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Abstract

We apply the Darboux theory of integrability to polynomial ODE’s of dimension 3.
Using this theory and computer algebra, we study the existence of first integrals for the
3–dimensional Lotka–Volterra systems with polynomial invariant algebraic solutions
linear and quadratic and determine numerous cases of integrability.

1 Introduction

In this paper we are concerned with the 3-dimensional Lotka-Volterra [1,2] system (LV3),
having first integrals formed with linear and quadratic polynomials. The LV3 is

ẋ = x(a1 + b11x+ b12y + b13z) = P1(x, y, z),

ẏ = y(a2 + b21x+ b22y + b23z) = P2(x, y, z),

ż = z(a3 + b31x+ b32y + b33z) = P3(x, y, z),

(1.1)

where the overdot means time derivative. This system typically model the time evolution
of conflicting species in chemistry and biology [3], where the linear terms ai (also called
Malthusian terms) denote growth (or decay) rates of each species independently of the
others; the self-interactive terms, also called Verhulst terms (bii) represent the control
on over-population of each of the respective species (such as cannibalism or depletion of
resources), and the cross-interactive terms (bij , i �= j) represent inter-species interactions
(such as predator-prey). It has been extensively studied, starting with the pioneer works
of Lotka [1] and Volterra [2], in the case where all the Verhulst terms vanish. Then in
three dimensions the essential parameters reduce to only 6. A detailed study of this case
can be found in Ref. 4

There are many other natural phenomena modeled by (1.1), such as the coupling of
waves in laser physics [5], the evolution of electrons, ions and neutral species in plasma
physics [6]. In hydrodynamics, they model the convective instability in the Bénard problem
[7]. Similarly, they appear in the interaction of gases in a background host medium [8].
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In the theory of partial differential equations they can be obtained as a discretized form
of the Korteweg-de Vries equation [9]. They also play a role in such diverse topics of
current interest as neural networks [10], biochemical reactions etc. The systems interest
became crucial after the work of Brenig and Goriely [11,12] wherein they prove that a
large class of ordinary differential equations implied in various fields of physics, biology,
chemistry and economics, can be transformed into a Lotka-Volterra of greater order using
a quasimonomial formalism. In the context of plasma physics, all the nonlinear terms
represent binary interactions or model certain transport across the boundary of the system.

In solving for the LV3, it is worthwhile to know, given a set of initial conditions, what
its long-time asymptotic behaviour will be or whether stable periodic solutions exist. The
existence of stable periodic orbits would be rather important for experimentalists wishing
to obtain and maintain a stable oscillatory state. Since in general the solutions of the
LV3 cannot be written in terms of elementary functions, the two questions of asymptotic
behaviour and the existence of periodic orbits are rather hard to answer. Nor it is easy
to explore the general solution using numerical schemes since one has to prescribe all
the parameters of the LV3 in terms of real numbers. It will then be of most interest
to possess constants of the motion, which, as such, contain the trajectories, and permits
the localisation of the solutions or find the asymptotic state. Particularly, if a three-
dimensional dynamical system admits a constant of motion, then the phase space is foliated
into two-dimensional leaves and therefore certain types of irregular orbits cannot occur. In
some cases it is even possible to find for a given three-dimensional dynamical system two
functionally independent constants of the motion. Then the orbits are the intersections
of two-dimensional flow invariant solutions and therefore nonchaotic. (Indeed, chaotic
behaviour is associated with nonintegrability of the dynamical system.) In fact, obtaining
a constant of motion corresponds to a partial integration and is interesting both from an
analytical and numerical point of view. In this last point of view, obtaining a constant of
motion is equivalent to reducing by one unit the dimension of the phase space. Since in
nonlinear problems we are usually interested in a full exploration of initial conditions, any
reduction of the dimension corresponds to a dramatic saving of numerical computation.
Moreover, the existence of a constant of motion provides a welcome check of the numerical
scheme with respect to its accuracy and stability.

To introduce the adopted terminology, we must note that a constant of motion may
be time-dependent. Usually this time-dependency appears in an exponential form [13,14].
Some authors [14] use the name of invariants, name which they apply regardless of the type
of constant of motion. As here we are concerned only with time-independent constants
of motion, we will keep for them the more usual name of first integrals. Much research
effort has been devoted to the problem of finding time-independent and time-dependent
constants of motion for hamiltonian and nonhamiltonian ordinary differential equations.
The reason is that except for some simple cases, this problem is very hard and no general
methods to solve it are known up to now. Nevertheless several approaches were developed
in the last years, thanks to the use of computer algebra facilities. The most important
among them being: specific ansatz for a invariant [13-16], singularity analysis [17,18], the
Lie symmetry method [19,20], the linear compatibility analysis method [21,22], rescaling
method [23,24] and the Darboux method [25-28]. Among the first mentioned methods
one can cite the Carleman embedding procedure [13], the generalised Carleman [14] and
the Hamiltonian methods [15,16]. Although they differ in the details of computation, all
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these methods are based on an a priori hypothesis on the form of the invariant or the first
integral H.

In 1878 Darboux [25] showed how can be constructed the first integrals of planar poly-
nomial ordinary differential equations possessing sufficient invariant algebraic curves. The
Darboux method is based on the possibility of writing the invariant ( or at least an inte-
grating factor) as the product of different algebraic functions fi raised at a given power λi.
It is on the form of these functions fi that it is introduced an Ansatz. The fi are deter-
mined straightforwardly identifying to zero the coefficients of a polynomial expression in
x, y, z . In that sense the Darboux method is not so different from some of the others cited
above. Nevertheless the experiance shows that we have somehow divided the difficulties
of the unavoidable identification. Typically the number of equations obtained is greater
than the number of unknowns. In order to satisfy the whole system of algebraic equations
we must then introduce some conditions on the parameters describing the system (1.1).
From a physical point of view the rule of the game is to find first integrals with as few
conditions as possible on the parameters of the given system.

Although the Darboux theory of integrability works for real or complex polynomial
ordinary differential equations, we are concerned here with the existence of real first inte-
grals of (1.1) when the parameters ai, bij of the system, the three dependent variables x,
y, z, and the independent variable t (the time) are real.

The paper is organized as follows. The main lines of the Darboux theory for three-
dimensional polynomial differential systems are presented in Section 2. The first integrals
constructed using the Darboux theory are build here exclusively with polynomial invariant
algebraic solutions. In Section 3, the Proposition 1 exhibits the linear algebraic solutions
of the LV3. The following sections contain the cases for which at least a first integral
has been found. The cases where the LV3 has a single first integral are considered first,
see Sections 4 and 5. In Section 4, the Theorems 2 and 3 concern the cases where all
the fi are linear and in Section 5, the Theorems 4 and 5 are for the cases where f4 is a
quadratic polynomial, the first being when the conic passes through the origin and the
second when not. In Section 6 we consider the cases of integrability, i.e. the cases where
two first integrals coexist. Theorems 6–10 are when at most one of the first integrals
contain quadratic algebraic solutions and Theorem 11 is for the cases where the two first
integrals are formed with a quadratic algebraic solution. Finally in Section 7 we give our
conclusions.

2 Computational method

The Darboux method is based on the existence of algebraic invariant solutions. Suppose
that we can determine two polynomials fi(x, y, z) and Ki(x, y, z) such that

∂fi

∂x
P1 +

∂fi

∂y
P2 +

∂fi

∂z
P3 = Kifi . (2.1)

Then equation fi(x, y, z) = 0 describes a surface which is formed by trajectories. It is an
algebraic solution of the system. The polynomial Ki is called the cofactor of fi.

These fi are going to be the “bricks” with which we will build the invariants. Suppose
that we have obtained q functions fi. Let us consider the following function of the variables
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x, y, z and t

H =
q∏

i=1

fλi
i (x, y, z) exp(st) . (2.2)

Taking the total derivative

dH
dt

=
∂H

∂t
+

∂H

∂x
P1 +

∂H

∂y
P2 +

∂H

∂z
P3

= H

[
s+

q∑
i=1

λi

fi

(
∂fi

∂x
P1 +

∂fi

∂y
P2 +

∂fi

∂z
P3

)]
. (2.3)

Imposing that H is an invariant and making use of (2.1), we obtain

s+
q∑

i=1

λiKi = 0 . (2.4)

The equations in the λi are now linear equations. How many fi do we need? The equation
(2.1) shows that if the system is of degree m, Ki is at most of degree m− 1 independently
of the degree of fi. So, the left hand side of (2.4) is a polynomial in x, y, z of degree
at most m − 1 with a total of (m + 2)(m + 1)m/6 terms. Consequently (2.4) produces
(m + 2)(m + 1)m/6 equations where the unknowns are the λi. We see from (2.4) that if
we allow s to be different from zero the system of equations in the λi is inhomogeneous,
and we need q = (m + 2)(m + 1)m/6. If we want a first integral, then s = 0 and the
system becomes homogeneous and we need a priori either a new fi, or a new condition by
imposing that the determinant of the system of equations in the λi is zero. This will be
the case here where we are concerned with first integrals exclusively. The required number
of λi in order to have first integrals is then q = (m + 2)(m + 1)m/6 + 1. However, if it
exists a solution with q = (m + 2)(m + 1)m/6, then a first integral exists. In fact, all
the first integrals presented here are with this value of q (Theorem 3 is for first integrals
having a quadratic algebraic solutions which factorize to linear ones). We see that the
possibility of solving for the λi in the system deduced identifying to zero the coefficients of
the polynomial on x, y, z deduced from equation (2.4) depends on the conditions we put
on the coefficients of (1.1). We should not forget that some conditions come from equation
(2.4) and others from equation (2.1).

We make a comment on the number of conditions on the system parameters in order
to obtain a first integral and its variation with the degree of the invariant solutions tested.
For the existence of invariant solutions of higher degree we require a larger number of
conditions than for solutions of smaller degree. At least this is what happens for degrees
one to three. For higher degrees one can get a saturation as this is what happens in 2d
(see Ref 29). It turns out that the most interesting cases (i.e. the cases with a not too
high number of conditions) will be obtained using straight lines and conics as invariant
solutions for Lotka–Volterra and quadratic systems.

In the case of system (1.1), m = 2 and in this paper we take q = 4. As the axes are alge-
braic solutions, the problem of invariant search is reduced to the determination of only one
algebraic solution i.e. f4 = 0. Moreover f4 is taken here as polynomial of degree at most
two, namely f4 ≡ (−→ν ·−→f ) where −→ν is a vector of dimension 10 and with components 1 or 0
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and−→
f a vector of components (f000, f100x, f010y, f001z, f200x

2, f110xy, f101xz, f020y
2, f011yz,

f002z
2).

