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Abstract

Given a coimplication function J defined on the fi-
nite chain Ln = {0, ..., n}, a method for extend-
ing J to the set of discrete fuzzy numbers whose
support is an interval contained in Ln (denoted by
ALn

1 ) is given. The resulting extension is in fact a
fuzzy coimplication on ALn

1 preserving many of the
usual properties of coimplications. In particular,
duality between implications and coimplications is
preserved.
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1. Introduction

The study of logical connectives is a key point
in the development of the theory of fuzzy sets
and fuzzy logic. On one hand, t-norms and t-
conorms are commonly used to model conjunctions
and disjunctions respectively. In this context, t-
norms and t-conorms are dual operators one of each
other through strong negations, that usually per-
form complements in the fuzzy sets theory.
In this direction, one of the most important types

of connectives in fuzzy logic are fuzzy implication
functions. They are widely used in fuzzy control
and approximate reasoning, because they are essen-
tial in modelling fuzzy conditionals as well as in the
inference process. For this reason, implication func-
tions have been extensively studied from both, the
applicational and the theoretical points of view (see
for instance [1], [18] and the references therein). Cu-
riously, with respect to their dual operators, called
co-implications, there are only some few works deal-
ing with them (see [8, 11, 21, 24, 22, 26]).

When we deal with fuzzy logic the used scale is
always the unit interval [0,1]. However, in many
applications only a finite number of values is used
and even only qualitative information is handled.
For this reason, many authors have studied in last
years operations defined on a finite chain Ln, usu-
ally called discrete operations. For instance, t-
norms and t-conorms were characterized in [20], uni-
norms and nullnorms in [14], idempotent uninorms
in [9], a non-commutative version of nullnorms in
[10], weighted means in [13], smooth aggregation
functions in [17], copulas in [19] and also impli-
cations functions in [15] and [16]. It is proved in
[20] that only the number of elements of the finite

chain Ln is relevant when we deal with monotonic
operations on Ln, and so the finite chain used in
many of the mentioned works is the most simple
one Ln = {0, 1, . . . , n}.

The representative finite chain Ln is usually con-
sidered to model linguistic hedges in qualitative in-
formation, which is often interpreted to take values
in a totally ordered finite scale like this:

L = {Extremely Bad, Very Bad, Bad, Fair, Good

Very Good, Extremely Good}. (1)

However, the modelling of linguistic information is
limited because the information provided by experts
for each variable must be expressed by a simple lin-
guistic term. In most cases, this is a problem for
experts because their opinion does not agree with
a concrete term. On the contrary, experts’ values
are usually expressions like "better than Good", "be-
tween Fair and Very Good" or even more complex
expressions.

To avoid the limitation above (see [5, 6, 25]) the
authors deal with the possibility of extending mono-
tonic operations on Ln to operations on the set of
discrete fuzzy numbers whose support is an inter-
val contained in Ln, usually denoted by ALn

1 . The
idea lies on the fact that any discrete fuzzy number
A ∈ ALn

1 can be considered (identifying the scale L
given in (1) with Ln with n = 6) as an assignment
of a [0, 1]-value to each term in our linguistic scale.
As an example, the above mentioned expression "be-
tween Fair and Very Good" can be performed, for
instance, by a discrete fuzzy number A ∈ AL6

1 , with
support given by the subinterval [F, V G] (that cor-
responds to the interval [3, 5] in L6). The values
of A in its support should be described by experts,
allowing in this way a complete flexibility of the
qualitative valuation. Thus, operations on ALn

1 al-
low us to manage qualitative information in a more
flexible way. In [5] t-norms and t-conorms on ALn

1
are described and studied, as well as it is done for
uninorms, nullnorms and general aggregation func-
tions in [25]. In both cases, an example of applica-
tion in decision making or subjective evaluation is
included.

Following in this direction we want to study coim-
plication functions on ALn

1 . We present a method
of constructing such coimplications from discrete
coimplications defined on Ln, and we prove that
many of the usual properties of coimplications are
preserved by this extension method.
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2. Preliminaries

We will suppose the reader to be familiar with the
basic theory of logical connectives in both, the fuzzy
and the discrete cases. For operators on [0, 1] see
[12] and for operators on finite scales see [20] and
also [15]. Thus, we recall only some key definitions
and results for the rest of the paper.

