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Abstract

In this paper we study a connection between quasi-
copulas and generator triples of fuzzy preference
structures. We study also conditions under which
fuzzy implications can be used to construct gener-
ator triples. As we show, an important property
of fuzzy implications that enables us to construct
a generator triple from a fuzzy implication, is the
contrapositive symmetry.
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1. Introduction, basic notions and known
facts

The aim of this paper is to show how fuzzy prefer-
ence structures can be constructed via commutative
quasi-copulas. We show also some consequences of
these constructions to fuzzy implications. To make
the paper self-contained we repeat basic definitions
and known results on fuzzy preference structures
and fuzzy connectives that will be important for
our considerations.

1.1. Fuzzy logic and basic connectives

Definition 1 (See e.g. [4]) A decreasing function
N : [0, 1] → [0, 1] with N(0) = 1 and N(1) = 0 is
called a fuzzy negation.
If N is an involutive fuzzy negation, i.e. N(N(x)) =
x for all x ∈ [0, 1], we say that N is a strong fuzzy
negation.

Commonly used negation in applications is the stan-
dard negation Ns(x) = 1− x.

Generalisations of binary conjunctions in fuzzy
logic are conjunctors.

Definition 2 (see, e.g., [3]) A function Con :
[0, 1]2 → [0, 1] is called a conjunctor, if it is in-
creasing in both places and such that Con(x, 0) =
Con(0, x) = 0 for all x ∈ [0, 1], and Con(1, 1) = 1.

There are special classes of conjunctors. The fol-
lowing one will be important for us.

• A semi-copula (see [2]) is a conjunctor with 1
as neutral element.
• A quasi-copula (see, e.g., [9]) is a semi-copula
that is 1-Lipschitz in both variables.
• A t-norm (see, e.g. [8]) is a commutative and
associative conjunctor with 1 as neutral ele-
ment.

T-norms serve as basic associative and commutative
conjunctors.

There are three basic continuous t-norms: min-
imum (TM ), product (TP ) and the Łukasiewicz t-
norm

TL(x, y) = max{0, x+ y − 1}.

Remark 1 The three basic t-norms are also copu-
las. The notation used in the theory of copulas is
M for minimum, Π for the product and W for the
Łukasiewicz t-norm. M andW are lower and upper
Fréchet-Hoeffding bounds, respectively. In the rest
of the paper we use the notation standard in the
theory of t-norms.

Let N be a strong fuzzy negation. To each
conjunctor Con there exists an N -dual connective
called disjunctor (see, e.g., [3]), i.e.,

Dis(x, y) = N(Con(N(x), N(y)).
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An N -dual disjunctor to a t-norm T is called a
t-conorm usually is denoted by S. Particularly, the
Ns-dual t-conorm to TL is denoted by SL and is
called the Łukasiewicz t-conorm. The Ns-dual t-
conorm to TM is denoted by SM .
Let T be a continuous t-norm, N be a strong

fuzzy negation and S be the N -dual t-conorm to T .
Then we say that (T, S,N) is a De Morgan triple.

In literature we can find several definitions of
fuzzy implications. We adopt the one equiva-
lent with the definition introduced by Fodor and
Roubens [4].

Definition 3 ([4]) A function I : [0, 1]2 → [0, 1] is
called a fuzzy implication if it satisfies the following
conditions:

(I1) I is decreasing in its first variable,
(I2) I is increasing in its second variable,
(I3) I(1, 0) = 0, I(0, 0) = I(1, 1) = 1.

There are several construction methods for fuzzy
implications (see, e.g., [1]). Among them a well-
known method is given by the following

I(x, y) = Dis(N(x), y),

where Dis is an arbitrary disjunctor and N a fuzzy
negation. Such implications are called (Dis, N)-
implications. The most important for us will be the
family of (S,N) implications, where S is a t-conorm
and N is a strong fuzzy negation. For N = Ns the
fuzzy implication I(x, y) = S(1 − x, y) will be de-
noted by IS .
To each fuzzy implication I we can assign a fuzzy

negation that is called natural negation and denoted
by NI :

NI(x) = I(x, 0).
Next we list some important properties of fuzzy im-
plications. For more information one can consult [6]
or [10].