The results presented here are given modulo the three-dimensional Lotka-Volterra sys-
tem equivalences. This is because we can associate to a given LV3 (1.1) five equivalent
three-dimensional Lotka-Volterra systems. The first two are obtained doing circular per-
mutation of the variables x, y, z and of the parameters ai and bij , next three systems
∀bij �= 0 are obtained doing the transformation

(x, y, z, a1, a2, a3, b11, b12, b13, b21, b22, b23, b31, b32, b33) →
(x, z, y, a1, a3, a2, b11, b13, b12, b31, b33, b32, b21, b23, b22),

which keeps invariant the system, and the two others obtained doing circular permuta-
tion of variables and parameters. We say that all these Lotka–Volterra systems are E
equivalent. All the results of this paper are stated modulo these E equivalences.

Table 1. Definition of the terminology used for the first integral conditions.

na. definition na. definition
ai ai iij bik − bjk − bkk

cij ai − aj i′ij bik + bjk − bkk

c′ij ai − 2aj i′′ij 2bik − bjk − 2bkk

c′′ij ai + aj i′′′ij 2bik − bjk − bkk

c′′′ij ai + 2aj jij bik + bjk − 2bkk

vijk ai + aj + ak j′ij bik + bjk − 4bkk

v′ijk ai + aj − ak j′′ij 2bik + bjk − 4bkk

v′′ijk ai + aj − 2ak nij bii(bij − bjj)− (bij − 2bjj)(bji − bii)
v′′′ijk ai + aj + 2ak n′

ij (bij − bjj)(bki − bii) + (bij + bkj − 2bjj)(bji − bii)
wijk 2ai + aj + ak n′′

ij bii(bij + bkj − 3bjj)− bki(bij − bjj)
w′

ijk 2ai + aj − ak n′′′
ij 3biibjj + bjibkj − bii(bij + bkj)− bjj(bji + bki)

w′′
ijk 2ai − aj − ak niv

ij (bij − bjj)(bki − 2bii)− bjj(bji − bii)
w′′′

ijk ai + 2(aj + ak) oijk (bij − bjj)(bjk − bkk)(bki − bii) + (bji − bii)(bkj − bjj)(bik − bkk)
bi bi pij 2bii(bkj − bjj) + bjj(bji − bii)
dij bij − bjj p′ij 2biibjj − bij(bki + bii)
d′ij 2bij − bjj p′′ij bkibkj − 2bij(2bki − bji)
d′′ij bij − 2bjj p′′′ij biibkj − bki(bkj − bjj)
eij bij + bjj piv

ij 2bii(bij − bjj) + bjj(bki − bii)
e′ij 2bij + bjj qij bijbiibkk + bjibjj(bik − 2bkk)
e′′ij bij + 2bjj q′ij biibik(bij − bjj) + bjjbjk(bji − bii)
gij bik − bjk q′′ij biibjj(bkk + bjk) + 2bki(bij − 2bjj)
g′ij bik − 2bjk q′′′ij biibjj(bki − 2bii)− (bkj − 2bjj)(bji − 2bii)
g′′ij bik + bjk rij aibjj(bji − bii) + ajbii(bij − bjj)
g′′′ij bik + 2bjk r′ij ajbij − (ai + 2aj)bjj

hij biibkj − bjjbki r′′ij ajbij − (ai + aj)bjj

h′
ij biibkj − bjjbji r′′′ij 2aibji − (ai + aj)bii

kij ajbij − aibjj riv
ij aibjk − aj(bik + 2bjk)

k′
ij ajbij + aibjj sij ajbij − (ai + aj + ak)bjj

lij aibjk − ajbik s′ij 2ajbij − (ai + 2aj + ak)bjj

l′ij aibjk + ajbik s′′ij (ai + 2aj)bjj − aj(bij + bkj)
mij ajbij + akbjj s′′′ij (aibji − ajbii)(bkj − bjj)(bjk − bkk) + aibii(bjkbkj − bjjbkk)
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3 Invariant algebraic solutions

In this section we study the invariant algebraic solutions of the LV3 systems of degree
at most 1. Thus, in Proposition 1, we present the invariant planes (invariant algebraic
solutions of degree 1) together with their cofactors, and the conditions for their existence.

Proposition 1. An LV3 has an invariant plane f = 0 with cofactor K in the following
cases, modulo the E equivalences, using the notation defined in Table 1

(1) f = x = 0 with K = b11x+ b12y + b13z.

(2) If b12 = b13 = 0 and a1b11 �= 0, then f = a1 + b11x = 0 and K = b11x.

(3) If a1 = a2, b13 = b23 and d12d21 �= 0 then f = (b21 − b11)x − (b12 − b22)y = 0 and
K = a1 + b11x+ b22y + b13z.

(4) If a1 = a2 = a3, o123 = 0 and d12d21d13d31 �= 0, then f = (b21 − b11)(b31 − b11)x −
(b12 − b22)(b31 − b11)y− (b13 − b33)(b21 − b11)z = 0 and K = a1 + b11x+ b22y+ b33z.

(5) If r12 = r23 = r31 = 0 and a1a2a3b11b22b33 �= 0, then f = a1a2a3 + a2a3b11x +
a1a3b22y + a1a2b33z = 0 and K = b11x+ b22y + b33z.

(6) If b13 = b23 = r12 = 0 and a1a2b11b22 �= 0, then f = a1a2 + a2b11x+ a1b22y = 0 and
K = b11x+ b22y.

(7) If a3 = b33 = r12 = o123 = 0 and a1a2b11b22 �= 0, then f = (b31−b11)(a1a2+a2b11x−
a1b22y)− a2b11b13z = 0 and K = b11x+ b22y.

(8) If a2 = b22 = b13 = b23 = 0 and a1b11b12d21 �= 0, then f = (b21 − b11)(a1 + b11x) −
b11b12y = 0 and K = b11x.

(9) If a2 = a3 = b22 = b33 = o123 = 0 and a1b11b32d21 �= 0, then f = b32(b21 − b11)(a1 +
b11x)− b11b12(b32y − b23z) = 0 and K = b11x.

(10) If a2 = a3 = b22 = b33 = b23 = b32 = 0 and a1b11d21d31 �= 0, then f = (b21 −
b11)(b31 − b11)(a1 + b11x) + b11[b12(b11 − b31)y + b13(b11 − b21)z] = 0 and K = b11x.

(11) If a2 = a3 = b22 = b33 = b12 = b32 = 0 and a1b11d31 �= 0, then f = (b31 − b11)(a1 +
b11x)− b11b13z = 0 and K = b11x.

(12) If a2 = a3 = b22 = b33 = b12 = d21 = 0 and a1b11b23b32d31 �= 0, then f = b23(b31 −
b11)(a1 + b11x) + b11b13(b32y − b23z) = 0 and K = b11x.

Proof . The proof is obtained finding both the linear f and K satisfying equation (2.1).
So doing, we introduce in (2.1) the general form for f and K, namely f = f000 + f100x+
f010y+f001z, K = k000+k100x+k010y+k001z. The problem consits then in the evaluation
of the coefficients of f and K by solving the algebraic system obtained identifying to zero
the coefficients of the polynomial in x, y, z which results after this introduction of f and
K in (2.1). The number of equations of this algebraic system is usely greater than the
number of the unknown coefficients of f and K. In order to satisfy the entire system of
algebraic equations, it is necessary then to introduce the conditions on the parameters of
the differential system (1.1), which appear in the different statements of the theorem. �
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4 First integrals formed with linear invariant algebraic so-
lutions

In this section we apply the Darboux method to deduce first integrals obtained with linear
polynomial algebraic solutions.

Theorem 2. Let f1 = x, f2 = y and f3 = z. If a LV3 has a fourth algebraic solution
f4 = 0 of degree 1, then using the notation defined in Table 1, we can establish the following
statements
(1) If the LV3 satisfy to the conditions det (bij) = 0 and s =

∑3
i=1 aiαi = 0, where the αi

are any non-trivial solution of (bij)T (αi) = 0, then the function |x|α1 |y|α2 |z|α3 is a first
integral.
(2) If the conditions c12 = c23 = o123 = 0 are satisfied and d12d21d13d31 �= 0, then the
plane f4 ≡ φ = (b21 − b11)(b31 − b11)x− (b12 − b22)(b31 − b11)y− (b13 − b33)(b21 − b11)z = 0
is an algebraic solution of the LV3 and a first integral |f1|α1 |f2|α2 |f3|α3f4 exists, the αi

being defined as solution of the system (bij)T (αi) = − diag(bij).
(3) If the conditions c12 = g12 = k13 = 0 are satisfied and d12d21(|b11|+ |b21|+ |b31|) �= 0,
then the plane f4 = (b21 − b11)x + (b22 − b12)y = 0, is an algebraic solution of the LV3
and a first integral |f1|λ1 |f2|λ2 |f3|λ3 |f4|λ4 exists with λ1 = (b21 − b11)(b13b32 − b33b22), λ2 =
(b12 − b22)(b13b31 − b33b11), λ3 = b13(b12 − b22)(b11 − b21), λ4 = b13[b32(b11 − b21)+ b31(b22 −
b12)] + b33(b12b21 − b11b22).
(4) If the conditions b13 = b23 = r12 = 0 are satisfied and a1a2b11b22d12d21 �= 0, then,
the plane f4 = a1a2 + a2b11x+ a1b22y = 0, is an algebraic solution of the LV3 and a first
integral |f1|λ1 |f2|λ2fλ3

3 |f4|λ4 exists with λ1 = b22(b21−b11), λ2 = b11(b12−b22), λ3 = 0, λ4 =
b11b22 − b12b21.
(5) If the conditions r12 = r23 = r31 = a1a3b11b22d23 + a1a2b22b33d31 + a2a3b11b33d12 = 0
are satisfied and a1a2a3b11b22b33 �= 0, then the plane f4 = a1a2a3 + a2a3b11x+ a1a3b22y +
a1a2b33z = 0 is an algebraic solution of the LV3 and a first integral |f1|α1 |f2|α2 |f3|α3f4

exists, the αi being defined as solution of the system (bij)T (αi) = − diag(bij).
(6) If the conditions b13 = b23 = d12 = d21 = 0 are satisfied and a1a2c12 �= 0, then, the
plane f4 = a1a2 + a2b11x + a1b22y = 0, is an algebraic solution of the LV3 and a first
integral |f1|λ1 |f2|λ2fλ3

3 |f4|λ4 exists with λ1 = a2, λ2 = −a1, λ3 = 0, λ4 = a1 − a2.
(7) If the conditions a2 = b13 = b22 = b23 = 0 and b11b12b21d21 �= 0, then the plane
f4 = (b21 − b11)(a1 + b11x) − b11b12y = 0, is an algebraic solution of the LV3 and a first
integral fλ1

1 |f2|λ2fλ3
3 |f4|λ4 exists with λ1 = 0, λ2 = −b11, λ3 = 0, λ4 = b21.

