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Abstract

In this paper we study a connection between quasi-
copulas and generator triples of fuzzy preference
structures. We study also conditions under which
fuzzy implications can be used to construct gener-
ator triples. As we show, an important property
of fuzzy implications that enables us to construct
a generator triple from a fuzzy implication, is the
contrapositive symmetry.
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1. Introduction, basic notions and known
facts

The aim of this paper is to show how fuzzy prefer-
ence structures can be constructed via commutative
quasi-copulas. We show also some consequences of
these constructions to fuzzy implications. To make
the paper self-contained we repeat basic definitions
and known results on fuzzy preference structures
and fuzzy connectives that will be important for
our considerations.

1.1. Fuzzy logic and basic connectives

Definition 1 (See e.g. [4]) A decreasing function
N :[0,1] — [0,1] with N(0) =1 and N(1) =0 s
called a fuzzy negation.

If N is an involutive fuzzy negation, i.e. N(N(z)) =
x for all x € [0,1], we say that N is a strong fuzzy
negation.

Commonly used negation in applications is the stan-
dard negation Ns(z) =1 —x.
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Generalisations of binary conjunctions in fuzzy
logic are conjunctors.

Definition 2 (see, e.g., [3]) A function Con

[0,1]> — [0,1] 4s called a conjunctor, if it is in-
creasing in both places and such that Con(z,0) =
Con(0,z) =0 for all x € [0,1], and Con(1,1) = 1.

There are special classes of conjunctors. The fol-
lowing one will be important for us.

e A semi-copula (see [2]) is a conjunctor with 1
as neutral element.

e A quasi-copula (see, e.g., [9]) is a semi-copula
that is 1-Lipschitz in both variables.

o A t-norm (see, e.g. [8]) is a commutative and
associative conjunctor with 1 as neutral ele-
ment.

T-norms serve as basic associative and commutative
conjunctors.

There are three basic continuous t-norms: min-
imum (T), product (Tp) and the Lukasiewicz t-
norm

Tp(z,y) = max{0,z +y — 1}.

Remark 1 The three basic t-norms are also copu-
las. The notation used in the theory of copulas is
M for minimum, II for the product and W for the
FLukasiewicz t-norm. M and W are lower and upper
Fréchet-Hoeffding bounds, respectively. In the rest
of the paper we use the notation standard in the
theory of t-norms.

Let N be a strong fuzzy negation. To each
conjunctor Con there exists an N-dual connective
called disjunctor (see, e.g., [3]), i.e.,

Dis(z,y) = N(Con(N(x), N(y)).



An N-dual disjunctor to a t-norm 7" is called a
t-conorm usually is denoted by S. Particularly, the
Ng-dual t-conorm to Tp, is denoted by Sy and is
called the Lukasiewicz t-conorm. The Ng-dual t-
conorm to Ty is denoted by Sy;.

Let T be a continuous t-norm, N be a strong
fuzzy negation and S be the N-dual t-conorm to 7.
Then we say that (T, S, N) is a De Morgan triple.

In literature we can find several definitions of
fuzzy implications. We adopt the one equiva-
lent with the definition introduced by Fodor and
Roubens [4].

Definition 3 ([4]) A function I : [0,1]*> — [0,1] is
called a fuzzy implication if it satisfies the following
conditions:

(I1) I is decreasing in its first variable,
(12) I is increasing in its second variable,

(I3) I(1,0) =0, I(0,0) = I(1,1) =1.

There are several construction methods for fuzzy
implications (see, e.g., [1]). Among them a well-
known method is given by the following

I(z,y) = Dis(N(2),y),

where Dis is an arbitrary disjunctor and N a fuzzy
negation. Such implications are called (Dis, N)-
implications. The most important for us will be the
family of (S, N) implications, where S is a t-conorm
and N is a strong fuzzy negation. For N = N, the
fuzzy implication I(z,y) = S(1 — x,y) will be de-
noted by Ig.

To each fuzzy implication I we can assign a fuzzy
negation that is called natural negation and denoted
by N[Z

N[(l‘) = 1(1‘70)
Next we list some important properties of fuzzy im-

plications. For more information one can consult [6]
or [10].

Definition 4 Let z,y,z € [0,1] be arbitrarily cho-
sen. A fuzzy implication I : [0,1]> — [0,1] satisfies:
(NP) the left neutrality property if I(1,y) =y.
(EP) the exchange principle if

I, I(y,2)) = 1(y, I(, 2)).
(IP) the identity principle if I(x,z) = 1.

(OP) the ordering property if
r<y<eI(z,y) =1.

(CP) the contrapositive symmetry with respect to a
given fuzzy negation N if
I(z,y) = I(N(y), N(z)).