Definition 4 Let x, y, z ∈ [0, 1] be arbitrarily cho-
sen. A fuzzy implication I : [0, 1]2 → [0, 1] satisfies:

(NP) the left neutrality property if I(1, y) = y.

(EP) the exchange principle if
I(x, I(y, z)) = I(y, I(x, z)).

(IP) the identity principle if I(x, x) = 1.

(OP) the ordering property if
x ≤ y ⇔ I(x, y) = 1.

(CP) the contrapositive symmetry with respect to a
given fuzzy negation N if
I(x, y) = I(N(y), N(x)).

1.2. Fuzzy relations and fuzzy preference
structures

Before turning our attention to (fuzzy) preference
relations, we recall basic properties of fuzzy rela-
tions.

Definition 5 ([13]) Let X 6= ∅ be a given set. We
say that a fuzzy relation R : X2 → [0, 1] is

• reflexive, if R(x, x) = 1 for all x ∈ X,
• irreflexive, if R(x, x) = 0 for all x ∈ X,
• symmetric, if R(x, y) = R(y, x) for all x, y ∈
X.

The basic notion in (crisp) preference modelling
is preference structure. A preference structure is
given by a triple of relations (P, I, J). Since we will
proceed to the fuzzy case, in order to avoid con-
fusions instead of relations P, I, J, we will consider
their characteristic functions using the same nota-
tion. This means, given a set of alternatives A, a
decision-maker makes one of three possible decisions
for each pair (a, b) ∈ A2. P (a, b) = 1 means that a
is preferred to b, I(a, b) = 1 means that a and b are
indifferent, and J(a, b) = 1 means that a and b are
incomparable.

We have the following characterisation of crisp
preference relations [12]:

(PS1) I is reflexive and symmetric,

(PS2) P (a, b) + P t(a, b) + I(a, b) + J(a, b) = 1 for
all (a, b) ∈ A2.

Preference structure can be characterised by a large
preference relation R. Its characteristic function is
defined as R(a, b) = P (a, b) + I(a, b). Thus R is a
reflexive relation and the whole triple (P, I, J) can
be characterised by means of R:

P (a, b) = R(a, b)(1−R(b, a)),
I(a, b) = R(a, b)R(b, a),
J(a, b) = (1−R(a, b))(1−R(b, a)).

When fuzzifying a preference structure, we use
a De Morgan triple (T, S,N). As it was pointed
out (e.g., [4, 12]), the only reasonable construction
of a fuzzy preference structure is based on a De
Morgan triple (T, S,N) where T is a nilpotent t-
norm. Since each nilpotent t-norm is isomorphic to
the Łukasiewicz one (see e.g. [8]), we will consider
only the Łukasiewicz De Morgan triple (TL, SL, Ns).
Then it is possible to construct a fuzzy preference
structure (FPS, for brevity) (P, I, J) satisfying the
following properties

(FPS1) I is reflexive and symmetric,

(FPS2) P (a, b)+P t(a, b)+I(a, b)+J(a, b) = 1 for
all (a, b) ∈ A2.

We have already mentioned that, in the crisp
case, it is possible to construct a preference struc-
ture from the large preference relation. However, in
the fuzzy case this way is problematic.

Proposition 1 ([4]) Let (P, I, J) be a FPS, A be
a set of alternatives. Then there is no De Morgan
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triple (T, S,N) such that for all a, b ∈ A we have
that

R(a, b) = S(P (a, b), I(a, b)),
P (a, b) = T (R(a, b), N(R(b, a))),
I(a, b) = T (R(a, b), R(b, a)),
J(a, b) = T (N(R(a, b)), N(R((b, a)))).

Because of this negative result, Fodor and
Roubens [4] proposed an axiomatic construction of
FPS from a large fuzzy preference relation R. For
the Łukasiewicz De Morgan triple (TL, SL, Ns) we
get the following axioms.

