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Abstract

A class of implication functions is constructed from
fuzzy negations. The interest of this new class lies
in its simplicity and in the fact that when N is Id-
symmetrical, the corresponding implication agrees
with the residuum of a commutative semicopula.
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1. Introduction

Implication functions are probably one of the
main operations in fuzzy logic, having a similar
role to the one that classical implication plays
in crisp logic. It is usually required of any fuzzy
concept to generalizes the corresponding crisp one,
and consequently fuzzy implications restricted to
{0,1}2 must coincide with the classical implication.
Additionally, some restrictions are imposed to
binary functions in order to be fuzzy implications,
mainly adequate monotonicities, but they are flexi-
ble enough to allow several classes of implications
with different additional properties.

Implication functions are mainly used to perform
any fuzzy “if-then” rule in fuzzy systems and also
in inference processes, through Modus Ponens and
Modus Tollens (see [18]). So, depending on the
context, and on the proper rule and its behaviour,
different implications with different properties
could be adequate ([28]). This is also true in other
fields where fuzzy implications play an important
role, such as fuzzy mathematical morphology
([17]) or fuzzy DI-subsethood measures and image
processing ([7, 8]), among many others.

The logical consequence of this fact is the pro-
posal of different classes of implications. Among
the most used ones, we can highlight two different
strategies to generate most of these classes.

e The first strategy relates to the use of t-norms
and t-conorms obtaining the class of (S, N)-
implications ([2]), the class of residual or R-
implications ([13]), and the classes of QL-
operations and D-operations ([21]), all of them
collected in the book [4] and the survey [23].
From these classes, some generalizations based
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on considering different kinds of aggregation
functions instead of t-norms and t-conorms ap-
pear. This is the case of implication functions
derived from uninorms ([3, 11, 22]), copulas
and quasi-copulas ([12]) and even from aggre-
gations in general ([26]), allowing new classes
of implications with interesting properties.

e Another approach in order to obtain implica-
tion functions is based on the direct use of
additive generating functions. In this way,
Yager’s f- and g-generated fuzzy implications
[29] can be seen as implications generated
from continuous additive generators of contin-
uous Archimedean t-norms or t-conorms, re-
spectively. Analogously, Balasubramaniam’s
h-generated implications [5, 6] can be seen
as implications generated from multiplicative
generators of t-conorms, and h and (h,e)-
implications are generated from additive gener-
ators of representable uninorms. Most of these
classes can be found in [4, 16] and [24].

There are also other systems of generating impli-
cation functions that have been recently collected in
[25]. Some of these systems are based on the use of
fuzzy negations like in [27] or in [25]. Following in
this line we want to present in this communication a
new method of obtaining implication functions from
fuzzy negations. The interest of this new method
lies in its simplicity and in the fact that many of
the obtained implications can be viewed as residual
implications of some kind of aggregation functions.

2. Preliminaries

In this section we give some basic results that will
be used along the paper.

Definition 1 (/13]) A function N : [0,1] — [0,1]
is said to be a fuzzy negation if it is decreasing with
N(0)=1and N(1) =0. A fuzzy negation N is said
to be

e strict when it is strictly decreasing and contin-
UOUS.

e strong when it is an involution,
N(N(z)) ==z for all z €]0,1].

i.e.,

Studies on symmetry of subsets of [0, 1] were ini-
tially done in [19] and [20]. See also [1] for the
following adapted definitions.



Definition 2 ([1]) Let N : [0,1] — [0,1] be any
fuzzy negation and let G be the graph of N, that is

G = {(&.N(2)) | = € [0,1]}.

For any point of discontinuity s of N, let s~ be the
limit from left and s™ be the limit from right, with
the convention s~ = 1 when s = 0 and st = 0
when s = 1. Then, we define the completed graph
of N, denoted by G(N), as the set obtained from
G by adding the vertical segments from s~ to st in
any discontinuity point s.

Definition 3 (/1]) A subset S of [0,1]? is said to
be Id-symmetrical if for all (x,y) € [0,1]? it holds
that

(x,y) e S <<= (y,z)€S.

Definition 4 ([1]) A fuzzy negation N : [0,1] —
[0,1] is called 1d-symmetrical if its completed graph
G(N) is Id-symmetrical.

