (0, 1) = G(0, 1) = 0 and
F (1, 0) = G(1, 0) = 1, then the function

→(I,F,G): [0, 1]X × [0, 1]Y → [0, 1]X×Y

is always a fuzzy implication.

Proof Conditions Im1) and Im2) follow trivially
from the increasingness of functions F, G and the
monotonicities of the implication function I. Sim-
ilarly, condition Im3) follow from the behaviour of
functions F, G and I at the values 0, 1.

Moreover, the operations constructed in this way
are in general non-functionally expressible implica-
tion functions. To see this, let us recall that an
implication function I is said to satisfy the left-
neutrality principle1, whenever

I(1, y) = y for all y ∈ [0, 1].

Then, the following result holds.

Proposition 5 Let F, G be aggregation functions
with F (0, 1) = G(0, 1) = 0 and F (1, 0) = G(1, 0) =
1. Let I be an implication function and x0, y0 ar-
bitrary but fixed points of the corresponding uni-
verses X, Y , respectively. Then the fuzzy implica-
tion →(I,F,G) is non-functionally expressible if one
of the following conditions holds:

1Note that this is the case of most of the usual classes
of implication functions, like (S, N), R, QL, D and Yager’s
implications.

1. There exists a ∈]0, 1[ such that F (a, 0) = 0 and
F (a, 1) = 1.

2. There exists a ∈]0, 1[ such that G(a, 0) = 0 and
G(a, 1) = 1.

3. I satisfies the left-neutrality principle and there
are a, b, b′ ∈ [0, 1] such that G(a, b) 6= G(a, b′).

Proof Points 1 and 2 can be proved similarly, so let
us detail only 1. To do it, suppose that the fuzzy im-
plication →(I,F,G) is functionally expressible. Then
there exists an implication function J such that

A→(I,F,G) B(x, y) = J(A(x), B(y))

for all A ∈ [0, 1]X , B ∈ [0, 1]Y , and x, y ∈ [0, 1].
Consider now A, A′ ∈ [0, 1]X such that A(x) =
A′(x) = a, A(x0) = 0 and A′(x0) = 1, and
B, B′ ∈ [0, 1]Y such that B(y) = B′(y) = 0. Now,
we have on one hand,

J(a, 0) = J(A(x), B(y)) = (A→(I,F,G) B)(x, y)
= I(F (a, 0), G(0, B(y0))) = I(0, 0) = 1.

However, on the other hand, we obtain

J(a, 0) = J(A′(x), B′(y)) = (A′ →(I,F,G) B′)(x, y)
= I(F (a, 1), G(0, B′(y0))) = I(1, 0) = 0,

obtaining a contradiction..
Let us now deal with the case when I(1, y) = y

and G(a, b) 6= G(a, b′). Suppose as above that the
fuzzy implication →(I,F,G) is functionally express-
ible. Then there exists an implication function J
such that

A→(I,F,G) B(x, y) = J(A(x), B(y))

for all A ∈ [0, 1]X , B ∈ [0, 1]Y , and x, y ∈ [0, 1].
Consider now A, A′ ∈ [0, 1]X such that A(x) =
A′(x) = 1, and B, B′ ∈ [0, 1]Y such that B(y) =
B′(y) = a, B(y0) = b, and B′(y0) = b′. Now, we
have on one hand,

J(1, a) = J(A(x), B(y)) = (A→(I,F,G) B)(x, y)
= I(F (1, A(x0)), G(a, b)) = I(1, G(a, b))
= G(a, b).

However, on the other hand, we obtain

J(1, a) = J(A′(x), B′(y)) = (A′ →(I,F,G) B′)(x, y)
= I(F (1, A′(x0)), G(a, b′)) = I(1, G(a, b′))
= G(a, b′).

and we get a contradiction since G(a, b) 6= G(a, b′).

Example 1 Let us consider the aggregation func-
tion F given by

F (a, b) =
{

1 if a = 1 or (a > 0, b = 1),
min{a, b} otherwise.

Note that this aggregation function, which is ob-
tained slightly modifying the minimum t-norm and
is displayed in Figure 1, remains associative.
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Figure 1: Aggregation function F of Example 1.

