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Abstract

This paper presents a practical analytical approach
to evaluating continuous, monotonic functions of in-
dependent fuzzy numbers. The approach is based on
a parametric α-cut representation of fuzzy numbers
and allows for the inclusion of parameter uncertain-
ties into mathematical models.
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1. Introduction

There is an increasing effort in the scientific commu-
nity to provide suitable methods for the inclusion of
uncertainties into mathematical models. One way to
do so is to introduce parametric uncertainty by rep-
resenting the uncertain model parameters as fuzzy
numbers [1] and evaluating the model equations by
means of Zadeh’s extension principle [2]. The eval-
uation of this classical formulation of the extension
principle, however, turns out to be a highly complex
task [3]. Fortunately, Buckley & Qu [4] provide an
alternative formulation that operates on α-cuts and
is applicable to continuous functions of independent
fuzzy numbers. Powerful numerical techniques have
been developed to implement this alternative formu-
lation [5]. These techniques are particularly suitable
for very complex simulation models [6]. In engineer-
ing design [7], however, the mathematical equations
are usually less complex and hence analytical meth-
ods might be more suitable for the inclusion of para-
meter uncertainties into the computations. For this
purpose, a practical analytical approach to evaluat-
ing continuous, monotonic functions of independent
fuzzy numbers is introduced in this paper, which is
based on the alternative formulation of the exten-
sion principle.
An outline of this paper is as follows: In Section

2, we give a definition of fuzzy numbers and present
two important types. In Section 3, we briefly recall
Zadeh’s extension principle and introduce the al-
ternative formulation based on α-cuts. In Section 4,
we describe our analytical approach and give three
illustrative examples. In Section 5, a practical engi-
neering application is presented. Finally, in Section
6, some conclusions are drawn.

2. Fuzzy numbers

Fuzzy numbers [1] are a special class of fuzzy sets
[8], which can be defined as follows:

A normal, convex fuzzy set x̃ over the real line R
is called fuzzy number if there is exactly one x̄ ∈ R
with µx̃(x̄) = 1 and the membership function is at
least piecewise continuous. The value x̄ is called the
modal or peak value of x̃.
Theoretically, an infinite number of possible types

of fuzzy numbers can be defined. However, only few
of them are important for engineering applications
[6]. These typical fuzzy numbers shall be described
in the following.

2.1. Triangular fuzzy numbers

Due to its very simple, linear membership function,
the triangular fuzzy number (TFN) is the most fre-
quently used fuzzy number in engineering. In order
to define a TFN with the membership function

µx̃(x) =


1 + x− x̄

τL , x̄− τL ≤ x ≤ x̄,

1− x− x̄
τR , x̄ < x ≤ x̄+ τR,

(1)

we use the parametric notation [6]

x̃ = tfn(x̄, τL, τR),

where x̄ denotes the modal value, τL the left-hand,
and τR the right-hand spread of x̃ (cf. Figure 1). If
τL = τR, the TFN is called symmetric. Its α-cuts
x(α) = [xL(α), xR(α)] result from the inverse func-
tions of Eqs. (1) with respect to x:

xL(α) = x̄− τL(1− α), 0 < α ≤ 1,
xR(α) = x̄+ τR(1− α), 0 < α ≤ 1.

2.2. Gaussian fuzzy numbers

Another widely-used fuzzy number in engineering is
the Gaussian fuzzy number (GFN), which is based
on the normal distribution from probability theory.
In order to define such a GFN with the membership
function

µx̃(x) =


exp
[
−1

2

(
x− x̄
σL

)2]
, x ≤ x̄,

exp
[
−1

2

(
x− x̄
σR

)2]
, x > x̄,
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Figure 1: Triangular fuzzy number.

we use the parametric notation [6]

x̃ = gfn(x̄, σL, σR),

where x̄ denotes the modal value, σL the left-hand,
and σR the right-hand standard deviation of x̃ (cf.
Figure 2). If σL = σR, the GFN is called symmetric.
Its α-cuts x(α) = [xL(α), xR(α)] result to:

xL(α) = x̄− σL
√
−2 ln(α), 0 < α ≤ 1,

xR(α) = x̄+ σR
√
−2 ln(α), 0 < α ≤ 1.

3. Extension principle

Zadeh’s extension principle [2] allows to extend any
real-valued function to a function of fuzzy numbers.
More specifically, let x̃1, . . . , x̃n be n independent or
non-interactive fuzzy numbers and let f : Rn → R

be a function with y = f(x1, . . . , xn). The fuzzy ex-
tension ỹ = f(x̃1, . . . , x̃n) is then defined by

µỹ(y) = sup
y=f(x1,...,xn)

min{µx̃1(x1), . . . , µx̃n
(xn)}.