The following theorem gives a mathematical de-
scription of Id-symmetrical fuzzy negations.

Theorem 5 ([1]) Let N : [0,1] — [0,1] be a fuzzy
negation. The following items are equivalent:

i) N is Id-symmetrical
it) N satisfies the following two conditions:

Condition (A) For all z € [0,1] it is
inf{y € [0,1] [ N(y) = N(z)} < N(N(x))
<sup{y € [0,1] | N(y) = N(2)}
Condition (B) N is constant, say N(z) = s
in the interval |p, q| with p < q, where
p=inf{y € [0,1] | N(y) = s}

and

q=sup{y € [0,1] | N(y) = s},

if and only if, s €]0,1[ is a point of disconti-
nuity of N and it is satisfied that

+

p=s and q=s" .

Definition 6 (/9/, [14]) A binary function F :
[0,1] x [0,1] — [0,1] will be called an aggregation
function when it is non-decreasing in each place,
F(0,0) =0 and F(1,1) = 1. F is said to be a con-
junctor when F(1,0) = F(0,1) =0 for all x € [0,1].

Let N be any fuzzy negation and let us define the
function F in the following way:
Fy(z,y) =max(0, (z Ay) = N(zVy) (1)

for all z,y € [0,1].

Next proposition gives a list of properties of this
function (see [1] for details).
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Proposition 7 Let N be a fuzzy negation and let
Fx be given by equation (1). Then

i) Fn is a commutative and conjunctive aggrega-
tion function.
it) Fn has 0 as annihilator element and 1 as neu-
tral element.
ii) Fn is always a semicopula.

Let

ay = inf{zx € [0,1] | N(z) < z} (2)
In [1] it is proved that there always exists an Id-
symmetrical fuzzy negation IN such that Fn = Fly,
an = ay, and the Id-symmetrical fuzzy negation N
can be taken such that N(an) < an. Moreover, if
Fx is left-continuous, then N(an) = an. In that
paper, the following proposition is also proved:

Proposition 8 Let N be an Id-symmetrical fuzzy
negation with N(an) = an. Then the following
items are equivalent:

i) N is left-continuous (continuous) in [an,1].
it) Fyn is left-continuous (continuous).

Definition 9 ([18], [4]) A binary operator I
[0,1] x [0,1] — [0,1] s said to be an implication
operator, or an implication, if it satisfies:

I1) T is decreasing in the first variable and in-
creasing in the second one, that is, for all
T,T1,T2,Y,Y1,Y2 € [07 1};

if 21 <o, then I(z1,y) > I(z2,y)
and

if y1 <wyo, then I(x,y1) < I(x,y2)

12) 1(0,0) = I(1,1) = 1 and I(1,0) = 0.

Note that, from the definition, it follows that
I(0,z) =1 and I(x,1) =1 for all x € [0, 1] whereas
the symmetrical values I(x,0) and I(1,z) are not
derived from the definition.

Among many other properties usually required
for fuzzy implications we recall here some of the
most important ones.

i) Contraposition with respect to a fuzzy negation
N, (CP(N)):

I(z,y) = I(N(y),N(x)), forall z,ye][0,1].
ii) Exchange Principle, (EP):
I(x,I(y,2)) = 1(y,I(z,2)), for allz,y, z € [0, 1].
iii) (Left) Neutrality Property, (N P):
I(Ly) =y

for all y € [0,1].



iv) Ordering Property, (OP):

I(z,y) =1 <= z<y forall zyel0,1].
v) Strong Negation Principle, (SN):
I(z,0) is a strong negation for all =z € [0, 1].
vi) Identity Principle, (IP):
I(z,2) =1 forall xze][0,1].

The residuum or the R-implication derived from
a t-norm T has been extensively studied, specially
when T is left-continuous (see [4]). Moreover, many
generalizations are introduced obtaining residuum
from uninorms, copulas and in fact, from any binary

operator ([4], [12], [26]).

Definition 10 ([12/,/26]) Let F be a conjunctor.
The R-implication defined from F is the binary op-
eration on [0, 1] given by

Irp(x,y) =sup{z € [0,1] | F(z,2) <y}

for all x,y € 10,1].