Now, taking a non-trivial implication function I
satisfying (NP), the corresponding fuzzy implication
(A→(I,F,F ) B)(x, y)

= I(F (A(x), A(x0)), F (B(y), B(y0)))

for all x, x0 ∈ X, y, y0 ∈ Y , A ∈ [0, 1]X and
B ∈ [0, 1]Y is not functionally expressible using
the previous result. Let us illustrate how this
operator is applied. If we consider the fuzzy sets
A ∈ [0, 1]X and B ∈ [0, 1]Y and x0 ∈ X, y0 ∈ Y
with 0 < A(x0), B(y0) < 1, which are displayed in
Figure 2, we obtain the resulting values of Table 1.

1

0

X Y

A B

x0x y0 y

Figure 2: Fuzzy sets A and B of Example 1.

Now, if for instance, we consider the Kleene-
Dienes implication IKD(x, y) = max{1 − x, y} for
all x, y ∈ [0, 1], we obtain the results depicted in
Table 2.

4. When both construction methods
coincide

Comparing the method given in the section above
(→(I,F,G)) and the one given in [11] (→(F,I,J)) one
can wonder when both methods coincide if we con-
sider the same aggregation and implication func-
tions in both cases. That is, we want to investigate
for which implication functions I, and aggregation
functions F with F (0, 1) = 0 and F (1, 0) = 1, it is
satisfied

→(F,I,I) = →(I,F,F )

or equivalently, we want to solve the following func-
tional equation

F (I(x, y), I(z, t)) = I(F (x, z), F (y, t)) (2)

for all x, y, z, t ∈ [0, 1].
We will limit our study to implication functions

satisfying the left-neutrality principle. In this case
we have the following result.

Proposition 6 Let F be an aggregation functions
with F (0, 1) = 0 and F (1, 0) = 1, and let I be an im-
plication function satisfying the left-neutrality prin-
ciple. Then the following items are equivalent:
1. F and I satisfy Equation (2).
2. There is an increasing function f : [0, 1] →

[0, 1] with f(0) = 0, f(1) = 1 and such that
F (x, y) = f(x) and

f(I(x, y)) = I(f(x), f(y))

for all x, y ∈ [0, 1].

Proof First of all suppose that F, I satisfy Equation
(2). Note that taking x = 1 and z = 0 in this
equation we have

F (I(1, y), I(0, t)) = I(F (1, 0), F (y, t))

and consequently F (y, 1) = F (y, t) for all y, t ∈
[0, 1], that is, F does not depend on the second
variable. So, taking f : [0, 1] → [0, 1] defined by
f(x) = F (x, y) for any y ∈ [0, 1], we obtain an
increasing function with f(0) = 0 and f(1) = 1.
Moreover, with this notation Equation (2) can be
rewritten as

f(I(x, y)) = I(f(x), f(y)).

The converse follows by a simple computation.
In view of the previous proposition we will adopt

the following definition.

Definition 7 Given an implication function I, an
increasing function f : [0, 1]→ [0, 1] with f(0) = 0,
f(1) = 1 and such that

f(I(x, y)) = I(f(x), f(y)) (3)

for all x, y ∈ [0, 1], will be called a morphism of the
implication function I, or simply an I-morphism.

Thus, with this definition and Proposition 6
we have that the fuzzy implications →(F,I,I) and
→(I,F,F ) coincide if and only if the function F de-
pends only on the first variable and it is given
through an increasing function f which is an I-
morphism. So, to conclude when both construction
methods coincide, we only need to deal with mor-
phisms of implication functions and we will do it in
the next section.

5. Morphisms of implication functions

Let us begin this section with some technical results.
First, recall that given an implication function I, its
natural negation NI is defined by

NI(x) = I(x, 0) for all x ∈ [0, 1].

The first result dealing with I-morphisms is related
to the natural negation.

196



PPPPPPPPA(x)
B(y) 0 1 (0, 1)

0 1 1 1
1 0 1 min{B(y), B(y0)}

(0, 1) I(min{A(x), A(x0)}, 0) 1 I(min{A(x), A(x0)}, min{B(y), B(y0)})

Table 1: Values of the non-functionally expressible fuzzy implication (A→(I,F,F ) B)(x, y) of Example 1.

PPPPPPPPA(x)
B(y) 0 1 (0, 1)

0 1 1 1
1 0 1 min{B(y), B(y0)}

(0, 1) 1−min{A(x), A(x0)} 1 max{1−min{A(x), A(x0)}, min{B(y), B(y0)}}

Table 2: Values of the non-functionally expressible fuzzy implication (A →(I,F,F ) B)(x, y) with I = IKD of
Example 1.