In case of interdependency between x̃1, . . . , x̃n, the
minimum operator should be replaced by a suitable
triangular norm [9]. In this paper, however, we re-
strict ourselves to independent fuzzy numbers.
The evaluation of this classical formulation of the

extension principle turns out to be a highly complex
task [3]. Fortunately, Buckley & Qu [4] provide an
alternative formulation that operates on α-cuts:
Let x1(α), . . . , xn(α) denote the α-cuts of the n

independent fuzzy numbers x̃1, . . . , x̃n and let f be
continuous. Then, the α-cuts y(α) = [yL(α), yR(α)]
of ỹ can be computed from

yL(α) = min{f(x1, . . . , xn) | (x1, . . . , xn) ∈ Ω(α)},
yR(α) = max{f(x1, . . . , xn) | (x1, . . . , xn) ∈ Ω(α)},

where Ω(α) = x1(α)× · · · × xn(α) represent the n-
dimensional interval boxes that are spanned by the
α-cuts x1(α), . . . , xn(α).
The proposed analytical approach, which is pre-

sented in the next section, is based on this alterna-
tive formulation of the extension principle.

x̄
0

1√
e

1

σL σR

x

µx̃(x)

Figure 2: Gaussian fuzzy number.

4. Analytical approach

Let the continuous function f be (strictly) monoton-
ic increasing in xi, i = 1, . . . , k, and (strictly) mono-
tonic decreasing in xj , j = 1, . . . , `, in the domain of
interest, and let k+ ` = n. Then, the minimum val-
ues of f inside of every sub-domain Ω(α) are always
found at the left boundaries of xi(α) and the right
boundaries of xj(α), and its maximum values at the
right boundaries of xi(α) and the left boundaries of
xj(α), respectively. In such case, the α-cuts y(α) =
[yL(α), yR(α)] of ỹ become

yL(α) = f
(
xL
i (α), xR

j (α)
)
, 0 < α ≤ 1,

yR(α) = f
(
xR
i (α), xL

j (α)
)
, 0 < α ≤ 1,

(2)

with xm(α) = [xL
m(α), xR

m(α)], m = 1, . . . , n. If Eqs.
(2) are invertible with respect to α, then the mem-
bership function of ỹ yields

µỹ(y) =
{
yL(α)−1, yL(0) < y ≤ yL(1),
yR(α)−1, yR(1) < y < yR(0).

This reduced part of our approach can be viewed
as an analytical version of the short transformation
method [10]. Basically, it is equivalent to Lemma 3
from [11] or Corollary 2 from [12].

Example 1. The function f1 : R2
+ → R+ with

y1 = f1(x1, x2) = x1

x1 + x2

shall be evaluated for the two fuzzy numbers x̃1 =
tfn(2, 2, 3) and x̃2 = tfn(2, 2, 2). Since

∂f1

∂x1
= x2

(x1 + x2)2 > 0,

∂f1

∂x2
= −x1

(x1 + x2)2 < 0,

the function f1 is (strictly) monotonic increasing in
x1 and (strictly) monotonic decreasing in x2 in the
domain supp(x̃1)×supp(x̃2) = (0, 5)×(0, 4). Hence,
the α-cuts y1(α) = [yL

1 (α), yR
1 (α)] of ỹ1 are

yL
1 (α) = f1

(
xL

1 (α), xR
2 (α)

)
= 1

2α,
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Figure 3: Solution candidates from Example 2.

yR
1 (α) = f1

(
xR

1 (α), xL
2 (α)

)
= 3α− 5

α− 5 .

With yL
1 (0) = 0, yL

1 (1) = 0.5 = yR
1 (1), and

yR
1 (0) = 1, the membership function of ỹ1 yields

µỹ1(y) =


2y, 0 < y ≤ 0.5,
5(y − 1)
y − 3 , 0.5 < y < 1.

However, the above approach is only valid if the
function f does not change its monotonicity within
the domain of interest. We know from [13, 14] that
the global extrema of any monotonic function f are
always found at the corner points of Ω(α). Hence,
in order to compute the analytical solution, we can
always proceed as follows:

1. Evaluate the function f for all the 2n permuta-
tions of the interval boundaries of xm(α); e. g.,
if n = 2, then compute

yLL(α) = f
(
xL

1 (α), xL
2 (α)

)
,

yLR(α) = f
(
xL

1 (α), xR
2 (α)

)
,

yRL(α) = f
(
xR

1 (α), xL
2 (α)

)
,

yRR(α) = f
(
xR

1 (α), xR
2 (α)

)
.

2. Plot these solution candidates in the same dia-
gram.

3. The analytical solution then corresponds to the
maximum envelope formed by the possible so-
lution candidates.

This general part of our approach can be viewed
as an analytical version of the reduced transforma-
tion method [15]. Basically, it is equivalent to Lem-
ma 2 from [11] or Corollary 1 from [12].