1.2. Fuzzy relations and fuzzy preference
structures

Before turning our attention to (fuzzy) preference
relations, we recall basic properties of fuzzy rela-
tions.
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Definition 5 ([13]) Let X # 0 be a given set. We
say that a fuzzy relation R: X2 — [0,1] s

o reflexive, if R(x,x) =1 for all x € X,

o irreflexive, if R(x,z) =0 for all z € X,

o symmetric, if R(x,y) = R(y,x) for all x,y €
X.

The basic notion in (crisp) preference modelling
is preference structure. A preference structure is
given by a triple of relations (P, I, J). Since we will
proceed to the fuzzy case, in order to avoid con-
fusions instead of relations P, I, .J, we will consider
their characteristic functions using the same nota-
tion. This means, given a set of alternatives A, a
decision-maker makes one of three possible decisions
for each pair (a,b) € A%, P(a,b) = 1 means that a
is preferred to b, I(a,b) = 1 means that a and b are
indifferent, and J(a,b) = 1 means that a and b are
incomparable.

We have the following characterisation of crisp
preference relations [12]:

(PS1) I is reflexive and symmetric,

(PS2) P(a,b)+ P'(a,b) + I(a,b) + J(a,b) = 1 for
all (a,b) € A2

Preference structure can be characterised by a large
preference relation R. Its characteristic function is
defined as R(a,b) = P(a,b) + I(a,b). Thus R is a
reflexive relation and the whole triple (P, I,J) can
be characterised by means of R:

P(a,b) R(a,b)(1 — R(b,a)),
I(a,b) = R(a,b)R(b,a),
J(a,b) (1 — R(a,b))(1 — R(b,a)).

When fuzzifying a preference structure, we use
a De Morgan triple (T,S,N). As it was pointed
out (e.g., [4, 12]), the only reasonable construction
of a fuzzy preference structure is based on a De
Morgan triple (7,5, N) where T is a nilpotent t-
norm. Since each nilpotent t-norm is isomorphic to
the Lukasiewicz one (see e.g. [8]), we will consider
only the Lukasiewicz De Morgan triple (1%, S, Ny).
Then it is possible to construct a fuzzy preference
structure (FPS, for brevity) (P, I,J) satisfying the
following properties

(FPS1) I is reflexive and symmetric,

(FPS2) P(a,b)+ P'(a,b)+1(a,b)+J(a,b) =1 for
all (a,b) € A2,

We have already mentioned that, in the crisp
case, it is possible to construct a preference struc-
ture from the large preference relation. However, in
the fuzzy case this way is problematic.

Proposition 1 ([4]) Let (P,1,J) be a FPS, A be
a set of alternatives. Then there is no De Morgan



triple (T, S,N) such that for all a,b € A we have
that

R(a,b) = S(P(a,b),I(a,b)),

P(a,b) = T(R(a,b), N(R(b,a))),
I(a,b) = T(R(a,b),R(b,a)),

J(a,b) T(N(R(a,b)), N(R((b,a))))

Because of this negative result, Fodor and
Roubens [4] proposed an axiomatic construction of
FPS from a large fuzzy preference relation R. For
the Lukasiewicz De Morgan triple (1%, Sr, Ns) we
get the following axioms.

1. Independence of Irrelevant Alternatives:
Let R : A2 — [0,1] be a large fuzzy pref-
erence relation. Then there exist functions
p,i,5:10,1]% — [0, 1] such that for all a,b € A

we have
P(a,b p(R(a,b), R(b,a)),
I(av = i(R(av )’ 70’))’
J(a,b) = j(R(a,b),R(b,a))

2. Positive Association Principle:
Function p is increasing in the first and de-
creasing in the second variable, i is increasing
in both variables, j is decreasing in both vari-
ables.

3. Symmetry:
Functions ¢ and j are symmetric.

4. (P,1,J) is a FPS for any reflexive relation R :
A% — [0,1] such that

S(P,I)=R, S,(P,J)=1— R

Each triple (p,1,7) fulfilling the above four axioms
is called a generator triple.

Lemma 1 ([4]) Let (p,i,j) be a generator triple.
Then for all z,y € [0,1] we have that

TL(I',y) S p(xalfy) S min{:ﬂ,y},
TL(xvy) < 7'(:L.vy) < min{xay}v

Moreover, condition (FPS2) and Independence of
Irrelevant Alternatives imply

(1)
(2)

p(z,y) +ply, z) +i(z,y) + jlz,y) =1,
p(z,y) +i(z,y) = z.
Generator triples are closely related to fuzzy im-

plications. We reformulate Proposition 3.5 from [4]
for the Lukasiewicz De Morgan triple

Proposition 2 ([4]) Let (p,i,j) be a monotone
generator triple that solves the following system of
equations

SL(p(xvy)7Z(xay)) =7,
SL(p(l’,y), (Iay)) =1- Y.
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Then I~ :[0,1]% — [0,1] defined by

I_)(.Z‘7y) =1 —p(l’,y),

is a fuzzy implication that fulfils (NP) and the nat-
ural negation Nj— is the standard negation Ng.

