














When we consider A we can find a permutation
such that A = Ai0 hence ∆(A) = νc(Ai0) = νc(A).
η(∆(A)) = ∇(A) = η(νc(A)) = ν(A)∮  

ν

(f) =
∮  

∇
(f) ≥

∧
δ∈S(νc)

∮  

∇
(f). (10)

If δ ∈ S(νc) then η(νc(A)) ≤ η(∆(A)) i.e
ν(A) ≤ ∇(A). So

∮  
ν

(f) ≤
∮  
∇(f) for all δ ∈ S(νc).

So
∮  
ν

(f) ≤
∧
δ∈S(νc)

∮  
∇(f).

The qualitative desintegrals can also be expressed
as lower or upper bounds using the relations be-
tween the qualitative integrals and desintegrals.
This may be used for obtaining the results for
desintegrals from the ones regarding integrals.∮  

ν
(f) = Sν(·)(η(f)) =

∧
π∈S(ν(·)) SΠ(η(f)).∮ ↓

ν
(f) =

∮ ↑
η(ν)(η(f)) =

∨
π∈S(η(ν))

∮ ↑
Π(η(f)).∮ ⇓

ν
(f) =

∮ ⇑
ν(·)(η(f)) =

∧
π∈S(ν(·))

∮ ⇑
Π (η(f)).

For instance, Proposition 13 can be ob-
tained by noticing that

∮  
ν

(f) = Sν(·)(η(f)) =∧
π∈S(ν(·)) SΠ(η(f)) =

∧
η(δ)∈S(ν(·)) S∇(f)

since ∇δ(A) = Πη(δ)(A). It can be checked that
π ∈ S(η(ν))⇔ η(π) ∈ S(ν), and thus
η(δ) ∈ S(ν(·)) ⇔ δ ∈ S(η(ν(·))) ⇔ δ ∈ S(νc),
which completes the checking of Proposition 13.

7. Conclusion

Retrospectively, one may wonder why one has only
considered Sugeno integrals for a long time, since
the other qualitative integrals are as simple. The re-
sults obtained in this paper makes Sugeno integrals,
and other integrals or desintegrals easier to com-
pute as a simple combination of integrals or desin-
tegrals with respect to possibility, necessity, guar-
anteed possibility measures (i.e. basically weighted
max and min). Besides, the representation of capac-
ities as a finite conjunction of possibility measures,
or as a finite disjunction of necessity measures has
strong links with k-maxitivity and k-minitivity ax-
ioms, and the representation of imprecise possibili-
ties by means of possibilistic focal elements of lim-
ited size. This will motivate further investigation.
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