2.1. Discrete coimplications

Let (P,≤) be a bounded ordered set with smallest
element 0 and greatest element n.

Definition 2.1 [8] A coimplication function J on
(P,≤) is a binary operator J : P × P → P that
is nonincreasing in the first variable, nondecreasing
in the second one and satisfies the corner conditions
J(0, 0) = 0, J(n, n) = 0 and J(0, n) = n.

Remark 2.2 [8] Note that for any coimplication
function J on (P,≤) it turns out that

J(n, α) = J(α, 0) = 0, for all α ∈ P

a property called the absorption principle.

Definition 2.3 [8] A border coimplication J on
(P,≤) is a coimplication function that satisfies the
neutrality principle

J(0, β) = β, for all β ∈ P.

Definition 2.4 [8] Let J be a coimplication func-
tion on (P,≤). Then J satisfies

i) the exchange principle (EP ), if

J(x, J(y, z)) = J(y, J(x, z)) for all x, y, z ∈ P

ii) the contraposition law (CL) with respect to the
strong negation N on P, if

J(N(y), N(x)) = J(x, y) for all x, y ∈ P

iii) A model coimplication J is a border coimplica-
tion that is contrapositive and satisfies the ex-
change principle.

A particular case of bounded ordered set is when
we consider the finite chain Ln = {0, . . . , n} ⊂ N.
Operators defined on Ln are usually called discrete
operations and they have been studied by many au-
thors (see [7, 13, 14, 20]). In these studies the fol-
lowing condition, generally used as a discrete coun-
terpart of continuity, is considered.

Definition 2.5 A function f : Ln → Ln is said to
be smooth if it satisfies: | f(x) − f(x − 1) |≤ 1 for
all x ∈ Ln with x ≥ 1.

Definition 2.6 A binary operation F : L2
n → Ln is

said to be smooth when each one of its vertical and
horizontal sections (F (x, .) and F (., y), respectively)
are smooth.

Smooth discrete t-norms and t-conorms were
characterized in [20]. There, it is also proved that
there is one and only one strong negation on Ln
which is given by

N(x) = n− x for all x ∈ Ln. (2)

The four most usual ways to define implication func-
tions on Ln were investigated in [15] and [16]. That
is,

I(x, y) = max{z ∈ Ln | T (x, z) ≤ y} (R-implications)
I(x, y) = S(N(x), y) (S-implications)
I(x, y) = S(N(x), T (x, y)) ∈ Ln (QL-operations)
I(x, y) = S(T (N(x), N(y)), y) ∈ Ln (D-operations)

for all x, y ∈ Ln, where T is a (smooth) t-norm,
S a (smooth) t-conorm and N the strong negation
on Ln given by equation (2). From now on, N will
always denote such a negation.

On the other hand, co-implications on finite
scales, were introduced in [24]. In particular, strong
coimplications derived from smooth t-norms and
residual co-implications derived from smooth t-
conorms were studied in detail. The structure of
such co-implications were given and several proper-
ties were investigated.

2.2. Discrete fuzzy numbers

In this section, we recall some definitions and the
main results about discrete fuzzy numbers which
will be used later. By a fuzzy subset of R, we mean
a function A : R → [0, 1]. For each fuzzy subset A,
let Aα = {x ∈ R : A(x) ≥ α} for any α ∈ (0, 1] be
its α-level set (or α-cut). By supp(A), we mean the
support of A, i.e. the set {x ∈ R : A(x) > 0}. By
A0, we mean the closure of supp(A).

Definition 2.7 [27] A fuzzy subset A of R with
membership mapping A : R → [0, 1] is called dis-
crete fuzzy number if its support is finite, i.e., there
exist x1, ..., xn ∈ R with x1 < x2 < ... < xn such
that supp(A) = {x1, ..., xn}, and there are natural
numbers s, t with 1 ≤ s ≤ t ≤ n such that:

1. A(xi)=1 for any natural number i with s ≤ i ≤
t ( core)

2. A(xi) ≤ A(xj) for each natural number i, j with
1 ≤ i ≤ j ≤ s

3. A(xi) ≥ A(xj) for each natural number i, j with
t ≤ i ≤ j ≤ n

Remark 2.8 If the fuzzy subset A is a discrete
fuzzy number then the support of A coincides with
its closure, i.e. supp(A) = A0.

