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Figure 6: Fuzzy displacement ũ of the tip of the rod.

The standard deviations of c̃1 and c̃2 are assumed to
be 5 % of their modal values. Hence, the parametric
representation of the fuzzy stiffness parameters is

c̃i = gfn(c̄i, 0.05 c̄i, 0.05 c̄i), i = 1, 2.

In order to compute the α-cuts of the fuzzy dis-
placement ũ, we consider again Eq. (3), where we
can see that u is (strictly) monotonic decreasing in
both c1 and c2 for positive values. Hence, the α-cuts
u(α) = [uL(α), uR(α)] of ũ are

uL(α) = u
(
cR

1 (α), cR
2 (α)

)
= 1007

414
(
20 +

√
−2 ln(α)

) ,
uR(α) = u

(
cL
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= 1007

414
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) ,
and its membership function yields

µũ(u) = exp
[
−1
a

(
b− c

u
+ d

u2

)]
, u > 0,

where
a = 342792, b = 68558400,
c = 16675920, d = 1014049.

The plot of µũ(u) in the range 0.1 ≤ u ≤ 0.15 is
illustrated in Figure 6.

6. Conclusions

The proposed analytical approach turns out to be
a very practical tool for the inclusion of parameter
uncertainties into mathematical models. It is valid
for continuous, monotonic functions of independent
fuzzy numbers, but can also be applied to fuzzy in-
tervals as defined, e. g., in [3].
An analytical solution has the advantage that the

degrees of membership of the fuzzy output can be
computed for any value within the support, whereas
a numerical solution only provides a finite number
of values. Furthermore, our approach also allows a
symbolic processing of uncertainties.

In further research activities, this approach shall
be extended to general, non-monotonic functions of
independent fuzzy numbers, where the influence of
interdependency shall be investigated as well.
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