(8) If the conditions b12 = b13 = b22 = b23 = 0 are satisfied and a1b11k21 �= 0, then
the plane f4 = a1 + b11x = 0, is an algebraic solution of the LV3 and a first integral
|f1|λ1 |f2|λ2fλ3

3 |f4|λ4 exists with λ1 = a2b11, λ2 = −a1b11, λ3 = 0, λ4 = a1b21 − a2b11.
(9) If the conditions c′32 = b12 = b13 = d′23 = d′′32 = i′′′23 = 0 are satisfied and a1b11 �= 0,
then the plane f4 = a1 + b11x = 0, is an algebraic solution of the LV3 and a first integral
fλ1
1 fλ2

2 fλ3
3 fλ4

4 exists with λ1 = 0, λ2 = −2, λ3 = 1, λ4 = 1.
(10) If the conditions v′231 = b12 = b13 = e23 = e32 = j23 = 0 are satisfied and a1b11 �= 0,
then the plane f4 = a1 + b11x = 0, is an algebraic solution of the LV3 and a first integral
fλ1
1 fλ2

2 fλ3
3 fλ4

4 exists with λ1 = 1, λ2 = −1, λ3 = −1, λ4 = 1.
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(11) If the conditions c′′23 = b12 = b13 = e23 = e32 = j23 = 0 are satisfied and a1b11 �= 0,
then the plane f4 = a1 + b11x = 0, is an algebraic solution of the LV3 and a first integral
fλ1
1 fλ2

2 fλ3
3 fλ4

4 exists with λ1 = 0, λ2 = −1, λ3 = −1, λ4 = 2.

(12) If the conditions c23 = b12 = b13 = b23 = b33 = d31 = d32 = 0 are satisfied and
a1b11d21 �= 0, then the plane f4 = a1 + b11x = 0, is an algebraic solution of the LV3 and a
first integral fλ1

1 |f2|λ2 |f3|λ3 |f4|λ4 exists with λ1 = 0, λ2 = b11, λ3 = −b11, λ4 = b11 − b21.

(13) If the conditions c31 = c′21 = b12 = b13 = d21 = d31 = d′32 = d′′23 = 0 are satisfied and
a1b11 �= 0, then the plane f4 = a1 + b11x = 0, is an algebraic solution of the LV3 and a
first integral fλ1

1 fλ2
2 fλ3

3 fλ4
4 exists with λ1 = 0, λ2 = 1, λ3 = −2, λ4 = 1.

(14) If the conditions c12 = c′′31 = b13 = b23 = b33 = e31 = e32 = 0 are satisfied and
d12d21 �= 0, then the plane f4 = (b21 − b11)x− (b12 − b22)y = 0, is an algebraic solution of
the LV3 and a first integral fλ1

1 fλ2
2 fλ3

3 fλ4
4 exists with λ1 = 0, λ2 = 0, λ3 = 1, λ4 = 1.

(15) If the conditions c12 = c′31 = b11 = b13 = b22 = b23 = b31 = b33 = g13 = 0 are satisfied
and b12b21 �= 0, then the plane f4 = b21x − b12y = 0, is an algebraic solution of the LV3
and a first integral fλ1

1 fλ2
2 fλ3

3 fλ4
4 exists with λ1 = 1, λ2 = 0, λ3 = −1, λ4 = 1.

Proof . The cofactors of f1, f2, f3 are K1 = a1 + b11x + b12y + b13z, K2 = a2 + b21x +
b22y + b23z, K3 = a3 + b31x+ b32y + b33z respectively. Statement (1) use only these three
algebraic solutions. For the other statements, it is easy to check, that under suitable
assumptions, f4 = 0 is an algebraic solution of the LV3, i.e. that f4 verifies eq (2.1)
where K4, the cofactor of f4 takes the values K4 = 0 for statement (1) where f4 = 1,
K4 = a1+ b11x+ b22y+ b33z for statement (2), K4 = a1+ b11x+ b22y+ b13z for statements
(3), (14) and (15), K4 = b11x + b22y for statement (4), K4 = b11x + b22y + b33z for
statement (5), K4 = b11x for statements (7) − (13). We note that f4 is the algebraic
solution of Proposition 1(1) for statement (1), of Proposition 1(4) for statement (2), of
Proposition 1(3) for statements (3), (14) and (15) of Proposition 1(6) for statements (4)
and (6), of Proposition 1(5) for statement (5), of Proposition 1(8) for statement (7), of
Proposition 1(2) for statements (8) − (13). Hence to each statement corresponds a first
integral |x|λ1 |y|λ2 |z|λ3 |f4|λ4 . �

We must mention that statements (1)–(5) are, respectively, the invariants I, II, II’, III’
and III of Cairó and Feix [14] obtained using the Carleman method (with the additional
condition s = 0 for statements (1), (3) and (5). Note that statements (2) and (3) with
a1 = a2 = a3 = 0 concerns the ABC system when b11 = b22 = b33 = 0 (see for instance
Ref. 22). With these additional conditions statement (2) concerns an integrable system
(Theorem 6(22)).

Theorem 3. The LV3 has a first integral |f1|λ1 |f2|λ2 |f3|λ3 |f4|λ4 |f5|λ4 formed with the
coordinate axes f1 = x, f2 = y and f3 = z and two other algebraic solutions f4 = 0 and
f5 = 0 of degree 1 in the cases described by the following statements

(1) If the conditions c23 = b11 = b21 = b23 = b31 = 0 are satisfied and c13b22b33(a1b22b33 +
a3(b13(b32 − b22) − b12b33)) �= 0, then f4 = a3 + b22y and f5 = (b32 − b22)y + b33z and
λ1 = a3b33(b32 − 2b22), λ2 = (b32 − 2b22)(a3b13 − a1b33), λ3 = a1b22b33 − a3(b12b33 − b13b22)
and λ4 = −a1b22b33 + a3(b12b33 + b13b22 − b13b32).
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(2) If the conditions c23 = b12 = b13 = g23 = s′′′12 = 0 are satisfied and a1b11d32k21 �= 0,
then f4 = a1 + b11x and f5 = (b32 − b22)y − (b23 − b33)z and λ1 = a2(b32 − b22)(b23 − b33),
λ2 = a1b33(b32 − b22), λ3 = a1b22(b23 − b33), λ4 = a1(b22b33 − b23b32).
(3) If the conditions b12 = b13 = r12 = r23 = r31 = r′′′23 = 0 are satisfied and a1a2a3c23b11b22b33 �=
0, then f4 = a1 + b11x and f5 = a1a2a3 + a2a3b11x + a1a3b22y + a1a2b33z and λ1 = 0,
λ2 = 2a3/(a2 − a3), λ3 = −2a2/(a2 − a3) and λ4 = 1.
(4) If the conditions c23 = g23 = h23 = p′13 = r12 = r23 = 0 are satisfied and b11b12b13b22b33 �=
0, then f4 = b22y + b33z and f5 = (a1 + b11x)(b21 + b11) + b11b22y + b11b33z and λ1 =
−(b21 + b11)/b11, λ2 = λ3 = 0 and λ4 = 1.
(5) If the conditions c23 = b12 = b13 = b22 = d′23 = g23 = s′21 = 0 are satisfied and
a1b11b23b32 �= 0, then f4 = a1 + b11x and f5 = b32y + b23z and λ1 = a2/a1, λ2 = −2,
λ3 = 0 and λ4 = 1.
(6) If the conditions a2 = c′′31 = b12 = b13 = b22 = b31 = d21 = d′23 = 0 are satisfied and
a1a3b11 �= 0, then f4 = a1 + b11x and f5 = a1 + b11x + 2b32y + b33z and λ1 = λ3 = 0,
λ2 = −2 and λ4 = 1.
(7) If the conditions a2 = a3 = b12 = b13 = b23 = b32 = d21 = g23 = 0 are satisfied and
a1b11b22b33 �= 0, then f4 = a1 + b11x and f5 = b22y − b33z and λ1 = 0, λ2 = λ3 = −1 and
λ4 = 1.
(8) If the conditions a2 = a3 = b12 = b13 = b33 = d′32 = d21 = g23 = 0 are satisfied and
a1b11b23b32 �= 0, then f4 = a1 + b11x and f5 = b32y + b23z and λ1 = λ2 = 0, λ3 = −2 and
λ4 = 1.

Proof . The first integral can be written as |f1|λ1 |f2|λ2 |f3|λ3 |f |λ4 with f = f4f5. The
cofactors of f1, f2, f3 are K1 = a1 + b11x + b12y + b13z, K2 = a2 + b21x + b22y + b23z,
K3 = a3 + b31x + b32y + b33z respectively. Now it is easy to check that for statements
(1), (2), (5)-(9) f4 and f5 are the algebraic solutions of Proposition 1 (2) and (3), for
statement (3) f4 and f5 are the algebraic solutions of Proposition 1 (2) and (5), for
statement (4) f4 and f5 are the algebraic solutions of Proposition 1 (3) and (5) and
for statement (5) f4 and f5 are the algebraic solutions of Proposition 1 (2) and (7).
Consequently f = 0 is an algebraic solution of the LV3, i.e. f verifies eq (2.1) where
K, the cofactor of f takes the value K = a3 + 2b11x + 2b22y + 2b33z for statement (1),
K = a3+(b21+b11)x+b22y+b33z for statement (2), K = 2b11x+b22y+2b33z for statement
(3), K = a1(b21+b11)/b11+(b21+b11)x+2b22y+2b33z for statement (4), K = 2b11x+2b22y
for statement (5), K = a2 + b11x + 2b22y for statement (6), K = 2b11x + b22y + b33z for
statement (7) and K = 2b11x + b22y for statement (8). For each statement, a solution
of system λ1K1 + λ2K2 + λ3K3 + λ4K = 0. Hence to each statement corresponds a first
integral |x|λ1 |y|λ2 |z|λ3 |f4|λ4 |f5|λ4 . �

The next two theorems concern LV3 systems having one first integral alone of type
|x|λ1 |y|λ2 |z|λ3 |f4|λ4 with f4 quadratic. These cases are characterized by n conditions
among the parameters of the systems. The expression of all the corresponding first inte-
grals are available in the e-mail address: “lcairo@labomath.univ-orleans.fr”. To prove each
statement one must simply apply (2.1) to obtain f4 and its corresponding cofactors K4

and compute the λi from the equation λ1K1+λ2K2+λ3K3+λ4K4 = 0, where K1,K2,K3

are the cofactors above mentioned for the coordinate axes, i.e. K1 = a1+b11x+b12y+b13z,
K2 = a2 + b21x+ b22y + b23z, K3 = a3 + b31x+ b32y + b33z.
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5 First integrals with f4 quadratic

Theorem 4. Let f1 = x, f2 = y and f3 = z. If a LV3 has a fourth algebraic solution,
f4 = 0 of degree 2 passing through the origin, then a first integral |f1|λ1 |f2|λ2 |f3|λ3 |f4|λ4

can be obtained when the conditions given in Table 2 are fulfilled.