From now on, we will denote the set of discrete
fuzzy numbers by DFN and the abbreviation dfn
will denote a discrete fuzzy number.

Theorem 2.9 [28] (Representation of discrete
fuzzy numbers) Let A be a discrete fuzzy number.
Then the following statements (1)-(4) hold:
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1. Aα is a nonempty finite subset of R,
for any α ∈ [0, 1]

2. Aα2 ⊆ Aα1 for any α1, α2 ∈ [0, 1] with 0 ≤
α1 ≤ α2 ≤ 1

3. For any α1, α2 ∈ [0, 1] with 0 ≤ α1 ≤ α2 ≤ 1, if
x ∈ Aα1 − Aα2 we have x < y for all y ∈ Aα2 ,
or x>y for all y ∈ Aα2

4. For any α0 ∈ (0, 1], there exists a real number
α

′

0 with 0 < α′0 < α0 such that Aα′
0 = Aα0 (

i.e. Aα = Aα0 for any α ∈ [α′0, α0]).
Conversely, if for any α ∈ [0, 1], there exists Aα ⊂
R satisfying the conditions (1)-(4) stated above,
then there exists a unique A ∈ DFN such that its
α-cuts are exactly the sets Aα for any α ∈ [0, 1].

>From now on, we will denote by ALn
1 the set of

discrete fuzzy numbers whose support is an interval
contained in the finite chain Ln.

Let A,B ∈ ALn
1 be two discrete fuzzy numbers,

and let Aα = [xα1 , xαp ], Bα = [yα1 , yαk ] be its α-level
cuts for A and B respectively.

For each α ∈ [0, 1], we consider the following sets,

min(A,B)α =
{z ∈ Ln | min(xα1 , yα1 ) ≤ z ≤ min(xαp , yαk )} and

max(A,B)α =
{z ∈ Ln | max(xα1 , yα1 ) ≤ z ≤ max(xαp , yαk )}

(3)
Proposition 2.10 [2] There exist two unique dis-
crete fuzzy numbers, that we will denote by
MIN(A,B) and MAX(A,B), such that they have
the sets min(A,B)α and max(A,B)α as α-cuts re-
spectively.
The following result holds for ALn

1 , but is not true
for the set of discrete fuzzy numbers in general(see
[3]).
Theorem 2.11 [3] The triplet
(ALn

1 ,MIN,MAX) is a bounded distributive
lattice where 1n ∈ ALn

1 (the unique discrete fuzzy
number whose support is the singleton {n}) and
10 ∈ ALn

1 (the unique discrete fuzzy number whose
support is the singleton {0}) are the maximum and
the minimum, respectively.

Remark 2.12 [3] Using these operations, we can
define a partial order on ALn

1 in the usual way:
A � B if and only if MIN(A,B) = A, or equiva-
lently, A � B if and only if MAX(A,B) = B for
any A,B ∈ ALn

1 . Equivalently, we can also define
the partial ordering in terms of α-cuts:
A � B if and only if min(Aα, Bα) = Aα

A � B if and only if max(Aα, Bα) = Bα

Any t-norm and t-conorm on Ln was extended to
a t-norm and a t-conorm on ALn

1 in [5].

Theorem 2.13 [5] Let T (S) be a t-norm (t-
conorm) on Ln and let

T (S) : ALn
1 ×ALn

1 → ALn
1

(A,B) 7−→ T (S)(A,B)

be the extension of t-norm (t-conorm) T (S) to ALn
1 ,

defined as follows: T (S)(A,B) is the discrete fuzzy
number whose α-cuts are the sets

{z ∈ Ln | T (S)(minAα,minBα) ≤ z ≤

T (S)(maxAα,maxBα)}

for each α ∈ [0, 1]. Then, T (S) is a t-norm (t-
conorm) on the bounded set ALn

1 .

Similarly to Theorem 2.13 above, it is possible to
extend the unique strong negation function N de-
fined on Ln to a strong negation function N on the
bounded lattice ALn

1 .