1. Independence of Irrelevant Alternatives:
Let R : A2 → [0, 1] be a large fuzzy pref-
erence relation. Then there exist functions
p, i, j : [0, 1]2 → [0, 1] such that for all a, b ∈ A
we have

P (a, b) = p(R(a, b), R(b, a)),
I(a, b) = i(R(a, b), R(b, a)),
J(a, b) = j(R(a, b), R(b, a)).

2. Positive Association Principle:
Function p is increasing in the first and de-
creasing in the second variable, i is increasing
in both variables, j is decreasing in both vari-
ables.

3. Symmetry:
Functions i and j are symmetric.

4. (P, I, J) is a FPS for any reflexive relation R :
A2 → [0, 1] such that

SL(P, I) = R, SL(P, J) = 1−Rt.

Each triple (p, i, j) fulfilling the above four axioms
is called a generator triple.

Lemma 1 ([4]) Let (p, i, j) be a generator triple.
Then for all x, y ∈ [0, 1] we have that

TL(x, y) ≤ p(x, 1− y) ≤ min{x, y},
TL(x, y) ≤ i(x, y) ≤ min{x, y},
TL(x, y) ≤ j(1− x, 1− y) ≤ min{x, y}.

Moreover, condition (FPS2) and Independence of
Irrelevant Alternatives imply

p(x, y) + p(y, x) + i(x, y) + j(x, y) = 1, (1)
p(x, y) + i(x, y) = x. (2)

Generator triples are closely related to fuzzy im-
plications. We reformulate Proposition 3.5 from [4]
for the Łukasiewicz De Morgan triple

Proposition 2 ([4]) Let (p, i, j) be a monotone
generator triple that solves the following system of
equations

SL(p(x, y), i(x, y)) =x,
SL(p(x, y), j(x, y)) = 1− y.

Then I→ : [0, 1]2 → [0, 1] defined by

I→(x, y) = 1− p(x, y),

is a fuzzy implication that fulfils (NP) and the nat-
ural negation NI→ is the standard negation Ns.

2. Construction of FPS using quasi-copulas

We will assume continuity of generator triples
(p, i, j).
For each semi-copula C we can introduce two

types of flipping.

Definition 6 (see, e.g., [9]) Let C : [0, 1]2 →
[0, 1] be a semi-copula. A flip in the first variable of
C will be denoted by Cflip1 and defined by

Cflip1(x, y) = y − C(1− x, y).

A flip in the second variable of C will be denoted by
Cflip2 and defined by

Cflip2(x, y) = x− C(x, 1− y).

Keeping the notation from [9] we introduce the
survival semi-copula to semi-copulas C such that
TL ≤ C ≤ TM .

Definition 7 (see, e.g., [9]) Let C : [0, 1]2 →
[0, 1] be a semi-copula such that TL ≤ C ≤ TM .
The survival semi-copula to C will be denoted by Ĉ
and defined by

Ĉ(x, y) = x+ y − 1 + C(1− x, 1− y).

J. Kalická showed the following:

Lemma 2 ([7]) Let C be an arbitrary semi-copula.
Then Cflip1 is a semi-copula if and only if C is
1-Lipschitz in the second variable, and Cflip2 is a
semi-copula if and only if C is 1-Lipschitz in the
first variable.

Immediately by Lemma 2 we get that if C is ar-
bitrary semi-copula then Ĉ is a semi-copula if and
only if C is a quasi-copula.
It is possible to model generator triples (p, i, j)

using quasi-copulas as follows.