Table 2: First integral conditions of Theorem 4.

st. −→ν n conditions =0 conditions �= 0
(1) (0000011111) 4 c12 = c31 = n′

23 = g32 = 0 d12d13d23j13
(2) (0011000111) 4 c23 = b31 = b21 = n23 = 0 b22b33d23d

′′
23d32d

′′
32

(3) (0001010010) 5 v′123 = b23 = i32 = g31 = k21 = 0 (1)
(4) (0001101001) 5 c′31 = b12 = b22 = b32 = n31 = 0 (2)
(5) (0000111111) 5 a1 = a2 = a3 = n′

12 = n′
23 = 0 (3)

(6) (0000001111) 5 a1 = a2 = a3 = i′′′23 = n′
23 = 0 (4)

(7) (0011001111) 6 c32 = b21 = e31 = n′
32 = r13 = r23 = 0 a1a2a3c

′′
12b22b33

(8) (0011011001) 6 c23 = b12 = b13 = d′32 = g23 = r31 = 0 b11d
′′
23d21

(9) (0011001100) 6 c23 = b13 = b21 = d′23 = e31 = j31 = 0 a1a2a3c12b12b33
(10) (0011010110) 6 c23 = b21 = b23 = d13 = d31 = r12 = 0 b13b22d12

(11) (0011001110) 6 c32 = b23 = b21 = b13 = e31 = s′′12 = 0 a1a2a3d32

(12) (0011111111) 6 c′21 = c23 = n12 = r23 = n31 = g32 = 0 b11b22b33d23d32d
′′
31

(13) (0001111111) 6 c12 = c′32 = d12 = n23 = n31 = d21 = 0 (5)
(14) (0001111111) 6 c12 = c′32 = n23 = n31 = n′

21 = n′
13 = 0 b12b13b33d

′′
23d

′′
31i31

(15) (0001011111) 6 c12 = c′32 = o123 = n23 = r31 = g32 = 0 b21b22b33d
′
13d

′′
23

(16) (0011101001) 6 c′21 = c23 = d′12 = g31 = r21 = n31 = 0 b33d
′′
13d

′′
23g

′
21

(17) (0011110100) 6 c′21 = c23 = d′′31 = d′13 = g21 = n12 = 0 b22d
′′
21d

′′
32g

′
31

(18) (0011111111) 6 c23 = c′21 = n12 = n31 = o123 = n23 = 0 b22b33d32d
′′
32d

′′
13

(19) (0001010111) 6 c12 = c′31 = b31 = e21 = n23 = n′
32 = 0 b12b13d12i31

(20) (0001011110) 6 c12 = c′31 = b13 = b23 = g32 = n′′′
12 = 0 b11b33d21d32d

′′
32

(21) (0001111001) 6 c12 = c′31 = b13 = b23 = g31 = niv
12 = 0 b22d21d31d

′′
31

(22) (0001110110) 6 c12 = c′31 = b23 = d′′31 = d′13 = n′
12 = 0 b13d32d

′′
32g

′
31

(23) (0001111100) 6 c12 = c′31 = b13 = d′23 = n′
12 = r32 = 0 b12d31d

′′
31g

′
32

(24) (0111000011) 6 c12 = c23 = b32 = d′21 = d′31 = n′′
23 = 0 a1a2a3d

′′
13d23

(25) (0001010110) 6 c12 = c′32 = b23 = d12 = d21 = g′32 = 0 b13b33d13d
′′
32

(26) (0001011100) 6 c12 = c′31 = b13 = d′23 = d′′32 = g32 = 0 b11b12b21d21

(27) (0011101000) 6 c′21 = c23 = b13 = d′12 = d′′21 = g31 = 0 b23b33d23d
′′
31

(28) (0011111000) 6 c′21 = c23 = b12 = b13 = g32 = r23 = 0 b22b33d
′′
31d32

(29) (0011111000) 6 c′21 = c23 = b12 = b13 = d32 = d23 = 0 d21d
′′
21d31d

′′
31g23

(30) (0001001111) 6 a1 = c′32 = b11 = n23 = n′
32 = g′32 = 0 b12b13b33d13d

′′
32

(31) (0001000111) 6 a1 = c′32 = b11 = b21 = b31 = n32 = 0 (6)
(32) (0001010011) 6 a3 = c′′12 = b31 = b33 = e21 = g31 = 0 b12b22b23d12g

′′
12

(33) (0001000111) 6 c12 = c′32 = b11 = b21 = b31 = n23 = 0 (7)
(34) (0001101000) 6 c32 = c′21 = b12 = b13 = b22 = b32 = 0 (8)
(35) (0001111111) 7 c12 = c′32 = b12 = b22 = d21 = d′′23 = n31 = 0 b11b33b32d

′′
13

(36) (0011010000) 7 c23 = b12 = b31 = b32 = b33 = e21 = g′′21 = 0 a1a2

(37) (0111111111) 7 c12 = c23 = r′23 = r31 = r21 = r′32 = n′
13 = 0 a1a2a3b11b22b33

(38) (0011111111) 7 c23 = c′21 = n12 = r23 = n31 = n′
21 = n′

13 = 0 (9)
(39) (0111001111) 7 c12 = c13 = b31 = d′21 = n′

23 = n′′
13 = r32 = 0 b13b22b32e

′
32j31

(40) (0001011111) 7 c12 = c′32 = b22 = o123 = n23 = r31 = g32 = 0 b32b33g
′
31

(41) (0011101011) 7 c′21 = c′31 = b32 = d′12 = n13 = n′
31 = r21 = 0 b11b12b13b23b31d

′′
31

(42) (0011111011) 7 c′21 = c32 = b12 = b32 = o123 = n31 = i′′23 = 0 b33d
′′
13d

′′
21

(43) (0011111011) 7 c′21 = c32 = b12 = b32 = g23 = n31 = n′
13 = 0 b22b31b33d

′′
31
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Table 2: First integral conditions of Theorem 4 (continued).

st. −→ν n conditions =0 conditions �= 0
(44) (0111001111) 7 c12 = c13 = b31 = b32 = d′21 = n23 = n′

32 = 0 b12b13b22b33d
′′
12

(45) (0001111111) 7 c12 = c′32 = b11 = b21 = d12 = n23 = d′′13 = 0 b31b33d
′′
23

(46) (0111001110) 7 c12 = c32 = b23 = b31 = b13 = d′21 = j′′13 = 0 a1b11b22b32b33
(47) (0011111010) 7 c′21 = c′31 = b12 = b23 = b32 = b13 = j′23 = 0 b22d31d

′′
21d

′′
31

(48) (0001000111) 7 c12 = c′32 = b11 = b21 = b31 = b22 = d′′23 = 0 (10)
(49) (0111011011) 7 c13 = c12 = b12 = b31 = b21 = b32 = n′′

23 = 0 b11b33d23

(50) (0010001010) 7 a1 = c23 = b11 = b32 = d23 = d13 = g23 = 0 b22d12

(51) (0001011000) 7 a2 = c13 = b13 = b22 = b33 = g32 = g31 = 0 b11b23d21

(52) (0001000111) 7 a1 = c′32 = b11 = b21 = b22 = b31 = d′′23 = 0 (11)
(53) (0011001111) 7 a2 = a3 = b21 = b22 = b33 = e31 = n′

23 = 0 b11b13
(54) (0001101011) 7 a1 = a2 = a3 = n13 = n′

13 = q12 = q′′21 = 0 (12)
(55) (0111001111) 8 c31 = c21 = b13 = b31 = d′21 = e′32 = n′

12 = n′
23 = 0 b22b33

(56) (0011101000) 8 c23 = c′31 = b13 = b33 = d31 = d′12 = g31 = g′23 = 0 a1b11b22b23
(57) (0011110100) 8 c′21 = c23 = b13 = b23 = b33 = d′′31 = d′′32 = n12 = 0 b22d

′′
21

(58) (0001111110) 8 c12 = c′32 = b11 = b13 = b22 = b23 = g′23 = g′′′13 = 0 b21b33
(59) (0011001100) 8 a1 = c23 = b11 = b13 = b21 = b31 = d′23 = j13 = 0 a2d

′′
32

(60) (0001101011) 8 a1 = a2 = a3 = b11 = d′′13 = n′
13 = n′′′

23 = p′′23 = 0 (13)
(61) (0001111100) 8 a1 = a2 = a3 = b13 = d′23 = d′′31 = d′′32 = n′

12 = 0 b11b22b12b21
(62) (0111010111) 8 a1 = a2 = a3 = b21 = d′31 = j′21 = n23 = n′

23 = 0 b22b33d
′′
13(d

′′
13 − 4b33)

(63) (0001101011) 8 a1 = a2 = a3 = b22 = b33 = n31 = n′
31 = g′31 = 0 b21b23

(1) a1a2d13(d13k12 − a2b13b22) �= 0
(2) b11b33(a1(2b21b233 − 5b13b21b33 + 2b213b21 + b11b23b33)− 2a2b11d

2
13) �= 0

(3) d13d31j23(b113(2 b32 b13+b22 b33−3 b33 b32)−b22 b31
3 d13−b11

2b21(b32 b13+2 b22 b33−3 b33 b32)+
b13 b21

2 b31 d32 + b21b31
2 d13 d

′′
32 + b11

2b31(3 b22 b33 + 2 b33 b32 − 4 b22 b13 − b32 b13)− b11b33b21
2 d32 +

4 b11 b22b312 d13 + 2 b11 b21 b31(2 b13 b22 − b22 b33 − b13 b32)) �= 0
(4) d13j13(4 b11 b23 d2

32−b12
2b23 d31−b12 b23b31 (3 b32−4 b22)+b11 b12 b23 (3 b32−4 b22)+b12 b13 b22 b31−

b11 b13(2 b322 − b32 b22 − 2 b222)− b11 b12 b13 b22 − b13 b31d
′′
32(2 b32 − 3 b22)) �= 0

(5) b21b33d23d
′′
13d

′′
31d

′′
23d

′′
32g21 �= 0

(6) b22b33d
′′
23(b12d

′
23d

′′
23 + b22b13b33) �= 0

(7) a1a2a3d
′′
23(b12d

′
23d

′′
23 + b22(b13b33 − 2d2

23)) �= 0
(8) b33d

′′
31(b33d

′′
21 − b23d

′′
31) �= 0

(9) b22b33d
′′
12d

′′
13d

′′
21(2b12 − 3b22) �= 0

(10) a1a2a3b33(3b12b33 + b32d
′′
13) �= 0

(11) b23b32(b13b32 + 3b12b33) �= 0
(12) b11b33d

′′
13(b33b

2
32 + (4b13 − 5b33)b222) �= 0

(13) b21b23b33(b223 − b33d23) �= 0

Theorem 5. Let f1 = x, f2 = y and f3 = z. If a LV3 has a fourth algebraic solution,
f4 = 0 of degree 2 not passing through the origin, then a first integral |f1|λ1 |f2|λ2 |f3|λ3 |f4|λ4

can be obtained when the conditions given in Table 3 are fulfilled.