Lemma 1 Let I be an implication function and f :
[0, 1] → [0, 1] an I-morphism. Then f commutes
with the natural negation NI .

Proof Just take y = 0 in Equation (3).
We concentrate now our study in some usual

classes of implications function, especially in (S, N)-
implications. This class of implications is given from
a t-conorm S and a negation N through the equality

IS,N (x, y) = S(N(x), y) for all x, y ∈ [0, 1].

Note that (S, N)-implications always satisfy the
left neutrality principle. Moreover, in this case,
the natural negation of IS,N is the proper negation
N2. Based on this fact, one can prove the following
proposition in the general case.

Proposition 7 Let IS,N be an (S, N)-implication
and f : [0, 1] → [0, 1] an increasing function with
f(0) = 0 and f(1) = 1. Then the following items
are equivalent.

i) f is an IS,N -morphism.
ii) f commutes with N and

f(S(N(x), y)) = S(f(N(x)), f(y)), x, y ∈ [0, 1]
(4)

Proof First, let us prove that i)⇒ ii). If f is an
IS,N -morphism, then using Lemma 1, f commutes
with NIS,N

= N . In addition, we have

f(IS,N (x, y)) = IS,N (f(x), f(y)) ⇒
f(S(N(x), y)) = S(N(f(x)), f(y)) ⇒
f(S(N(x), y)) = S(f(N(x)), f(y)).

Reciprocally, the result follows just reversing the
arguments above.

2For more details on this class of implication functions see
[1] or [2].

In particular, Equation (4) becomes f(S(x, y)) =
S(f(x), f(y)) for all x in the range of N and y ∈
[0, 1]. Therefore, the following corollary is immedi-
ate.

Corollary 1 Let IS,N be an (S, N)-implication
with N continuous and f : [0, 1]→ [0, 1] an increas-
ing function with f(0) = 0 and f(1) = 1. Then the
following items are equivalent.

i) f is an IS,N -morphism.
ii) f commutes with N and f is a morphism of the

t-conorm S.

Thus, morphisms of (S, N)-implications with N
continuous are simply morphisms of the t-conorm S
that commute with the negation N . Morphisms of
t-conorms in the framework of De Morgan triplets
were already studied in [7]. However, note that
in that paper the authors only dealt with isomor-
phisms f with the assumptions that f is strictly
increasing and continuous. On the contrary, our
study involves increasing functions in general, not
necessarily continuous nor strictly increasing.

In what follows we will deal only with (S, N)-
implications with S a continuous t-conorm. We
have the following results on morphisms of
Archimedean t-conorms.

Proposition 8 Let f : [0, 1]→ [0, 1] be an increas-
ing function with f(0) = 0 and f(1) = 1 and S
an strict or a nilpotent t-conorm. Then f is a mor-
phism of the t-conorm S if and only if f is the iden-
tity function.

Consequently, we have the following corollary.

Corollary 2 Let IS,N be an (S, N)-implication
with S an strict or a nilpotent t-conorm, and N a
continuous negation. Then the only IS,N -morphism
is the identity function.

On the other hand, in the case of the maximum
t-conorm we have the following result.
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Proposition 9 Let f : [0, 1] → [0, 1] be a function
with f(0) = 0 and f(1) = 1. Then f is a mor-
phism of the maximum t-conorm if and only if f is
increasing.

So, the following corollary holds.

Corollary 3 Let N be a fuzzy negation and f an
increasing function with f(0) = 0 and f(1) = 1.
Let I be the (S, N)-implication given by IN (x, y) =
max(N(x), y) for all x, y ∈ [0, 1]. Then f is an IN -
morphism if and only if f commutes with N .

Thus, given a fuzzy negation N , f is an
I-morphism when I is given by I(x, y) =
max(N(x), y) for a x, y ∈ [0, 1], if and only if f
commutes with N . Since continuous negations N
have a unique fixed point, it is clear that functions
f commuting with N must satisfy f(s) = s, where s
is the fixed point of N . Moreover, when N is strict
we have the following proposition.

Proposition 10 Let f : [0, 1] → [0, 1] be an in-
creasing function with f(0) = 0 and f(1) = 1, and
N a strict fuzzy negation with fixed point s. Then
the following items are equivalent.

i) f commutes with N .
ii) There is an increasing function f0 : [0, s] →

[0, s] with f0(0) = 0, f0(s) = s and such that f
is given by

f(x) =
{

f0(x) if x ≤ s

N(f0(N−1(x))) if x > s

Note that when N is not continuous, other mor-
phisms appear as we show in the following examples.