Example 2. Next, the function f2 : R2
+ → R with

y2 = f2(x1, x2) =
x1 − 1

5
x1 + x2

shall be evaluated for the two fuzzy numbers from
Example 1. Since

∂f2

∂x1
=

x2 + 1
5

(x1 + x2)2 > 0, 0 < x2 < 4,
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Figure 4: Solution candidates from Example 3.

∂f2

∂x2
=

1
5 − x1

(x1 + x2)2

{
≥ 0, 0 < x1 ≤ 0.2,
< 0, 0.2 < x1 < 5,

the function f2 changes its monotonicity within the
domain supp(x̃1)×supp(x̃2) = (0, 5)×(0, 4). Hence,
the general part of our approach should be applied.
The solution candidates for y2(α) are

yLL
2 (α) = f2

(
xL

1 (α), xL
2 (α)

)
= 10α− 1

20α ,

yLR
2 (α) = f2

(
xL

1 (α), xR
2 (α)

)
= 1

2α−
1
20 ,

yRL
2 (α) = f2

(
xR

1 (α), xL
2 (α)

)
= 3

5
5α− 8
α− 5 ,

yRR
2 (α) = f2

(
xR

1 (α), xR
2 (α)

)
= 3

5
5α− 8
5α− 9 .

We can see from their plots in Figure 3 that the
left branch of the maximum envelope, illustrated by
the gray area, is formed by yLL

2 for 0 < α ≤ 0.1 and
by yLR

2 for 0.1 < α ≤ 1, where the value 0.1 corre-
sponds to their intersection point. Its right branch,
on the other hand, is entirely formed by yRL

2 . Hence,
the α-cuts y2(α) = [yL

2 (α), yR
2 (α)] of ỹ2 are

yL
2 (α) =


10α− 1

20α , 0 < α ≤ 0.1,
1
2α−

1
20 , 0.1 < α ≤ 1,

yR
2 (α) = 3

5
5α− 8
α− 5 , 0 < α ≤ 1.

With limα→0 y
L
2 (α) = −∞, yL

2 (0.1) = 0, yL
2 (1) =

0.45 = yR
2 (1), and yR

2 (0) = 0.96, the membership
function of ỹ2 yields

µỹ2(y) =



1
10

1
1− 2y , −∞ < y ≤ 0,

2y + 1
10 , 0 < y ≤ 0.45,

1
5

25y − 24
y − 3 , 0.45 < y < 0.96.

Example 3. Finally, the function f3 : R2
+ → R

with
y3 = f3(x1, x2) =

(x1 − 1
5 )(x2 − 1)

x1 + x2

291



shall be evaluated for the two fuzzy numbers from
Example 1. Since

∂f3

∂x1
=

(x2 − 1)(x2 + 1
5 )

(x1 + x2)2

{
≤ 0, 0 < x2 ≤ 1,
> 0, 1 < x2 < 4,

∂f3

∂x2
=

(x1 − 1
5 )(x1 + 1)

(x1 + x2)2

{
≤ 0, 0 < x1 ≤ 0.2,
> 0, 0.2 < x1 < 5,

the function f3 changes its monotonicity within the
domain supp(x̃1)×supp(x̃2) = (0, 5)×(0, 4). Hence,
the general part of our approach should be applied.
The solution candidates for y3(α) are

yLL
3 (α) = f3

(
xL

1 (α), xL
2 (α)

)
= (10α− 1)(2α− 1)

20α ,

yLR
3 (α) = f3

(
xL

1 (α), xR
2 (α)

)
= (10α− 1)(3− 2α)

20 ,

yRL
3 (α) = f3

(
xR

1 (α), xL
2 (α)

)
= 3

5
(5α− 8)(2α− 1)

α− 5 ,

yRR
3 (α) = f3

(
xR

1 (α), xR
2 (α)

)
= 3

5
(5α− 8)(3− 2α)

5α− 9 .

We can see from their plots in Figure 4 that the
left branch of the maximum envelope is formed by
yRL

3 for 0 < α ≤ 0.5 and by yLL
3 for 0.5 < α ≤ 1,

where the value 0.5 corresponds to the intersection
point between yRL

3 and yLL
3 . Its right branch, on the

other hand, is formed by yLL
3 for 0 < α ≤ 0.02 and

by yRR
3 for 0.02 < α ≤ 1, where the value 0.02 cor-

responds to the intersection point between yLL
3 and

yRR
3 . Note that the value 0.02 is only approximate.
Hence, the α-cuts y3(α) = [yL

3 (α), yR
3 (α)] of ỹ3 are

yL
3 (α) =


3
5

(5α− 8)(2α− 1)
α− 5 , 0 < α ≤ 0.5,

(10α− 1)(2α− 1)
20α , 0.5 < α ≤ 1,

yR
3 (α) =


(10α− 1)(2α− 1)

20α , 0 < α ≤ 0.02,

3
5

(5α− 8)(3− 2α)
5α− 9 , 0.02 < α ≤ 1.