Table 3: First integral conditions of Theorem 5.

st. −→ν n conditions =0 conditions �= 0
(1) (1011000011) 4 r′23 = b31 = b21 = b32 = 0 a2a3c

′′
23

(2) (1110110100) 5 b13 = b23 = b33 = r′12 = r′21 =0 (∗)
(3) (1110100100) 5 c′′12 = b13 = b23 = d12 = d21 = 0 |a1|+ |b11|+ |b22|
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Table 3: First integral conditions of Theorem 5 (continued).

st. −→ν n conditions =0 conditions �= 0
(4) (1001000111) 5 a2 = b21 = b22 = b31 = d′′23 = 0 a3

(5) (1111111111) 6 k12 = r12 = r′23 = r′31 = r′32 = r13 = 0 a1a2c
′′′
23c

′′′
32

(6) (1111111111) 6 k23 = k32 = r′12 = r′31 = r′21 = r′13 = 0 a1a2a3c23b11b22b33
(7) (1111111111) 6 k23 = k32 = r′12 = r31 = r′21 = r′13 = 0 a1a2a3b13b22
(8) (1111111111) 6 k31 = k13 = k′

32 = r′12 = r′23 = r′21 = 0 a1a2a3

(9) (1011011111) 6 e21 = e31 = r′12 = r23 = k32 = r′13 = 0 a2a3c23c
′′
12c

′′
13

(10) (1111000111) 6 d′31 = d′21 = r′12 = r′23 = r′32 = r′13 = 0 a1a2a3v
′
231

(11) (1001001011) 6 e31 = e32 = g′′31 = r12 = r′13 = r′23 = 0 a3c12c
′′
13c

′′
23

(12) (1111001111) 6 b31 = d′21 = k23 = k32 = r′12 = r′13 = 0 a1a2a3c
′′
13

(13) (1011001111) 6 b21 = e31 = r′23 = n′
23 = r′32 = r′13 =0 a2a3c

′′
13c

′′′
13v

′
132

(14) (1111000011) 6 b32 = d′31 = d′21 = r12 = r23 = r′13 = 0 a1a2a3c
′
12

(15) (1011001001) 6 b21 = d′12 = r′23 = e31 = d′32 = r′13 = 0 a2a3c
′′
13v

′
312

(16) (1011001111) 6 b21 = e31 = r23 = r′12 = r′13 = k23 = 0 a2a3c
′′
13

(17) (1111001001) 6 b31 = r12 = r′23 = r13 = d′12 = g31 = 0 a1a2a3c
′
21c

′′′
21

(18) (1011010110) 6 b23 = b31 = e21 = r′12 = r32 = s′13 = 0 a2a3c
′′
12w

′′
312

(19) (1011001011) 6 b21 = b32 = e31 = o123 = r23 = r′13 = 0 a2a3b13c
′′
13w

′′
213

(20) (1111001111) 6 b31 = b32 = r31 = r32 = r′12 = d′21 = 0 a1a2a3b11b22b33
(21) (1011001010) 6 b13 = b21 = d′23 = e31 = m12 = r′32 = 0 a1a2a3c

′′
13v

′′
132

(22) (1011011000) 6 b12 = b13 = d23 = d32 = e21 = e31 = 0 a2a3c23c
′′
12c

′′
13

(23) (1111001011) 6 b31 = b32 = d12 = d21 = r13 = r′23 = 0 a1a3a2c
′′
23

(24) (1111001011) 6 b31 = b32 = r12 = r23 = r13 = r′′′12 = 0 a1a3a2b11b22c12
(25) (1011010110) 6 b31 = b23 = r′12 = e21 = r′′32 = s′13 = 0 a2a3c12c

′′′
23v

′′
123

(26) (1011001010) 6 b23 = b21 = b32 = b13 = e31 = s12 = 0 a2a3c
′′
13

(27) (1011011111) 6 c32 = r′12 = r23 = e31 = e21 = r′13 = 0 a2a3c
′′
12c

′′
13c

′′′
12c

′′′
13d32

(28) (1001010011) 6 c′′12 = b31 = r′23 = e12 = e21 = e32 = 0 a3c13c
′
13g

′′
12k13

(29) (1001011001) 6 c′′12 = b32 = e12 = e21 = e31 = r′13 = 0 a3c
′′
13g

′′
12m23

(30) (1001010010) 6 c′′12 = b23 = b31 = e12 = e21 = e32 = 0 a3b13d13c13
(31) (1011001111) 6 a2 = b22 = b21 = e31 = n′

32 = r′13 = 0 a3b13b23c
′′
13

(32) (1111000111) 7 c′′′23 = d′21 = d′31 = e′32 = e′′23 = r′12 = r′13 = 0 a1a2a3c
′′′
12

(33) (1111000111) 7 c′′′13 = b13 = d′21 = d′31 = k23 = k32 = r′12 = 0 a1a2a3c
′′′
12

(34) (1111011111) 7 c′′′21 = b21 = b31 = r′12 = r31 = r′23 = n23 = 0 a1a2a3

(35) (1111001001) 7 c′′′21 = b21 = b31 = r13 = d′12 = g31 = r′23 = 0 a1a2a3

(36) (1111000111) 7 c′′23 = d′21 = e23 = d′31 = e32 = r′12 = r′13 = 0 a1a2a3

(37) (1111001100) 7 w231 = b13 = b31 = d′21 = d′23 = r′12 = r′32 = 0 a1a3c
′′
31

(38) (1011010110) 7 w312 = b13 = b23 = b31 = e21 = n′
23 = r23 = 0 a2c

′′
12

(39) (1111111111) 7 v123 = r′12 = r′23 = r′31 = r′21 = r′32 = r′13 = 0 a1a2a3b11b22b33
(40) (1111011010) 7 v123 = b12 = b23 = b31 = b21 = b32 = b13 = 0 a1a2c

′′
12

(41) (1001011011) 7 c′′12 = e31 = e32 = g13 = g23 = r′13 = r′23 = 0 c13c
′′
13c

′′
13

(42) (1111011111) 7 c′′′31 = b31 = b21 = r12 = r′23 = r′32 = r′13 = 0 a1a2a3

(43) (1111001110) 7 c′′′32 = b23 = b31 = b32 = b13 = r′12 = d′21 = 0 a1a2a3c13
(44) (1011011011) 7 c23 = b12 = b32 = e31 = e21 = r′13 = r′23 = 0 a1a2a3c

′′
12

(45) (1011011111) 7 w123 = r′12 = r′23 = e31 = e21 = r′32 = r′13 = 0 a2a3c23c
′′
12c

′′
13

(46) (1111011111) 7 w123 = b31 = b21 = r12 = r′23 = r′32 = r13 = 0 a1a2a3b23b32c
′′
32

(47) (1011011010) 7 w123 = b12 = b23 = b32 = b13 = e31 = g23 = 0 a2a3c
′′
12c

′′
31c

′′′
31

(48) (1111010111) 7 w′′′
231 = b21 = d′31 = r12 = r′23 = r′32 = r′13 = 0 a1a2a3

(49) (1111001110) 7 w′′′
123 = b23 = b31 = b13 = d′21 = r′12 = r32 = 0 a1a2a3c

′′′
12

(50) (1011011011) 7 w′
213 = b12 = b32 = e31 = e21 = r23 = r′13 = 0 a3c13c

′′
13

(51) (1011111111) 7 a1 = b11 = n12 = n31 = n′
23 = n′

31 = k23 = 0 a2a3

(52) (1011111111) 7 a1 = b11 = d′′12 = n31 = n23 = l′23 = r′23 = 0 a2a3
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Table 3: First integral conditions of Theorem 5 (continued).

st. −→ν n conditions =0 conditions �= 0
(53) (1111000111) 7 a3 = b33 = d′21 = d′31 = d′′32 = l12 = r′12 = 0 a1a2c12
(54) (1111000111) 7 a2 = b22 = d′21 = d′31 = l13 = r′13 = r′23 = 0 a1a3c13c

′′′
13

(55) (1011001001) 7 a3 = b21 = b33 = d′12 = e31 = g31 = l21 = 0 a1a2c12
(56) (1111111111) 7 a1 = b11 = b13 = r′12 = r′23 = r32 = l23 =0 a2a3

(57) (1111111111) 7 a1 = b11 = b13 = r′12 = r′23 = r′32 = l23 =0 a2a3

(58) (1111111111) 7 a1 = b11 = b12 = k′
23 = r32 = r′13 = l23 =0 a2a3

(59) (1011011111) 7 a2 = b22 = b23 = e31 = g23 = l13 = n′
23 = 0 a1a3c

′′
13

(60) (1011010111) 7 a3 = b31 = b33 = e21 = d′′32 = r′12 = riv
12 = 0 a2c

′′
12c

′′′
12

(61) (1011001111) 7 a3 = b21 = b33 = e31 = d′′32 = l12 = k′
12 = 0 a1a2c12

(62) (1111000111) 7 a2 = b22 = b23 = l13 = d′21 = d′31 = r′13 = 0 a1a3

(63) (1111000111) 7 a2 = b22 = b32 = d′21 = d′31 = r′13 = o123 = 0 a1a3

(64) (1111000110) 7 a2 = b22 = b23 = d′21 = g32 = l31 = r31 = 0 a1a3c
′
13

(65) (1111001001) 7 a1 = b11 = b31 = d′12 = d13 = g31 = r′23 = 0 a2a3

(66) (1111000011) 7 a3 = b32 = b33 = d′21 = d′31 = l12 = r12 = 0 a1a2c
′
12

(67) (1111001111) 7 a2 = b22 = b31 = b32 = d′21 = d23 = r13 = 0 a1a3c
′′
13

(68) (1111001111) 7 a2 = b22 = b23 = b31 = d′21 = n′
23 = r′13 = 0 a1a3c

′′
13

(69) (1111010111) 7 a3 = b21 = b32 = b33 = d′31 = l12 = r′12 = 0 a1a2c
′′
12

(70) (1011010111) 7 a3 = b13 = b31 = b33 = e21 = r′12 = n′
23 = 0 a1a2c

′′
12

(71) (1011001111) 7 a3 = b33 = b21 = b32 = e31 = n′
23 = l12 = 0 a1a2

(72) (1011010110) 7 a3 = b23 = b31 = b33 = e21 = d32 = r′12 = 0 a2c
′′
12

(73) (1011001011) 7 a3 = b21 = b32 = b33 = e31 = l12 = o123 = 0 a1a2c
′
12

(74) (1011010111) 7 a2 = a3 = b22 = b31 = b33 = e21 = n′
23 = 0 b12g

′′
12

(75) (1010011100) 8 c′′13 = b13 = b23 = b33 = e21 = e31 = k32 = r′12 = 0 a2c32
(76) (1001011001) 8 c′′12 = b12 = b22 = b32 = e31 = g32 = k23 = r′13 = 0 a3c