Proposition 3 Let C1 be a quasi-copula whose
flips are commutative. Then we have that the triple
(p1, i1, j1), given by

p1(x, y) =C1(x, 1− y),

i1(x, y) = (C1)flip2(x, y) = x− C1(x, 1− y),
j1(x, y) = (C1)flip1(1− x, 1− y)

= 1− y − C1(x, 1− y),

is a generator triple.
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Proposition 4 Let C2, C3 be commutative quasi-
copulas. Then triples (p2, i2, j2) and (p3, i3, j3),
given by

p2(x, y) = (C2)flip2(x, 1− y) = x− C2(x, y),
i2(x, y) =C2(x, y),
j2(x, y) = Ĉ2(1− x, 1− y) = 1− x− y + C2(x, y),

and

p3(x, y) = (C3)flip1(x, 1− y)
= 1− y − C3(1− x, 1− y),

i3(x, y) = Ĉ3(x, y) = x+ y − 1 + C3(1− x, 1− y),
j3(x, y) =C3(1− x, 1− y),

respectively, are generator triples.

Generator triples constructed in Propositions 3
and 4 are sketched in Figures 1, 2 and 3.

p1

C1

1− y
i1

x

j1

pt1

Figure 1: Generator triple (p1, i1, j1).

i2

y

x

C2

p2

pt2

j2

Figure 2: Generator triple (p2, i2, j2).

For C1 = (C2)flip2, C3 = Ĉ2 we have that

(p1, i1, j1) = (p2, i2, j2) = (p3, i3, j3).

This equality further implies the following

p1(x, y) =C1(x, 1− y) = x− C2(x, y)
= 1− y − Ĉ2(1− x, 1− y)
= 1− y − Ĉ2(1− y, 1− x),

where we have used the fact that C2 and hence also
Ĉ2 are commutative quasi-copulas. If we further

j3

1− y

1− x

C3

pt3

p3

i3

Figure 3: Generator triple (p3, i3, j3).

assume that C2 = Ĉ2, we get

p1(x, y) = 1− y − Ĉ2(1− y, 1− x)
= 1− y − C2(1− y, 1− x)
=C1(1− y, x) = p1(1− y, 1− x).

Proposition 5 Let C be a commutative quasi-
copula. Then flips

Cflip2(x, y) =x− C(x, 1− y),
Cflip1(x, y) = y − C(1− x, y)

are commutative if and only if C = Ĉ.

Propositions 2 and 5 have the following corollary.

Corollary 1 Let C be a commutative quasi-copula.
Then fuzzy implication I→ : [0, 1]2 → [0, 1], defined
by

I→(x, y) = 1− x+ C(x, y) (3)
fulfils the Contrapositive Symmetry with respect to
Ns if and only if C = Ĉ.

Remark 2 The fuzzy implication I→ defined by
formula (3) was studied by Grzegorzewski in [5] in
case that C is a copula. This fuzzy implication is
called the Probabilistic S-Implication. In fact, for-
mula (3) defines an implication if and only if C is a
conjunctor which is 1-Lipschitz in the first variable.

Propositions 2 and 5 have yet another corollary
for generator triples.

Corollary 2 Let C be a commutative quasi-copula
and (p, i, j) be a generator triple fulfilling formulae
(1) and (2). Further assume that i(x, y) = C(x, y).
Then the following statements are equivalent

• i(x, y) = j(1− x, 1− y),
• p(x, y) = p(1− y, 1− x),
• C = Ĉ.

In general, if p(x, y) = C(x, 1 − y) for a quasi-
copula C, then C is not necessarily commutative.
Just flips of C have to be commutative.

Proposition 6 Let C be a quasi-copula. Then flips
Cflip2 and Cflip1 are commutative if and only if the
following holds

C =
(
Ĉ
)t
.
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Summarizing properties of the fuzzy implication
I→ we get the next statement.

Proposition 7 Let C be a continuous conjunctor.
Then the following items are equivalent.

• I→ expressed by the following formula

I→(x, y) = 1− x+ C(x, y)

is a fuzzy implication, yielding (CP) with re-
spect to Ns and moreover I→ has bounds given
by the next inequality

ISM ≤ I→ ≤ ISL . (4)

• C is a quasi-copula such that C = Ĉt.

Remark 3 We have already mentioned in Propo-
sition 2 (see also [4]) that fuzzy implication I→ ful-
fils also (NP) and for the natural negation we have
NI→ = Ns. These two properties are in fact a corol-
lary to inequality (4).