Proposition 2.14 [4] Let us consider the strong
negation N on the finite chain Ln = {0, 1, · · · , n}.
The mapping

N : ALn
1 −→ ALn

1
A 7→ N (A)

is a strong negation on the bounded distributive lat-
tice ALn

1 = (ALn
1 ,MIN,MAX) where N (A) is the

discrete fuzzy number whose α-level sets are

N (A)α = [N(xαp ), N(xα1 )]

for each α ∈ [0, 1] (being Aα = [xα1 , xαp ] the α-cuts
of A) .

3. Coimplication functions on ALn
1

In this section we wish to study if it is possible to
build coimplication functions on the bounded set
ALn

1 by extending a discrete coimplication function
J defined on the finite chain Ln. Let us begin with
some notation. If

O : Ln × Ln −→ Ln
(x, y) 7−→ O(x, y)

is a binary discrete function on Ln (e.g. a t-norm,
t-conorm, implication, coimplication, etc.), we will
denote as well by O, the binary operation

O : 2Ln × 2Ln −→ 2Ln

(X,Y) 7−→ O(X,Y)

where O(X,Y) = {O(x, y) | x ∈ X, y ∈ Y}.

Lemma 3.1 Let us consider A,B ∈ ALn
1 and let

J be a discrete coimplication function on the finite
chain Ln. Then the following equalities

min J(Aα, Bα) = J(maxAα,minBα)
max J(Aα, Bα) = J(minAα,maxBα)

hold for each α ∈ [0, 1], where Aα, Bα are the α-cut
sets for A and B respectively.

209



Proof We only show the second relation because
the proof of the first one is similar. Note that the
inequality

J(minAα,maxBα) ≤ max J(Aα, Bα)

is clear. To show the converse inequality, since J is
decreasing in the first variable and increasing in the
second one, we have

J(x, y) ≤ J(minAα,maxBα)

for all x ∈ Aα and for all y ∈ Bα. Thus

max J(Aα, Bα) ≤ J(minAα,maxBα).

Proposition 3.2 Let us consider A,B ∈ ALn
1 and

let J be any discrete coimplication function on the
finite chain Ln. There exists a unique discrete fuzzy
number whose α-cuts are exactly the sets

{z ∈ Ln | min J(Aα, Bα) ≤ z ≤ max J(Aα, Bα)}
(4)

that will be denoted by J (A,B). Moreover,
J (A,B) ∈ ALn

1 .

Proof We will see that the sets Cα (defined accord-
ing to expression (4)) satisfy the four conditions of
Theorem 2.9:

1. For each α ∈ [0, 1], Cα is a nonempty finite
set, because of Aα and Bα are both nonempty
finite sets (the discrete fuzzy numbers are nor-
mal fuzzy subsets).

2. Cβ ⊆ Cα for any α, β ∈ [0, 1] with 0 ≤ α ≤
β ≤ 1.
Because if A,B ∈ ALn

1 we know that

Aβ ⊆ Aα implies minAα ≤ minAβ (5)
and maxAβ ≤ maxAα (6)

Bβ ⊆ Bα implies minBα ≤ minBβ (7)
and maxBβ ≤ maxBα (8)

Moreover, as J is decreasing in the first vari-
able, using the relation (6) we obtain

J(maxAα, z) ≤ J(maxAβ , z) for all z ∈ Ln

And, in particular by relation (7),

J(maxAα,minBα) ≤ J(maxAβ ,minBβ)

Thus, from Lemma 3.1

min J(Aα, Bα) ≤ min J(Aβ , Bβ) (9)

Similarly, we can see that

max J(Aβ , Bβ) ≤ min J(Aα, Bα). (10)

Combining the previous conditions (9) and
(10), we obtain Cβ = {z ∈ Ln |
min J(Aβ , Bβ) ≤ z ≤ max J(Aβ , Bβ)} ⊆ {z ∈
Ln | min J(Aα, Bα) ≤ z ≤ max J(Aα, Bα)} =
Cα.
Therefore, Cβ ⊆ Cα.

3. If x ∈ Cα − Cβ then x ∈ Ln and x
does not belong to Cβ , hence either x <
J(maxAβ ,minBβ), which is the minimum of
Cβ , or x > J(minAβ ,maxBβ), which is the
maximum of Cβ .