′′
13

(77) (1001011011) 8 c′′12 = c′′′13 = b13 = e31 = e32 = g31 = g32 = r′23 = 0 a1a2a3

(78) (1111010111) 8 c′′′12 = c′′32 = b21 = b23 = b32 = d′31 = e12 = r′13 = 0 a1a2a3

(79) (1111010111) 8 c′′12 = c13 = b12 = b21 = b23 = b32 = d′31 = r′13 = 0 a1a2a3

(80) (1011100110) 8 a1 = b11 = b21 = b23 = b31 = d12 = d′13 = r′32 = 0 a2c
′′
23b22b33

(81) (1011011111) 8 a2 = c′′′31 = b22 = d′′23 = e31 = g23 = r′13 = o123 = 0 a1a3

(82) (1011011111) 8 a3 = c′′′21 = b33 = e31 = g23 = n23 = r′12 = o123 = 0 a1a2

(83) (1111001111) 8 a2 = c′′′31 = b22 = b31 = d′21 = d′13 = g′′′31 = d′′23 = 0 a1a3

(84) (1111010111) 8 a3 = c′′′21 = b21 = b33 = d′31 = d′′32 = g′′′21 = r12 = 0 a1a2

(85) (1011011011) 8 a3 = c′′′12 = b12 = b32 = b33 = e31 = g23 = g′′′12 = 0 a1a2

(86) (1111000011) 8 a3 = c′′′12 = b12 = b32 = b33 = d′21 = d′31 = g′′′12 = 0 a1a2

(∗) a1a2c
′′′
12c

′′′
21(a3c

′′
12

2
b12b21 − a2

1c
′′′
12b21b32 − a2

2c
′′′
21b12b31) �= 0

6 Integrability

We say that a 3-dimensional system like (1.1) is integrable if it has two independent
first integrals. Theorems 6–10 concern integrable LV3 having at least one first integral
formed with linear algebraic solutions and Theorem 11 is for integrable cases with algebraic
solutions being both quadratic. In these theorems we indicate the nature of the second
first integral computed using the notation P1(st) and Tk(st), respectively for Proposition
1, statement st and Theorem k, statement st. and Q is for quadratic first integrals which
do not belong to the statements of Theorems 4 and 5.
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Theorem 6. An LV3 is integrable with two first integrals one of which being of the type
of Theorem 2(1) in the cases of Table 4.

Table 4: Integrability conditions of Theorem 6.

st. n conditions =0 conditions �= 0 f.i. type
(1) 4 r12 = r23 = r31 = a1b22d23 + a2h32 = 0 a1a2a3b11b22b33k12 P1(5)
(2) 5 b13 = b23 = b33 = r12 = a3b22d21 + a2h12 = 0 a1a2b11b22 T2(4)
(3) 5 a3 = b33 = r12 = l12 = o123 = 0 a1a2b11b22 T2(2)
(4) 6 c12 = c23 = n12 = n23 = n31 = o123 = 0 b12d21d

′′
31 Q

(5) 6 b21 = b31 = k23 = k32 = r′12 = r′13 a1a2c
′′
12c

′′
13 Q

(6) 6 b31 = b32 = d12 = d21 = r′23 = r′13 a1a2 Q
(7) 6 a1 = c23 = b11 = n23 = n′

23 = g32 = 0 b13d13d23d
′′
23j12 Q

(8) 6 a3 = b33 = b31 = b32 = r12 = o123 = 0 a1a2k12 P1(7)
(9) 7 a2 = b22 = b21 = b23 = b31 = l13 = n′

23 = 0 a1a3c
′′
13 Q

(10) 7 c23 = b12 = b22 = b32 = d23 = g23 = r31 = 0 a1b33k13 T2(4)
(11) 7 a2 = a3 = b22 = b23 = b32 = b33 = g23 = 0 b11b21 P1(3,7)
(12) 7 a3 = a1 = b33 = b31 = b12 = b13 = b11 = 0 b32d32 P1(7)
(13) 7 a1 = a2 = b11 = b12 = b21 = b22 = d′′13 = 0 a3b33d23 Q
(14) 7 a1 = a2 = b11 = b12 = b21 = b22 = j12 = 0 a3d23d

′′
23 Q

(15) 7 a2 = a3 = b23 = b22 = b33 = d′′32 = i′′′23 = 0 b11b13d31 Q
(16) 7 a1 = a3 = b11 = b13 = b31 = b33 = i′′′13 = 0 a2b32g13 Q
(17) 7 a2 = a3 = b22 = b23 = b32 = b33 = i32 = 0 b11b12b21d21 Q
(18) 7 a1 = a2 = a3 = b33 = e31 = e32 = o123 = 0 b11b22b23b32 T2(2)
(19) 7 a1 = a2 = a3 = b13 = d′′31 = i31 = o123 = 0 b11b33d12d21 Q
(20) 7 a1 = a2 = a3 = b13 = b31 = i′31 = o123 = 0 b11b32 Q
(21) 7 a1 = a2 = a3 = b31 = b32 = b33 = o123 = 0 b11d21(b11b22 − b12b21) P1(4)
(22) 7 a1 = a2 = a3 = b11 = b22 = b33 = o123 = 0 T2(2)
(23) 7 a1 = a2 = a3 = b12 = b13 = b22 = b32 = 0 b11d31 P1(3)
(24) 8 c23 = g23 = d12 = d21 = d32 = b13 = b23 = b33 = 0 a1a2a3c12 T2(5)
(25) 8 c12 = c′32 = d12 = d21 = d13 = d31 = d23 = d32 = 0 b13 T4(15)
(26) 8 c′31 = b12 = b13 = b22 = b23 = b32 = b33 = d31 = 0 l32 T2(5)
(27) 8 c23 = b12 = b13 = b22 = b23 = b32 = b33 = g23 = 0 a1b11k21 T2(7)
(28) 8 c′′31 = b11 = b13 = b21 = b23 = b31 = r23 = r′′12 = 0 a2 T2(4)
(29) 8 a1 = c23 = b11 = b12 = b22 = b32 = d23 = g23 = 0 b33 T2(6)
(30) 8 a3 = c′′′12 = b12 = b21 = b31 = b32 = b33 = g′′′12 = 0 a1a2 Q
(31) 8 a2 = c′′31 = b13 = b22 = b31 = d′21 = d′23 = g′′31 = 0 a1a3 Q
(32) 8 a1 = b11 = b21 = b23 = b31 = d′′12 = d13 = r′32 = 0 a2a3c

′′
23 Q

(33) 8 a1 = c23 = b11 = b21 = b31 = d13 = j13 = n32 = 0 d′′23b22b33 T4(2)
(34) 8 a2 = c′′′13 = b13 = b21 = b22 = b23 = b31 = g′′′13 = 0 a1a3 Q
(35) 8 a2 = c′′13 = b11 = b21 = b22 = b31 = d13 = g′′31 = 0 b23g12 P1(7)
(36) 8 a3 = c′′21 = b12 = b21 = b31 = b32 = b33 = g′′21 = 0 (*) P1(7)
(37) 8 a1 = a3 = b11 = b13 = b21 = b31 = b33 = d12 = 0 b22b32 T2(6)
(38) 8 a1 = a3 = b11 = b12 = b13 = b31 = b33 = d′32 = 0 a2 Q
(39) 8 a2 = a3 = b12 = b22 = b23 = b32 = b33 = g23 = 0 b21 P1(8)
(40) 8 a2 = a1 = b22 = b21 = b12 = b11 = d′23 = g12 = 0 (**) P1(10)
(41) 8 a1 = a2 = b11 = b12 = b21 = b22 = b31 = d13 = 0 a3g12b23b13b33 P1(8)
(42) 8 a1 = a2 = a3 = b33 = n31 = n23 = n′

23 = o123 = 0 b12b13b23 T2(2)
(43) 8 a1 = a2 = a3 = b12 = b22 = b31 = b32 = b33 = 0 b11 T(2)
(44) 8 a1 = a2 = a3 = b11 = b21 = b22 = b23 = b31 = 0 b33 P1(4)
(45) 8 a1 = a2 = a3 = b21 = b33 = d′′31 = n23 = o123 = 0 b23 P1(4)
(46) 8 a1 = a2 = a3 = b33 = d′′32 = g′′12 = n31 = o123 = 0 b11b23 P1(4)
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Table 4: Integrability conditions of Theorem 6 (continued).

st. n conditions =0 conditions �= 0 f.i. type
(47) 8 a1 = a2 = a3 = b11 = b13 = b31 = b33 = d′′32 = 0 b22 T2(2)
(48) 8 a1 = a2 = a3 = b11 = b13 = b31 = b32 = b33 = 0 b12 P1(4)
(49) 8 a1 = a2 = a3 = b21 = b22 = b23 = d31 = d13 = 0 g31 Q
(50) 8 a1 = a2 = a3 = b22 = b33 = e31 = g23 = n′

23 = 0 b12b23b32g
′′′
31 Q

(51) 8 a1 = a2 = a3 = b11 = b33 = d′′32 = g23 = n′
23 = 0 b13b23b22g

′′
12 T4(1)

(52) 8 a1 = a2 = a3 = b13 = b23 = d′′31 = d′′32 = n′
12 = 0 b11b21b33 Q

(53) 8 a1 = a2 = a3 = b22 = b33 = d′′31 = g13 = n′
31 = 0 b21b23d21 Q

(54) 9 c12 = c′31 = b32 = b12 = b22 = d21 = d13 = d31 = d23 = 0 |a1|+ |b11|+ |b33| T2(5)
(55) 9 c12 = c13 = b11 = b21 = b31 = b32 = d′′13 = d′′12 = n23 = 0 b33b22 Q
(56) 9 c′′13 = c′′23 = b11 = b21 = b31 = d12 = d23 = n32 = d13 = 0 a1a2a3 Q
(57) 9 a1 = c′′23 = b11 = b12 = b13 = b23 = b33 = e32 = g′′23 = 0 T2(1)
(58) 9 a3 = c′′12 = b12 = b13 = b21 = b23 = b31 = b32 = b33 = 0 |a1|+ |b11|+ |b22| T2(4)
(59) 9 a3 = c′′21 = b23 = b33 = b13 = d32 = d31 = d12 = d21 = 0 a1a2 Q
(60) 9 a1 = c′′′23 = b11 = b21 = b23 = b31 = b32 = d12 = d′′13 = 0 a2a3 Q
(61) 9 a2 = a1 = b22 = b21 = b32 = b12 = b13 = b11 = d23 = 0 a3 P1(8)
(62) 9 a1 = a3 = b11 = b13 = b23 = b31 = b33 = d′′12 = d32 = 0 a2 Q
(63) 9 a1 = a2 = a3 = b11 = b22 = b33 = b23 = b32 = g23 = 0 |b21|+ |b12|+ |b13| T2(2)

(*) |a1|+ |b11|+ |b22|+ |b23| �= 0 (**) |a3|+ |b31|+ |b32|+ |b33| �= 0

Theorem 7. An LV3 is integrable with two first integrals one of which being of the type of
Theorem 2(2) in the cases of Table 5, which exclude those already mentioned in Theorem
6.