(3)

Since F' is in particular a conjunctor, the expres-
sion above always gives an implication in the sense
of Definition 9.

3. R-implications defined from fuzzy
negations

We want to deal in this section with residual
implications obtained from semicopulas Fy defined
as in (1), with N an Id-symmetrical fuzzy negation
such that N(ay) = ay.

First of all, we prove that for Id-symmetrical
fuzzy negations, left-continuity and super-
involutivity are equivalent conditions.

Proposition 11 Let N be an Id-symmetrical fuzzy
negation. Then N is left-continuous if, and only, if
N2(z) >z Vx € [0,1].

Proof: It is already known that if a decreasing
unary operator N is super-involutive, then it is left-
continuous (see [10]). Let us prove the converse.

e If N is strictly decreasing in x, then since N is
Id-symmetrical we have that N?(x) = .

e For any interval where NN is constant, let us
prove that N?(z) > x holds for any x in this

interval. Let us suppose that N is constant,
say N(x) = s in the interval |p, ¢[ with p < g,
where

p=inf{y € [0,1] | N(y) = s}
and

q=sup{y € [0,1] | N(y) = s},
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then by Theorem 5, s €]0, 1] is a point of dis-
continuity of IV and it is satisfied that

+

p=s" and ¢g=s".

Now, since N is left-continuous, N(s) = s~ =
q, that is, N?(x) = N(s) = ¢ > .

e Finally, if x is a point of discontinuity of N, let
p=2xT and ¢ = x~. Since N is left-continuous,
N(z) = q. Thus by Theorem 5, N(y) = « for
all y €]p, ¢[, where

p=inf{y € [0,1] | N(y) = =}

and
qg=sup{y € [0,1] [ N(y) = =}

Then, since N is left-continuous, N(g) = x and
thus N%(z) = N(N(z)) = N(q) = z. "

Let N be an Id-symmetrical, left-continuous
fuzzy negation with N(ay) = ay. Let

a = inf{z €]0,1] | N(z) = 0} (4)
Let § be the diagonal section of the semicopula Fy
defined in Equation (1), that is,

. . 0 ifx <apn
0(z) = Fy(2,2) = { z—N(z) ifzx>ayn
Then 6(z) =0 forallx < apy, d(1) =1, 6(x) < z for
all 0 < < a and the restriction of § to the interval
[an, 1] is an increasing function from [ay, 1] to [0, 1].

The following theorem gives the expression of the
R-implication Iy derived from Fl.

Theorem 12 Let N be an Id-symmetrical, left-
continuous fuzzy negation and d the diagonal section
of Fx. Then the R-implication In derived from Fi
is given by

1 ife <y
N@)+y ifz>an andy <d(x)
N(x—y) otherwise

(5)

IN('rvy) =

Proof: Let us consider first the case when z <
y. In this case, since F) is non-decreasing with
Fy(x,1) = x, we clearly have

In(z,y) =sup{z € [0,1] | Fy(z,2) <y} =1

On the other hand, we divide the case when z > y in
two parts by considering the following two regions:

Rl :{(‘T>y) € [0a1]2‘ y<.’17§G/N

or x> ay with §(z) <y <z},

and

Ry = {(z,y) €[0,1]? | = >ay and y<d(x)}.



o If (z,y) € Ry, we have §(x) < y which implies
that

In(z,y) = sup{z € [0,1] | Fn(z,2) <y} > =.

Thus, to reach the value of Ip(x,y) we must
look for z > x such that Fn(z,2) <y. But for
these values we have

Fy(z,z) <y <= max(0,z — N(z)) <y
< x—N(z) <y
<~ N(z)>z—-y
< 2< N(z—y)

since N is super-involutive (Proposition 11).
Thus Iy(x,y) = N(z —y).

o If (z,y) € Ry we have z > ay and z — N(x) >
y. This implies that Iy(x,y) < z and in this
case, to reach the value of Iy(x,y) we must
look for z < x such that Fy(x,z) <y. But for
these values we have

Fy(z,2) <y <= max(0,z— N(z)) <y
< z—N(z)<y
— z< N(z)+y

Thus Iy(x,y) = N(z) + y. "

Observe that the expression (5) gives implica-
tions in more general cases, even when NN is not
Id-symmetrical.