2. Construction of FPS using quasi-copulas

We will assume continuity of generator triples
(p,,7)-

For each semi-copula C' we can introduce two
types of flipping.

Definition 6 (see, e.g., [9]) Let C : [0,1]*> —
[0,1] be a semi-copula. A flip in the first variable of
C will be denoted by Caip1 and defined by

Cﬂipl(l"y) =Y - C(l - -/E,y)

A flip in the second variable of C will be denoted by
CP2 gnd defined by

CTP2(z,y) = 2 — C(x,1 —y).

Keeping the notation from [9] we introduce the
survival semi-copula to semi-copulas C such that
T, <C < Ty

Definition 7 (see, e.g., [9]) Let C : [0,1]? —
[0,1] be a semi-copula such that T, < C < Tyy.
The survival semi-copula to C' will be denoted by C
and defined by

Clr,y)=z4+y—1+C(1 —2z,1—y).
J. Kalicka showed the following:

Lemma 2 ([7]) Let C be an arbitrary semi-copula.
Then Chaip1 s a semi-copula if and only if C is
1-Lipschitz in the second variable, and C1P? s q
semi-copula if and only if C' is 1-Lipschitz in the
first variable.

Immediately by Lemma 2 we get that if C is ar-
bitrary semi-copula then Cisa semi-copula if and
only if C' is a quasi-copula.

It is possible to model generator triples (p,1,j)
using quasi-copulas as follows.

Proposition 3 Let Cy be a quasi-copula whose
flips are commutative. Then we have that the triple

(p17i13j1)7 given by

p1(7,y) =Ci(z,1 —y),

i1 (z,y) = (C1) " (2,y) = 2 — Cy(x,1 - y),

Ji(z,y) = (Cl)ﬂipl(l —x,1-y)
=1-y-Ci(z,1-y),

is a generator triple.



Proposition 4 Let Cy,C3 be commutative quasi-
copulas. Then triples (pa,ia,j2) and (ps,is,Js),
given by

flip2
p2(z,y) = (C2) "7 (2,1 —y) = — Ca(z,y),
iQ(Iay) = CQ(Iay)v

~

Jo(2,y) =Co(1—2,1—y)=1-2 —y+ Ca(x,y),
and
p3(z,y) = (03)ﬂip1(m7 1-y)

=1-y—-0Cs3(1 —z,1—y),
ig(l‘,y) 26’3('xay) :$+y_1+c3(1_xa1_y)a
j3(x7y) :C?)(l -, 1- y)v

respectively, are generator triples.

Generator triples constructed in Propositions 3
and 4 are sketched in Figures 1, 2 and 3.

Ch
i1 i
lL—y
D1 J1
x
Figure 1: Generator triple (p1,i1,j1)-
Co
D2 Jo
Yy
(P Ph
x

Figure 2: Generator triple (p2, iz, j2).
For Oy = (Cy)fP2 C3 = Cy we have that
(P1,i1,51) = (2,2, j2) = (p3, i3, J3)-
This equality further implies the following

pi(z,y) =Ci(z,1 —y) =2z — Ca(z,y)
=1-y—C(1-=,1-y)
:1_y_62(1_y71_$)3

where we have used the fact that Cy and hence also
Cs are commutative quasi-copulas. If we further
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Cs

Ja D3

11—z
Figure 3: Generator triple (ps, i3, j3).

assume that Cy = C’g, we get

pi(z,y)=1—y—Co(1—y,1- 1)
=1-y—-Co(1—-y,1—2x)
:Cl(lfyax):pl(lfyvlfx)'

Proposition 5 Let C' be a commutative quasi-
copula. Then flips

CM%(z,y) = — C(z,1 —y),
Caip1(z,y) =y — C(1 - 2,y)
are commutative if and only if C = C.
Propositions 2 and 5 have the following corollary.

Corollary 1 Let C be a commutative quasi-copula.
Then fuzzy implication I= :[0,1)> — [0,1], defined

by

fulfils the Contrapositive Symmetry with respect to
N; if and only if C = C.

Remark 2 The fuzzy implication I~ defined by
formula (3) was studied by Grzegorzewski in [5] in
case that C is a copula. This fuzzy implication is
called the Probabilistic S-Implication. In fact, for-
mula (3) defines an implication if and only if C' is a
conjunctor which is 1-Lipschitz in the first variable.

Propositions 2 and 5 have yet another corollary
for generator triples.

Corollary 2 Let C be a commutative quasi-copula
and (p,i,7) be a generator triple fulfilling formulae
(1) and (2). Further assume that i(x,y) = C(z,y).
Then the following statements are equivalent

d Z(.I‘,y) :.7(1 _xal _y)7

e p(z,y) =p(l —y,1—2x),

e C=C.