Table 5. Integrability conditions of Theorem 7.

st. n conditions =0 conditions �= 0 f.i. type
(1) 5 c12 = c13 = d12 = j12 = o123 = 0 Q
(2) 6 c12 = c23 = b12 = b32 = r31 = o123 = 0 b11b31b33d23 Q
(3) 6 c12 = c13 = o123 = d′31 = d′21 = r32 = 0 b11b33 T4(49)
(4) 6 c12 = c13 = b33 = n′

12 = n′
23 = o123 = 0 d31 T2(4)

(5) 6 a1 = a2 = a3 = g23 = h23 = o123 = 0 b22b33d13d32 T2(3)
(6) 7 c12 = c13 = b13 = b23 = b31 = b32 = r12 = 0 a1a2a3b22b12b21 Q
(7) 7 a1 = a2 = a3 = b13 = b23 = j23 = g31 = 0 (∗) T2(3)
(8) 7 a1 = a2 = a3 = b12 = b13 = b23 = o123 = 0 b33d21j23 T2(3)
(9) 7 a1 = a2 = a3 = b22 = b33 = g23 = o123 = 0 b11b23 T2(3)
(10) 8 c12 = c13 = b11 = b22 = b31 = d′′23 = g′21 = g′′31 = 0 b21b33 T2(4)
(11) 8 a1 = a2 = a3 = b12 = d13 = d31 = d′32 = p′′′13 = 0 b11d23 T4(4)
(12) 8 a1 = a2 = a3 = b13 = b22 = b23 = i32 = o123 = 0 b21d21 T2(3)
(13) 8 a1 = a2 = a3 = b11 = b32 = b33 = g32 = o123 = 0 b22 T2(3)
(14) 8 a1 = a2 = a3 = b21 = d12 = d23 = e31 = g13 = 0 b33 T2(3)
(15) 8 a1 = a2 = a3 = b32 = b33 = d′21 = g23 = o123 = 0 b11b22d12 T2(3)
(16) 8 a1 = a2 = a3 = b22 = b23 = d′21 = d′31 = o123 = 0 b33 T2(3)
(17) 8 a1 = a2 = a3 = b11 = b33 = d′′32 = g23 = o123 = 0 b13b23b22 T2(3)
(18) 8 a1 = a2 = a3 = b22 = b33 = d′′31 = g13 = o123 = 0 b11d21 T2(3)
(19) 9 a1 = a2 = a3 = b11 = b12 = b33 = d′′32 = g12 = g23 = 0 T2(3)

(∗) d31d32(b11b22 + b32d
′′
31) �= 0
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Theorem 8. An LV3 is integrable with two first integrals one of which being of the type
of Theorem 2(3)(excluding those included in Theorem 7) in the cases of Table 6.

Table 6: Integrability conditions of Theorem 8.

st. n conditions =0 conditions �= 0 f.i. type
(1) 5 a1 = a2 = a3 = g12 = i′′′23 = 0 d23j13 Q
(2) 6 a1 = c23 = b11 = b32 = e12 = g23 = 0 b33d23d32d13j12 Q
(3) 6 a1 = c23 = b11 = b21 = b31 = b32 = 0 (*) P1(2),T2(3)
(4) 6 a1 = c23 = b11 = g13 = d′12 = g23 = 0 a2a3d23d32d13d

′′
23 Q

(5) 6 a1 = c23 = b11 = b32 = o123 = g23 = 0 d23d32d13 Q
(6) 6 a1 = c23 = b11 = b12 = d′32 = g23 = 0 d13d

′′
23j12 Q

(7) 6 a1 = c23 = b11 = b13 = d′23 = g23 = 0 b12d12d
′′
32j13 Q

(8) 6 a1 = c23 = b11 = g23 = n23 = o123 = 0 b22b33d23d32d12d
′′
32 Q

(9) 6 a1 = c23 = b11 = b12 = b32 = g23 = 0 b22b33b13d13 T2(7)
(10) 6 a2 = c13 = b22 = g23 = g13 = r31 = 0 b33 Q
(11) 6 a1 = c23 = b11 = n′

23 = r23 = g23 = 0 b22b33d13d32h
′
23 Q

(12) 6 a1 = c23 = b11 = b13 = b23 = g23 = 0 b12d32 P1(8)
(13) 6 a1 = c23 = b11 = g23 = g13 = r23 = 0 a2a3d13d12 Q
(14) 6 a1 = a2 = a3 = g12 = g23 = g31 = 0 b21d23d32 Q
(15) 6 a1 = a2 = a3 = b13 = b23 = g23 = 0 (**) T2(3)
(16) 7 a1 = c23 = b11 = b32 = b12 = g12 = g23 = 0 b33b21d23d32 Q
(17) 7 a1 = c′′′12 = c′′13 = h′

31 = p32 = g32 = g31 = 0 b11b22b33d13d12 T2(3)
(18) 7 a1 = a2 = a3 = d′32 = d′12 = n31 = q′′′31 (***) Q
(19) 7 a1 = a2 = a3 = g23 = n23 = n′

23 = piv
13 = 0 b12b13b22d23 T4(1)

(20) 7 a1 = a2 = a3 = b12 = b13 = n23 = g32 = 0 b22b33d32d
′′
32 T4(1)

(21) 7 a1 = a2 = a3 = b12 = b32 = b33 = g23 = 0 b21b13 T2(3)
(22) 7 a1 = a2 = a3 = d′21 = d′31 = n23 = q′′′23 = 0 b33d32d

′′
32i

′′
31 Q

(23) 7 a1 = a2 = a3 = b13 = b22 = d′23 = g23 = 0 (****) Q
(24) 7 a1 = a2 = a3 = b33 = g31 = g32 = q′21 = 0 b13b23d12g

′′
12 Q

(25) 8 c23 = c′31 = b11 = b21 = b31 = b32 = d′12 = d13 = 0 a1a2a3b33d23 �= 0 P1(2),T2(3)
(26) 8 c12 = c23 = b11 = r21 = r31 = r′23 = r′32 = n′

13 = 0 b22b33 T4(37)
(27) 8 a1 = c23 = b11 = b13 = b21 = b31 = d′23 = j13 = 0 a2a3 Q
(28) 8 a1 = a2 = a3 = b33 = e31 = e32 = g13 = g23 = 0 b23b31b21d23 T2(3)
(29) 8 a1 = a2 = a3 = b13 = b22 = b23 = d′′31 = g13 = 0 b21 T2(3)
(30) 8 a1 = a2 = a3 = b22 = d′′21 = d′13 = g12 = g23 = 0 g′31 T2(3)
(31) 8 a1 = a2 = a3 = b11 = b22 = b33 = g23 = g13 = 0 g′′12 T2(3)
(32) 8 a1 = a2 = a3 = b11 = b22 = b33 = g23 = n′

23 = 0 b23b21g
′′
12 Q

(33) 9 c′′12 = c′′23 = b12 = b22 = b32 = d23 = e31 = g23 = r31 = 0 b33 Q
(34) 9 a1 = c23 = c′′′31 = b11 = b31 = d′′12 = d32 = d23 = d13 = 0 b21b33 Q
(35) 9 a1 = a2 = a3 = b33 = d′12 = d′′21 = d′′32 = g32 = g′′′21 = 0 b11 Q
(36) 9 a1 = a2 = a3 = d12 = d13 = d21 = d31 = n32 = j′12 = 0 b33d13 Q
(37) 9 a1 = a2 = a3 = b22 = b23 = d′′21 = d′13 = g23 = g′′′31 = 0 b12 Q
(38) 9 a1 = a2 = a3 = b22 = b33 = d′′31 = g23 = g′′′21 = g′′′31 = 0 b12b23 Q

(*) b22b33d23(b22b13 + b33b12 − b23b12) �= 0 (**) d12d21d32(b12b21 − b11b22) �= 0
(***) b11d13d

′′
13i

′′
12(2d13 − b33) �= 0 (****) b12g

′′
31(b12b21 + b11b32) �= 0.
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Theorem 9. An LV3 is integrable with two first integrals one of which being of the type
of Theorem 2(4) in the cases of Table 7.

Table 7: Integrability conditions of Theorem 9.

st. n conditions =0 conditions �= 0 f.i. type
(1) 6 b11 = b12 = b21 = b31 = b32 = r23 = 0 a2b22b33 T2(7)
(2) 6 b13 = b21 = b23 = b31 = r12 = r23 = 0 a1a2a3 T2(4)
(3) 6 b13 = b21 = b23 = e31 = r12 = r32 = 0 a2b11 Q
(4) 6 c12 = c′32 = b13 = b23 = o123 = r12 = 0 a1a2a3b11d21 Q
(5) 6 a1 = c23 = b11 = g23 = g13 = r23 = 0 b22d12 P1(3)
(6) 7 c′′′23 = b12 = b31 = b32 = e21 = e23 = r31 = 0 a2a3c