Proposition 13 Let N be a fuzzy negation. Then
the function In defined from N through the expres-
sion (5) is an implication if, and only if,

N%(z) >z Vz € [an,

(6)

Proof: The border conditions follow immediately
from the expression of I. To prove the decreas-
ingness with respect to the first component and the
increasingness with respect to the second compo-
nent, observe that, in Ry, In(z,y) = N(z — ),
which is decreasing in x and increasing in y, and in
Ry, In(z,y) = N(z) + y, also decreasing in z and
increasing in y. Then we only have to prove that
when 0 < y = d(z) < z,N(x —y) > N(z) +y.
But since 6(x) =  — N(z), we have to prove that
N(z — (x — N(z))) > N(z) + « — N(z), that is,
N(N(x)) > z and this is true if, and only if, N is
super-involutive in [ay, ). "

Remark 14 The expression (5) defines a function
I directly from a fuzzy negation N and we have
seen that it is an implication if, and only if, the
negation is super-involutive in [ay, «]. Observe that
this implication In does not need to be the residua-
tion of any F.

Next proposition gives a list of properties satisfied
by the function I given by (5).
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Proposition 15 Let N be a fuzzy negation and Iy
the function given by (5).

1) The negation induced by Iy is Ni,(x) =
In(z,0) = N(x) and, thus, it satisfies (SN)
if, and only if, N is a strong negation.

2) In satisfies (NP).

3) In(z,y) >y for all x,y € [0,1].

4) Iy satisfies (IP).

5) In satisfies (OP) if, and only if, N(z) <
1V > 0.

6) In is continuous if, and only if, N is continu-
ous, N(x) > 0 Vo < 1, and N?*(x) = z Vx €
[an, 1].

Proof: The first four properties come directly from
the expression of Iy.

To prove 5), observe that from the expression (5),
we have that Iy(z,y) = 1 for all x < y. Now, if
(z,y) € Ry is such that x > y, then Iy(x,y) =
N(x —y) < 1if, and only if, N(z) < 1 Vx > 0.
Finally, the decreasingness of Iy with respect to
the first component gives Iy (z,y) < 1 in Rs.

Let us now prove 6). Suppose first that N satisfies
the conditions stated in 6). Since N is continuous,
we only have to prove the continuity of Iy at points
of the form (z,0(z)) and (z,z). The continuity at
(z,d(x)) is equivalent to the involutivity of N, since
N(x —6(z)) = N(z — (x — N(x))) = N?(x) and
N(z) + 6(z) = N(z) + (x — N(z)) = z. Finally,
observe that the continuity at (x,z) is obvious in
R; and it never holds in Ry; thus Iy is continuous
at (x,z) if, and only if, Ry has not contact with the
diagonal, that is, if, and only if, N(z) > 0 Va < 1.
Finally, the converse follows trivially. [

Proposition 16 Let N be a fuzzy negation and Iy
the function given by (5). If N is not a strong nega-
tion, then In does not satisfy (C'P) with respect to
any fuzzy negation.

Proof: Since Iy satisfies (NP), the result is an
immediate consequence of Corollary 1.5.5 in [4]. =

On the other hand, if NV is strong, the corre-
sponding implication Iy may or may not satisfy
(CP) with respect to N (see examples 18-i) and
18-iv)).

The following result is proved in [26].

Proposition 17 Let F' be nondecreasing with re-
spect to both arguments. If F is left-continuous,
commutative and associative, then Ip satisfies
(EP).

It is known that when N is Id-symmetrical, the
corresponding Fly is in fact a t-norm in many cases
(see Theorem 28 in [1]), and it is left-continuous
when so is V. In all of theses cases Iy clearly sat-
isfies (EP) (see examples 18-i) and 18-i7))



Example 18

i)

iii)

Let us consider the classical negation N(x) =
1 — x, which is Id-symmetrical. Then
the corresponding semicopula Fyn Ty, s
the Lukasiewicz t-norm and then In is the
residuum of Ty, that is, the well known
Lukasiewicz implication

In(z,y) =min{1,1 —z +y}, =,y € [0,1].
Let us consider the weakest fuzzy negation

0 ifxz>0
Nwt(x) =
we(®) {1 if 2 = 0.
Note that Nwy is again Id-symmetrical. In this
case the corresponding semicopula Fy = Ty is
the Minimum t-norm and so Iy is the residuum
of the Minimum, that is, the Gddel implication:

1 ifz<y
y ify<z

Igp(w,y) = {

Let a €]0,1[ and let N be the fuzzy negation
defined by

1 if z<a
N(z)=<X a ifzx=a
0 if z>a.