With yL
3 (0) = −0.96, yL

3 (0.5) = 0, yL
3 (1) = 0.45 =

yR
3 (1), yR

3 (0.02) ≈ 1.57, and limα→0 y
R
3 (α) =∞, the

membership function of ỹ3 yields

µỹ3(y) =



21
20 + 1

12y −
1
60
√
A, −0.96 < y ≤ 0,

3
10 + 1

2y + 1
10
√
B, 0 < y ≤ 0.45,

31
20 −

5
12y −

1
60
√
C, 0.45 < y ≤ 1.57,

3
10 + 1

2y −
1
10
√
D, 1.57 < y <∞,

where
A = 25y2 − 2370y + 1089,
B = 25y2 + 30y + 4,
C = 625y2 + 750y + 9,
D = 25y2 + 30y + 4.

E1, A1 E2, A2

` `

F

u

Figure 5: Two-component massless rod.

5. Engineering application

In order to illustrate the analytical approach in a
more practical context, we consider a rather simple
but typical example from engineering mechanics [6]
consisting of a two-component massless rod under
tensile load as shown in Figure 5. The components
of the rod are characterized by the length `, the
elastic moduli E1 and E2, and the cross sectional
areas A1 and A2. The left component of the rod is
clamped to a wall, whereas the right component is
subjected to a tensile force F . In order to compute
the (static) displacement u of the tip of the rod, we
can proceed as follows:

Every component of the rod can be viewed as a
spring with the stiffness

ci = Ei ·Ai
`

, i = 1, 2.

Since both components are placed in a row, the total
stiffness ctot of the rod is

1
ctot

= 1
c1

+ 1
c2
.

According to Hook’s law, the displacement u of the
tip of the rod yields

u = F

ctot
=
(

1
c1

+ 1
c2

)
F. (3)

At first, the displacement u shall be computed for
crisp parameters c1 and c2, where the first compo-
nent is assumed to be made of steel and the second
component of aluminum with the following material
and geometry values:

E1 = 2.0 · 105 N/mm2
, A1 = 100mm2,

E2 = 6.9 · 104 N/mm2
, A2 = 75mm2,

and ` = 500mm. The external force shall have the
absolute value F = 1000N. With these values, the
(crisp) solution for the displacement u yields

ū ≈ 0.1216mm.

In reality, however, exact stiffness values for both
rod components can usually not be provided due to
variations in the manufacturing process. In order
to include these uncertainties into the computation,
the stiffness parameters c1 and c2 shall be modeled
as symmetric GFNs with the modal values

c̄1 = 4.0 · 104 N/mm,
c̄2 = 1.035 · 104 N/mm.
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Figure 6: Fuzzy displacement ũ of the tip of the rod.

The standard deviations of c̃1 and c̃2 are assumed to
be 5 % of their modal values. Hence, the parametric
representation of the fuzzy stiffness parameters is

c̃i = gfn(c̄i, 0.05 c̄i, 0.05 c̄i), i = 1, 2.

In order to compute the α-cuts of the fuzzy dis-
placement ũ, we consider again Eq. (3), where we
can see that u is (strictly) monotonic decreasing in
both c1 and c2 for positive values. Hence, the α-cuts
u(α) = [uL(α), uR(α)] of ũ are

uL(α) = u
(
cR

1 (α), cR
2 (α)

)
= 1007

414
(
20 +

√
−2 ln(α)

) ,
uR(α) = u

(
cL

1 (α), cL
2 (α)

)
= 1007

414
(
20−

√
−2 ln(α)

) ,
and its membership function yields

µũ(u) = exp
[
−1
a

(
b− c

u
+ d

u2

)]
, u > 0,

where
a = 342792, b = 68558400,
c = 16675920, d = 1014049.

The plot of µũ(u) in the range 0.1 ≤ u ≤ 0.15 is
illustrated in Figure 6.

6. Conclusions

The proposed analytical approach turns out to be
a very practical tool for the inclusion of parameter
uncertainties into mathematical models. It is valid
for continuous, monotonic functions of independent
fuzzy numbers, but can also be applied to fuzzy in-
tervals as defined, e. g., in [3].
An analytical solution has the advantage that the

degrees of membership of the fuzzy output can be
computed for any value within the support, whereas
a numerical solution only provides a finite number
of values. Furthermore, our approach also allows a
symbolic processing of uncertainties.

In further research activities, this approach shall
be extended to general, non-monotonic functions of
independent fuzzy numbers, where the influence of
interdependency shall be investigated as well.
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