′′
12 Q

(7) 7 c′′31 = b12 = b13 = b31 = b32 = e21 = r23 = 0 a1a2a3c
′′
12 Q

(8) 7 c′′23 = b23 = b31 = b32 = b12 = e21 = r13 = 0 a1a2a3c
′′
12 Q

(9) 8 c′′12 = b11 = b21 = b23 = b31 = d12 = d13 = r32 = 0 a1a2 P1(2)
(10) 8 c′′31 = b11 = b21 = b31 = b32 = d12 = d13 = r23 = 0 a1a3b33 P1(2)
(11) 8 c′′13 = b11 = b13 = b21 = b23 = b31 = r23 = r′′12 = 0 a1a2a3 P1(2)
(12) 8 c23 = b12 = b22 = b31 = b32 = d23 = e21 = s′′13 = 0 b23 P1(6)
(13) 8 c′′12 = c13 = b12 = b21 = b23 = b32 = e31 = r′13 = 0 a1a2a3 T5(19)
(14) 8 c′′′12 = c32 = b12 = b13 = b32 = d′21 = d′′23 = d′31 = 0 a1a2a3 T5(14)
(15) 8 c23 = c′′′13 = b12 = b13 = b23 = d′21 = d′′32 = g32 = 0 a1a2a3 Q
(16) 8 c12 = c′′′23 = b12 = b13 = b21 = b23 = b32 = d′31 = 0 a1a2a3 T5(43)
(17) 8 a1 = b11 = b21 = b32 = b31 = d13 = d′12 = r23 = 0 |a3|+ |b33| P1(2)
(18) 8 a3 = b13 = b21 = b23 = b33 = d32 = e31 = r12 = 0 a2 P1(2)
(19) 8 a3 = b33 = b13 = b23 = b21 = d31 = d′′32 = r12 = 0 a1a2 P1(2)
(20) 8 a1 = c23 = b11 = b21 = b31 = d13 = j13 = r32 = 0 b22 P1(3)
(21) 8 a2 = b12 = b21 = b22 = b31 = b32 = d23 = r31 = 0 a1a3 P1(2)
(22) 8 a1 = b11 = b21 = b31 = b32 = d13 = d′′12 = s23 = 0 a2a3 P1(2)
(23) 9 a3 = c′′′12 = b12 = b13 = b23 = b31 = b33 = d′21 = d32 = 0 |a1|+ |b11|+ |b22| Q
(24) 9 c23 = c′31 = b12 = b13 = b23 = b32 = b33 = d31 = r12 = 0 b11b22 T2(5)
(25) 9 c′′12 = c13 = b11 = b21 = b23 = b31 = b32 = d12 = d13 = 0 a1a2a3 P1(2)
(26) 9 c12 = c23 = b11 = b21 = b31 = b32 = d12 = d13 = d′′23 = 0 a1a2a3b22b33 P1(2,3)
(27) 9 c13 = c23 = b11 = b21 = b23 = b31 = d12 = d′′13 = d′′32 = 0 (*) P1(2,3)
(28) 9 c23 = c′21 = b12 = b22 = b31 = b32 = d21 = d23 = j′′12 = 0 |a1|+ |b11|+ |b33| T4(4)
(29) 9 c12 = c13 = b12 = b21 = b22 = b32 = d23 = d′31 = r13 = 0 b11 Q
(30) 9 c′21 = c23 = b12 = b31 = b22 = b32 = d23 = d′′21 = r31 = 0 b13 Q
(31) 9 a3 = c′′21 = b23 = b21 = b33 = b12 = b13 = d32 = d′′31 = 0 |a1|+ |b11| P1(2)
(32) 9 a1 = c′′23 = b11 = b13 = b21 = b23 = b31 = b32 = d′′12 = 0 |a2|+ |b33| P1(2)
(33) 9 a1 = c23 = b11 = b21 = b31 = d13 = d′12 = d′23 = n′

32 = 0 b22b33 P1(3)
(34) 9 a1 = c′′23 = b11 = b21 = b23 = b31 = b32 = d12 = d′′13 = 0 |a2|+ |b33| P1(2)
(35) 9 a3 = c′′12 = b12 = b13 = b21 = b23 = b33 = d32 = e31 = 0 |a2|+ |b22| P1(2)
(36) 9 a2 = c′′′13 = b12 = b22 = b31 = b32 = d21 = d′′23 = e13 = 0 |a3|+ |b33| P1(2)
(37) 9 a1 = c′′23 = b11 = b21 = b23 = b31 = b32 = d12 = d′′13 = 0 |a3|+ |b33| P1(2)
(38) 9 a2 = c13 = b12 = b22 = b32 = d23 = e31 = g23 = r13 = 0 |a1|+ |b11|+ |b33| Q
(39) 9 a2 = c′′′13 = b12 = b13 = b21 = b22 = b32 = d′31 = d23 = 0 |a1|+ |b11|+ |b33| Q
(40) 9 a3 = c′′′21 = b12 = b13 = b23 = b32 = b33 = e21 = e31 = 0 |a1|+ |b11|+ |b22| Q
(41) 9 a3 = c′′′12 = b12 = b13 = b23 = b31 = b33 = d′21 = d′′32 = 0 a1a2 Q

(*) (a2 + b22)(b22 + b33) �= 0
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Theorem 10. The LV3 has two first integrals with at least one being formed by one linear
algebraic solution not included in Theorems 6-9 in the cases of Table 8.

Table 8. Integrability conditions of Theorem 10.

st. n conditions =0 cond. �= 0 f.i. type
(1) 5 a1 = b11 = b12 = b32 = d′′13 a3b31b33 T2(7),Q
(2) 6 b11 = b12 = b21 = b31 = b32 = r′23 = 0 a2a3c23 T2(7),T5(1)
(3) 6 a1 = c′32 = b11 = b13 = b23 = g′32 = 0 b12b22d12d

′′
32 2T2(7)

(4) 7 c′′23 = b23 = b31 = b32 = b13 = d21 = d12 = 0 a1a2a3c12 T2(5),Q
(5) 8 c23 = b12 = b13 = b22 = b31 = b32 = e21 = d′′23 = 0 c12 2P1(2)
(6) 8 c′31 = b12 = b13 = b22 = b23 = b32 = b33 = d31 = 0 l32 T2(5),Q
(7) 8 c′21 = c23 = b12 = b13 = b22 = b32 = d23 = d21 = 0 b21b23 T2(11),Q
(8) 8 c12 = c23 = b12 = b22 = b31 = b32 = d21 = d23 = 0 a1a2a3b11 T2(11),Q
(9) 8 c32 = c′′13 = b23 = b31 = b32 = b13 = d21 = d12 = 0 b11 T2(5),T5(3)
(10) 8 a1 = b31 = b32 = b11 = b12 = b23 = b21 = d13 = 0 a2a3 T2(7),Q
(11) 8 a1 = c23 = b11 = b13 = b21 = b31 = d12 = d′23 = 0 b22 P1(3),Q
(12) 8 a1 = c′′′32 = b11 = b12 = b32 = d′13 = g12 = g′′′32 = 0 a2a3 T2(6),Q
(13) 8 a1 = c′′′32 = b11 = b12 = b23 = b32 = e13 = g′′′32 = 0 a2a3 T2(6),Q
(14) 8 a1 = c′′′32 = b11 = b12 = b23 = b32 = d′13 = g′′′32 = 0 a2a3 T2(6),Q
(15) 9 c12 = c13 = b11 = b21 = b23 = b31 = d12 = d′′13 = n23 = 0 a1a2a3 P1(2),Q
(16) 9 a1 = c′′′32 = b11 = b13 = b21 = b23 = b31 = b32 = d′′12 = 0 |a3|+ |b33| P1(2),Q
(17) 9 a1 = c′′23 = b11 = b21 = b31 = d′′12 = d′′13 = d23 = d32 = 0 a2a3 T2(5),Q

Theorem 11. The LV3 has two first integrals with quadratic algebraic solutions in the
cases of Table 9.

Table 9. Integrability conditions of Theorem 11.

st. n conditions =0 cond. �= 0 f.i. type
(1) 7 c23 = b12 = b13 = d′23 = d′32 = g23 = r13 = 0 (*) Q,Q
(2) 7 c′′′23 = b31 = b32 = d12 = d21 = e23 = n′

13 = 0 a1a2a3b11b33 Q,Q
(3) 7 c23 = c′21 = d21 = d12 = d31 = r23 = r13 = 0 b11b22b33d23 T4(12),Q
(4) 7 c23 = c′21 = b12 = g32 = n12 = r23 = n31 = 0 d32d

′′
31 T4(12),T4(28)

(5) 7 c′′12 = c′13 = b23 = b31 = e12 = e21 = e32 = 0 b13b33d
′′
13 T5(30),Q

(6) 8 c12 = c23 = b13 = r21 = r31 = r′23 = r′32 = n′
13 = 0 b22b33 T4(37),T4(1)

(7) 8 c′′12 = c′′13 = b31 = b21 = r12 = r13 = r′23 = r′32 = 0 a1a2a3b11b12 T4(2),T5(46)
(8) 8 c12 = c13 = b21 = b23 = b31 = g13 = n12 = n′

23 = 0 b22b33 T4(1), T4(2)
(9) 8 a3 = c′′′12 = b12 = b21 = b32 = b33 = e31 = g′′′12 = 0 a1a2 Q,Q
(10) 8 a2 = c′′′31 = b21 = b22 = b31 = d′13 = d′′23 = n′

23 = 0 a1a3 T5(4),Q
(11) 8 a3 = c′′12 = b32 = b33 = d21 = d12 = g′32 = g′′12 = 0 a1 T5(56),T5(57)
(12) 9 c′′12 = c′13 = b11 = b21 = b23 = b31 = d12 = d′′13 = r′32 = 0 a1a2a3 Q,Q
(13) 9 c′21 = c′′′23 = b11 = b21 = b23 = b31 = d13 = d′12 = n23 = 0 a1a2a3 T5(5), Q
(14) 9 c′21 = c′31 = b12 = b13 = b22 = b32 = d′′21 = d′′23 = n31 = 0 a1a2a3b33 T4(4),T4(27)
(15) 9 c13 = c23 = b11 = b21 = b23 = b31 = d12 = d′′13 = n23 = 0 b22b33 Q,Q
(16) 9 c′′12 = c23 = b11 = b21 = b31 = d12 = d13 = r′23 = n23 = 0 a1a2a3 T5(10),T5(46)

(*) a1b11d21d31d
′′
23d

′′
32 �= 0.

We note, before concluding, that Theorem 4(6) and Theorem 8(1) with the additional
conditions b11 = b22 = b33 = 0 and Theorem 8(31–32) are Theorem 6(5–6) and Theorem
7(4) and 7(7) respectively of [4] in the case of ABC systems. Moreover, we note that to
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the above mentioned cases of Theorem 11, one must add the case obtained by Moulin–
Ollagnier [30] for the ABC system which is formed with the first integral of Theorem 4(5)
and an other one which is not of Darboux type (see Ref. 31 for more details).

7 Conclusion

The use of Darboux method for the LV3 has been rather efficient to find first integrals
and to detect integrable cases. The main reason of this efficiency must be found in the
fact that the problem of searching a first integral has been reduced here to the search
of only one algebraic solution. (Theorem 3 is when a quadratic algebraic solution can be
factorised in two linear ones). In total we have found 366 cases, among which 172 are cases
of a single first integral and 194 when two first integrals coexist. As predicted, we see that
for the existence of quadratic invariant solutions and the corresponding first integrals, we
require a larger number of conditions than for linear algebraic solutions. In fact for having
a single first integral formed by planes we can need only a maximum of 3 conditions in
total (Theorem 2 (1)-(4)), whereas it is required 4 to 8 conditions when at least there is
one second degree solution. The cases of integrability require at least 4 conditions when
both first integrals are linear (in fact one case with 4 conditions and 5 with 5 conditions).
Otherwise their number can grow now to 9 conditions. In general the number of conditions
required is the number corresponding to the more constrained first integral increased by
one. The number of essential parameters of the LV3 system being 9 (8 if we normalize the
time), we omitted to consider the cases having more than 9 conditions. The present work
can be completed with the cases where the planes x = 0, y = 0, z = 0 and f4 = 0 are
replaced by other planes and polynomials of greater degree, by exponential factors (see
Cairó and Llibre [4]) and with time-dependent first integrals.
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