In general, if p(z,y) = C(z,1 — y) for a quasi-
copula C, then C is not necessarily commutative.
Just flips of C have to be commutative.

Proposition 6 Let C be a quasi-copula. Then flips
CUP2 gnd Chip1 are commutative if and only if the

following holds
C= (é)t.



Summarizing properties of the fuzzy implication
I~ we get the next statement.

Proposition 7 Let C be a continuous conjunctor.
Then the following items are equivalent.

o [ expressed by the following formula
I_)(£E7y) =1- £E+C(.’E,y)

is a fuzzy implication, yielding (CP) with re-
spect to Ns and moreover I~ has bounds given
by the next inequality

Is,, <I7 <Ig,.

(4)
o C is a quasi-copula such that C' = Ct.

Remark 3 We have already mentioned in Propo-
sition 2 (see also [4]) that fuzzy implication I~ ful-
fils also (NP) and for the natural negation we have
Ni— = N,. These two properties are in fact a corol-
lary to inequality (4).

As it was proved in [5], the probabilistic S-
implication (if C' is a copula) fulfils (IP) and (OP)
if and only if 17, defined by (3), is the Lukasiewicz
implication, i.e., I~ = Ig,. In this case we have
C(z,y) = Tu(z,y).

Straightforwardly we get the following assertion

Lemma 3 Let C be a quasi-copula such that C' =

C. Then the fuzzy implication 17, defined by for-

mula (3), fulfils (IP) and (OP) if and only if I~ =

Ig, .

Example 1 Let C : [0,1]> — [0,1] be the quasi-

copula defined by
Clx,y) =%y, ifzt+y<l,

and

C(x,y):eryflJrC(lfy,lf:z:)
=y(2z+y—ay—1),
ifex4+y>1.

Y
Then C' = (C) . Further we get

Cﬂlp2($7y) — x_xj(l_y)? 1f33§2/7
y—y(1-z), ify<az,

2xy — x> if v <y,

Oﬂipl(z7y) = Y 2y7 . =Y

2zy — y°x, iter<y.

Observe further that
—_— J— J— 2 ]

Cina(g, ) = & 2 9)2’ ifzr<y,
y—y(l-2)°,  ify<ua,

i
which means that C # Cflir2 |
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The corresponding generator triple (p,i.j) is then
given in the following way

p(l‘,y) = C(I, 1- y)a

i(x,y) =CMP2(z,y),

j(@,y) = Caip1 (1 — 2,1 —y).
Yet let us check the fuzzy implication I—:

Iﬁ(xvy) =1 _x+Cﬂip2(xvy) =1 _C((E71 _y)

17I2(17y)7
B ifz <y,
l—z4+y—(1-y)(z—y+y),
ifx >y,

and

I_><1—y,1—l') :y+cﬂip2(1_y71_$)

=1-C(l—y,x)
1—(1—y)21'7
_ if z <y,
] l-zty-(1-2)y,
ifx >y.

This gives that I~ does not fulfil (CP) with respect
to Ns.

Example 2 Let C : [0,1]> — [0,1] be the quasi-
copula defined by

Cla,y) =2%y? fx+y<l,

and

C($,y):$+y—1+0(1—1’71—y)
=r+y—1+(1-2)?1-y)?
ifex4+y>1.

Then C' is commutative and C = C. Further we get

if x <,

ify <,

Cﬂip2(l’ y) _ x — 12 + 2x2y — 1'2:[/27
’ y—y? + 20y? — 2%y,

Cﬂipl _ Cﬂip2.
For the fuzzy implication I~ we have that

_ 1—x+ zzyz,
y+ (1—2)*(1-y)?,

ife+y<1,
ifet+y>1,

and
I_’(l—y,l—x):y—i—C(l—y,l—x)

y+(1—2)(1-y)?
iter+y>1,

1—x+ 2%y?,
ife+y<l,



i.e., I fulfils (CP) with respect to N;. In this case
we can define two generator triples:

pi(z,y) =C(z,1-y),

i1(z,y) :Cﬁip2(ac,y),

Ji(z,y) =Chip1(1 — 2,1 —y)
=CMP2(] —g,1—y),

and
pa(z,y) = CMP2 (2,1 — ),
i2<x7y) :C($,y),
j2(1'7y) = C(l -, 1- y)

3. Conclusions

In this paper we have found a necessary and suf-
ficient condition under which continuous generator
triples can be constructed via quasi-copulas. In the
case that C'is a quasi-copula whose flips are commu-
tative, we have shown that this condition is equiv-
alent to the condition that the corresponding prob-
abilistic implication I~ is continuous, bounded by
Ig,, from below and by Ig, from above, and more-
over I fulfils (CP) with respect to Nj.
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