N is not Id-symmetrical, but it satisfies that
N2(x) > z Vo € [an,q] since in this case,
ay = a =a and N(a) = a. Thus, by applying
Proposition 13 we have that In is an implica-
tion, which is represented in Figure 1 and is
given by

a ifr=aandy=20
In(z,y)=< y ifx>aandz >y
1 otherwise.

a

Figure 1: The implication In of Example 18-ii7).

This implication does not satisfy (OP) since
N(z) =1 for all 0 < x < a (using Proposi-
tion 15), nor (CP) with respect to any fuzzy
negation (using Proposition 16 since N is not
a strong negation), but it satisfies (EP) as it
can be proved by direct computation.
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iv)

Let a €10,1/2[ and let us consider the following
Id-symmetrical fuzzy negation:

a—1

x+1 ifzel0,q]

N(z)

a

@ 1)

Note that in this case the corresponding semi-
copula Fy coincides with the so-called singular
conic copulas introduced by Jwaid et al. (see
Ezample 8 in [15]) and its residuum is the im-
plication In given by

o if x €la, 1]

1 if <y

a_l(:z:fl)er ifz>a and
In(z,y) = y<f:z

a1 (xr—y)+1 otherwise.

The structure of this implication In can be
viewed in Figure 2.

Figure 2: The implication of Example 18-iv) (where

(%1) stands for

a
a—1

a—1

(x —y) + 1 and (x3) stands for
(z—=1)+y)

Note that this implication satisfies (OP) since
N(z) < 1 for all x > 0, and it is continu-
ous since N 1is strong. Moreover, although N
is strong, In does not satisfy (CP) with re-
spect to N (just take, for instance, x = a and
y = a/2) and thus it does not satisfy (CP) with
respect to any fuzzy negation (see Lemma 1.5.4
in [4]). Consequently, In can not satisfy (EP)
by Lemma 1.5.6 in [4].

Let a €]0,1[ and let us consider the following
fuzzy negation:

9 _
1- 2ax if x € [0, a
N(z) = ¢
0 if x €)a, 1]
Then ay = f—fz,a = a and the corresponding
function Iy is given by
1 if x<vy
IN(xay) = 9 if (x,y) € R,
— 2aa (r —y) otherwise,



where Ry is the region delimited by the points
(z,y) €[0,1]* such that
2a

>
. a+2

and y < d(x),

being & the diagonal section given by

2
0 ifo <
() a—+ 2 2@&—1—2
o(x) = .
-1 <
g T zfa+2<x_a
x if x > a.

The fuzzy megation N and the corresponding
implication Iy can be viewed in Figures 3 and
4, respectively.

a/2 +

a
Figure 3: The fuzzy negation of Example 18-v).

(%)

f }
2a a
a+2

Figure 4: The implication of Example 18-v) (where
(*) stands for 1 — 2-%(z — y)).

A straightforward computation proves that

N2(z) >z Vx € {%,a} and so In is an im-
plication. This implication satisfies (OP) since
N(z) < 1Vx >0, but it does not satisfy neither
(CP) with respect to any fuzzy negation (again
by applying Proposition 16) nor (EP).

All the previous examples present a wide range
of implication functions derived from fuzzy nega-
tions with different properties and lead to some
open questions to deal with. For instance,

e Characterize those negations N for which the
corresponding I satisfies (CP) with respect
to N (of course by Proposition 16, such an N
should be strong),

e Characterize those negations N for which the
corresponding Iy satisfies (EP). Note that
in this case the result should include all Id-
symmetrical fuzzy negations for which the cor-
responding associated semicopula Fly is in fact
a left-continuous t-norm (see Theorem 28 in

[1])-
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