As it was proved in [5], the probabilistic S-
implication (if C is a copula) fulfils (IP) and (OP)
if and only if I→, defined by (3), is the Łukasiewicz
implication, i.e., I→ = ISL . In this case we have
C(x, y) = TM (x, y).

Straightforwardly we get the following assertion

Lemma 3 Let C be a quasi-copula such that C =
Ĉ. Then the fuzzy implication I→, defined by for-
mula (3), fulfils (IP) and (OP) if and only if I→ =
ISL .

Example 1 Let C : [0, 1]2 → [0, 1] be the quasi-
copula defined by

C(x, y) = x2y, if x+ y ≤ 1,

and

C(x, y) =x+ y − 1 + C(1− y, 1− x)
= y(2x+ y − xy − 1),
if x+ y > 1.

Then C =
(
Ĉ
)t
. Further we get

Cflip2(x, y) =

{
x− x2(1− y), if x ≤ y,
y − y2(1− x), if y < x,

Cflip1(x, y) =

{
2xy − x2y, if x ≤ y,
2xy − y2x, if x < y.

Observe further that

Ĉflip2(x, y) =

{
x− x(1− y)2, if x ≤ y,
y − y(1− x)2, if y < x,

which means that C 6= Ĉflip2
t

.

The corresponding generator triple (p,i.j) is then
given in the following way

p(x, y) =C(x, 1− y),
i(x, y) =Cflip2(x, y),
j(x, y) =Cflip1(1− x, 1− y).

Yet let us check the fuzzy implication I→:

I→(x, y) = 1− x+ Cflip2(x, y) = 1− C(x, 1− y)

=


1− x2(1− y),
if x ≤ y,

1− x+ y − (1− y)(x− y + xy),
if x > y,

and

I→(1− y, 1− x) = y + Cflip2(1− y, 1− x)
= 1− C(1− y, x)

=


1− (1− y)2x,

if x ≤ y,
1− x+ y − (1− x)2y,

if x > y.

This gives that I→ does not fulfil (CP) with respect
to Ns.

Example 2 Let C : [0, 1]2 → [0, 1] be the quasi-
copula defined by

C(x, y) = x2y2, if x+ y ≤ 1,

and

C(x, y) =x+ y − 1 + C(1− x, 1− y)
=x+ y − 1 + (1− x)2(1− y)2,
if x+ y > 1.

Then C is commutative and C = Ĉ. Further we get

Cflip2(x, y) =

{
x− x2 + 2x2y − x2y2, if x ≤ y,
y − y2 + 2xy2 − x2y2, if y < x,

Cflip1 = Cflip2.

For the fuzzy implication I→ we have that

I→(x, y) = 1− x+ C(x, y)

=

{
1− x+ x2y2, if x+ y ≤ 1,
y + (1− x)2(1− y)2, if x+ y > 1,

and

I→(1− y, 1− x) = y + C(1− y, 1− x)

=


y + (1− x)2(1− y)2,

if x+ y ≥ 1,
1− x+ x2y2,

if x+ y < 1,
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i.e., I→ fulfils (CP) with respect to Ns. In this case
we can define two generator triples:

p1(x, y) =C(x, 1− y),
i1(x, y) =Cflip2(x, y),
j1(x, y) =Cflip1(1− x, 1− y)

=Cflip2(1− x, 1− y),

and

p2(x, y) =Cflip2(x, 1− y),
i2(x, y) =C(x, y),
j2(x, y) =C(1− x, 1− y).

3. Conclusions

In this paper we have found a necessary and suf-
ficient condition under which continuous generator
triples can be constructed via quasi-copulas. In the
case that C is a quasi-copula whose flips are commu-
tative, we have shown that this condition is equiv-
alent to the condition that the corresponding prob-
abilistic implication I→ is continuous, bounded by
ISM from below and by ISL from above, and more-
over I→ fulfils (CP) with respect to Ns.
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