4. As A,B ∈ ALn
1 , according to Theorem 2.9, for

each α ∈ (0, 1] there exist real numbers α′1 and
α′2 with 0 < α′1 < α and 0 < α′2 < α such that
for each r ∈ [α′1, α], Aα = Ar. Moreover Bα =
Br, for each r ∈ [α′2, α]. Thus, if α′ = α′1 ∨ α′2,
we can obtain:

minAr = minAα and maxAr = maxAα

minBr = minBα and maxBr = maxBα

for each r ∈ [α′, α]. Therefore

J(maxAr,minBr) = J(maxAα,minBα)
J(minAr,maxBr) = J(minAα,maxBα).

Hence, by Lemma 3.1

min J(Ar, Br) = min J(Aα, Bα)
max J(Ar, Br) = max J(Aα, Bα)

and so,
Cr = {z ∈ Ln | min J(Ar, Br) ≤ z ≤
max J(Ar, Br)} = {z ∈ Ln | min J(Aα, Bα) ≤
z ≤ max J(Aα, Bα)} = Cα for each r ∈ [α′, α].

As the sets Cα fulfill for each α ∈ [0, 1] the condi-
tions stated in Theorem 2.9, there exists a unique
discrete fuzzy number, that will be denoted by
J (A,B), such that its α-cuts are exactly these sets.
In addition, from the construction of the sets Cα

for each α ∈ [0, 1], it is clear that the sets Cα are
intervals contained in the finite chain Ln. Thus,
J (A,B) ∈ ALn

1 .
The previous proposition will allow us to define a
binary operation J on ALn

1 from a coimplication
function J defined on the finite chain Ln.

Definition 3.3 Let us consider a coimplication
function J on the finite chain Ln. The binary op-
eration on ALn

1 defined as follows

J : ALn
1 ×ALn

1 −→ ALn
1

(A,B) 7−→ J (A,B)

will be called the extension of the discrete coimplica-
tion function J to ALn

1 , being J (A,B) the discrete
fuzzy number whose α-cuts are the sets

{z ∈ Ln | min J(Aα, Bα) ≤ z ≤ max J(Aα, Bα)}

for each α ∈ [0, 1].

Now we wish to study if the extension of the discrete
coimplication function J to ALn

1 defined above sat-
isfies the condition to be a coimplication function on
the bounded set ALn

1 according to Definition 2.1.
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Theorem 3.4 Let J be a coimplication function on
Ln. Then the extension of the discrete coimplication
function J to ALn

1 is a coimplication function on
ALn

1 .

Proof To show this result, we will prove all the
conditions stated in Definition 2.1. Let us consider
A,B ∈ ALn

1 .

- We wish to see that J is decreasing in the
first variable, i.e. if A � B then J (A,C) �
J (B,C) for all C ∈ ALn

1 . According to
Remark 2.12, it is equivalent to prove that
min(J (B,C)α,J (A,C)α) = J (B,C)α for all
α ∈ [0, 1]. As A � B then minAα ≤ minBα
and maxAα ≤ maxBα. Thus as J is a coimpli-
cation function on Ln, it is a decreasing func-
tion in the first variable, then by Lemma 3.1

min J(Aα, Cα) =J(maxAα,minCα)
≥J(maxBα,minCα)
= min J(Bα, Cα) (11)

Analogously,

max J(Aα, Cα) =J(minAα,maxCα)
≥J(minBα,maxCα)
= max J(Bα, Cα) (12)

Finally using the relations (11) and (12) above
J (A,C)α = {z ∈ Ln | min J(Aα, Cα) ≤ z ≤
max J(Aα, Cα)} ⊇ {z ∈ Ln | min J(Bα, Cα) ≤
z ≤ max J(Bα, Cα)} = J (B,C)α

for each α ∈ [0, 1].

- The increasingness with the second variable fol-
lows similarly.

- With respect to the boundary conditions we have
J (10, 10)α = {z ∈ Ln | min J(10

α, 10
α) ≤ z ≤

max J(10
α, 10

α)} = {z ∈ Ln | 0 ≤ z ≤ 0} =
{0} = 10

α for all α ∈ [0, 1].
Then J (10, 10) = 10.
The other two conditions J (1n, 1n) = 10 and
J (10, 1n) = 1n follows similarly.