Example 2 Let us consider the least (S, N)-
implication ID given by

ID(x, y) =
{

1 if x = 0,
y if x > 0.

This (S, N)-implication is generated from the least
fuzzy negation ND1 and any t-conorm S. Then it is
easy to show that the I-morphisms of ID are func-
tions f : [0, 1] → [0, 1] fulfilling f(0) = 0, f(1) = 1
and f(x) > 0 for all x > 0.

Example 3 Let us consider the greatest (S, N)-
implication IW B given by

IW B(x, y) =
{

1 if x < 1,
y if x = 1.

This (S, N)-implication is generated from the great-
est fuzzy negation ND2 and any t-conorm S. Then
it is easy to show that the I-morphisms of IW B

are functions f : [0, 1] → [0, 1] fulfilling f(0) = 0,
f(1) = 1 and f(x) < 1 for all x < 1.

Other families of implication functions satisfy-
ing also the left neutrality principle are R, QL, D
and Yager’s implications. On the contrary to what
happens with (S, N)-implications in the continuous
Archimedean cases, for some of these other classes of
implication functions there are other I-morphisms
than the identity function.

For instance, consider the case of R-implications,
which are given by

IT (x, y) = sup{z ∈ [0, 1] | T (x, z) ≤ y}, x, y ∈ [0, 1]

where T is a t-norm. When T is the minimum or the
product t-norm, the corresponding R-implications
have other morphisms than the identity function as
the following examples show.

Example 4 Consider the Gödel implication IGD,
the residual implication from the minimum t-norm,
which is given by

IGD(x, y) =
{

1 if x ≤ y,
y if x > y.

It is straightforward to prove that the strictly in-
creasing functions f : [0, 1] → [0, 1] with f(0) = 0
and f(1) = 1 are the morphisms of IGD.

Example 5 Take now the Goguen implication
IGG, the residual implication from the product t-
norm, which is given by

IGG(x, y) =
{

1 if x ≤ y,
y
x if x > y.

The functions f : [0, 1]→ [0, 1] such that f(x) = xc

for some c > 0 are morphisms of IGG. How-
ever, these are not the only morphisms of this R-
implication since the function h0 : [0, 1] → [0, 1]
given by

h0(x) =
{

0 if x = 0
1 if x > 0.

is also a morphism of IGG.

Now, let us briefly study the Yager’s implica-
tions. There are two classes of Yager’s implications,
namely, f - and g-generated implications. We will
focus on the first one.

Definition 8 ([14], [2]) Let f : [0, 1] → [0,∞] be
a strictly decreasing and continuous function with
f(1) = 0. The function I : [0, 1]2 → [0, 1] defined by

I(x, y) = f−1(x · f(y)), x, y ∈ [0, 1]

with the understanding 0 · ∞ = 0, is called an f -
generated implication. The function f is called an
f -generator of the function I. In this case, we will
write If instead of I to emphasize the apparent re-
lation.
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In this family, there are two subclasses depending
on the fact that the corresponding generator f takes
a finite value at 0 or not, that is, if f(0) < +∞ or
f(0) = +∞. It is known that in the first case the
associate negation NI is strict (see Proposition 3.1.6
in [2]) and, in fact the corresponding f -generated
implication is an (S, N)-implication with S an strict
t-conorm (see Theorem 6 in [13]). Thus, when If

is an f -generated implication with f(0) < +∞ the
only If -morphism is the identity function as it was
proved in this section previously.
So, let us deal with the case of f -generated im-

plications with f(0) = +∞. In this case, the asso-
ciated negation is always the Gödel negation ND1 ,
that is,

NI(x) = ND1(x) =
{

1 if x = 0
0 otherwise.

Thus, if h is an If -morphism, the necessary con-
dition that h commutes with NIf

is always guaran-
teed by the fact that f(0) = 0 and f(1) = 1. More-
over, in this case there are other morphisms than
the identity function. Take for instance the func-
tion h0, previously defined in this section. Then it
is an easy computation that h0 is an If -morphism
for any f -generated implication with f(0) = +∞.
However, the problem of determining all the mor-
phisms of Yager’s f -generated implications is one of
our future goals.
Similarly, as a future work we want to deal with

morphisms of R-implications and Yager’s implica-
tions in general, as well as QL and D-implications.
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