Remark 3.5 Note that, since J is a coimplication
on ALn

1 , it must also satisfy the absorption property,
that is,

J (1n, A) = J (A, 10) = 10

for all A ∈ ALn
1 .

Example 3.6 Let us consider the chain L6 and

A ={0.3/0, 0.5/1, 1/2, 0.8/3, 0.5/4}
B ={0.6/2, 0.8/3, 0.9/4, 1/5, 0.8/6}

belonging to AL6
1 . If we consider the Łukasiewicz

coimplication function

JL(x, y) =

 y − x if y ≥ x

0 if x > y

and the Kleene-Dienes coimplication in L6

J(x, y) = min(6− x, y),

we obtain that

JL(A,B) ={0.8/0, 0.8/1, 0.9/2, 1/3, 0.8/4, 0.5/5}
J (A,B) ={0.6/2, 0.8/3, 1/4, 0.5/5}

In the next two propositions we deal with some
other properties that are many times required for
coimplications, depending on the context.

Proposition 3.7 If a coimplication function J is
a border coimplication on Ln then the coimplication
J generated by J according to Definition 3.3 is a
border coimplication on the bounded set ALn

1 too.

Proof To show this condition it is enough to see
that J (10, B)α =

{z ∈ Ln | min J(10
α, Bα) ≤ z ≤ max J(10

α, Bα)}
= {z ∈ Ln | J(0,minBα) ≤ z ≤ J(0,maxBα)}

= {z ∈ Ln | minBα ≤ z ≤ maxBα}
= Bα for each α ∈ [0, 1].

Proposition 3.8 Let J be a coimplication function
on Ln and J its extension on ALn

1 .

i) J satisfies (EP ) if and only if J satisfies (EP ).

ii) J satisfies (CL) with respect to N if and only
if J satisfies (CL) with respect to N .

Proof Now, we will study each case.

i) Suppose that J satisfies (EP ) and consider
A,B,C ∈ ALn

1 . It is enough to show that

J (A,J (B,C))α = J (B,J (A,C))α,

or equivalently, is equivalent to show these two
conditions

min J(Aα,J (B,C)α) = min J(Bα,J (A,C)α)
(13)

max J(Aα,J (B,C)α) = max J(Bα,J (A,C)α)
(14)

However, applying Lemma 3.1 the min-
imums in the condition (13) above are
given by J(maxAα, J(maxBα,minCα)) and
J(maxBα, J(maxAα,minCα)), respectively,
which coincide because J satisfies (EP ). Anal-
ogously, it is possible to see the equality (14).
Conversely, suppose that J satisfies (EP ) and
consider a, b, c ∈ Ln. Let 1a, 1b and 1c the dis-
crete fuzzy numbers whose support is given by
the singletons {a}, {b}, {c}, respectively. Then
clearly

J (1a,J (1b, 1c)) = J (1b,J (1a, 1c))

and this implies directly that J satisfies (EP ).
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ii) Similarly as above, for all α ∈ [0, 1] and A,B ∈
ALn

1 we have

min J(N (B)α,N (A)α) = min J(Aα, Bα)
max J(N (B)α,N (A)α) = max J(Aα, Bα)

and then

J (N (B),N (A))α = J (A,B)α

for all α ∈ [0, 1].
The converse is again similar to the previous
step.

Corollary 3.9 J is a model coimplication on Ln if
and only if J is a model coimplication on ALn

1 .

Fuzzy negations can be build from fuzzy impli-
cations, as well as from fuzzy coimplications [8, 1].
This is a result general in any partially ordered set.
Consequently, in ALn

1 we have:

Proposition 3.10 Let J a coimplication on ALn
1

obtained from the coimplication J on Ln. Then the
function

NJ : ALn
1 −→ ALn

1
A 7→ NJ (A) = J (A, 1n),

is a fuzzy negation on ALn
1 .

It is well known that the comparison of coimpli-
cation functions defined on a finite chain Ln is done
in the usual way, i.e., pointwise. In the same way, if
we consider two coimplications functions J1,J2 on
ALn

1 generated by two coimplications J1, J2 on Ln
with J1 ≤ J2 it is possible to obtain a similar order
between J1 and J2 as follows.

Proposition 3.11 Let J1 and J2 be two coim-
plications functions on the finite chain Ln =
{0, 1, · · · , n} verifying J1(x, y) ≤ J2(x, y) for all
(x, y) ∈ Ln × Ln. Let us consider their extensions
on ALn

1 , J1 and J2 for J1 and J2 respectively. Then
J1(A,B) � J2(A,B) for all A,B ∈ ALn

1 .

Proof It is enough to prove that (see Remark 2.12)
min(J1(A,B)α,J2(A,B)α) = J1(A,B)α for each
α ∈ [0, 1]. To do it, note that

minJ1(A,B)α = min J1(Aα, Bα)
= J1(maxAα,minBα)
≤ J2(maxAα,minBα)
= min J2(Aα, Bα),

and similarly for the maximums. This already im-
plies

min(J1(A,B)α,J2(A,B)α) = J1(A,B)α.

It is well known that implications and coimplica-
tions are dual operators one of each other (see for
instance [8]). In our framework this duality can be
written as follows.

Proposition 3.12 Let I be a binary operator on
ALn

1 . Then I is an implication if and only if its
N -dual, IN , given by

IN (A,B) = N (I(N (A),N (A)))

for all A,B ∈ ALn
1 , is a coimplication on ALn

1 . Sim-
ilarly, a binary operator J on ALn

1 is a coimplica-
tion if and only if its N -dual, JN is an implication.

Note that a method for extending discrete impli-
cations on Ln to implications on ALn

1 was given in
[23]. In this way we have the following easy result.

Proposition 3.13 Let I : L2
n → Ln be a discrete

implication on Ln and let I be its extension to ALn
1 .

Let I∗ be the N -dual coimplication of I and I∗ its
extension to ALn

1 . Then it holds I∗ = IN , where
N is the extension of N to ALn

1 .

The next proposition shows that it is possible to
construct a coimplication function on ALn

1 from a
t-norm T (the extension of a t-norm T defined on
the finite chain Ln) and the strong negation N (the
extension of the strong negation N on Ln). Specif-
ically,

Proposition 3.14 Let T be a t-norm on Ln and
let T and N be the extensions of T and N to ALn

1 ,
respectively. Let JT ,N be the mapping given by

JT ,N : ALn
1 ×ALn

1 −→ ALn
1

(A,B) 7→ JT ,N = T (N (A), B),

where T (N (A), B) is the discrete fuzzy number
whose α-cuts are the interval of the finite chain Ln
due by

[T (N(maxAα),minBα), T (N(minAα),maxBα)]

for each α ∈ [0, 1]. Then JT ,N is a coimplication
function on ALn

1 , that will be called T -coimplication
generated from T and N .

Now, we want to see that any of these T-
coimplications are, in fact, the extension of a T-
coimplication on Ln using the general method pre-
sented in this paper (see Definition 3.3) to build a
coimplication function on ALn

1 .

Proposition 3.15 Let T be a t-conorm on Ln and
J the discrete T -coimplication on Ln defined from
T and N . Let T , N and J be the extensions of T ,
N and J to ALn

1 , respectively. Then J = JT ,N .

Proof Let us consider A,B ∈ ALn
1 and Aα, Bα

their α-cuts for each α ∈ [0, 1] respectively.
Thus, we have J (A,B)α = {z ∈ Ln |
J(maxAα,minBα) ≤ z ≤ J(minAα,maxBα)}. As
J(a, b) = T (N(a), b) for all a, b ∈ Ln we obtain
J (A,B)α = {z ∈ Ln | T (N(maxAα),minBα) ≤
z ≤ T (N(minAα),maxBα)} = T (N (A), B)α =
JT ,N (A,B)α for each α ∈ [0, 1].
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4. Conclusions

In this work we have proposed a method to
construct coimplication functions defined on the
bounded distributive lattice ALn

1 from coimplica-
tion functions defined on a finite chain Ln. Also, we
investigate some properties of these operators such
as boundary properties, the exchange principle or
the contraposition law. Moreover, we also prove
that duality between implications and coimplica-
tions is preserved and so, the N -dual of the exten-
sion of a discrete implication on Ln coincides with
the extension of the corresponding N -dual coimpli-
cation. Finally, we deal with the special case of
T -coimplication generates from a t-norm T (which
is an extension of t-norm T on Ln) and the strong
negation N (extension of the unique strong nega-
tion function N on Ln).
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