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Abstract

Any capacity (i.e., an increasing set function) has
been proved to be a lower possibility measure and
an upper necessity measure. Similarly, it is shown
that any anti-capacity (i.e., a decreasing set func-
tion) can be viewed both as an upper guaranteed
possibility measure and as a lower weak necessity
measure. These results are the basis for establish-
ing that qualitative integrals (including Sugeno in-
tegrals) are lower and /or upper possibilistic expec-
tations wrt a possibility measure, while qualitative
desintegrals are upper or lower possibilistic expec-
tations wrt a guaranteed possibility measure. The
results are presented in a finite qualitative setting,
and apply to multiple criteria aggregation or deci-
sion under uncertainty.

Keywords: capacity; Heyting algebras; Sugeno in-
tegral; possibility theory.

1. Introduction

Monotonic set functions are a basic representation
tool that can be encountered in many areas, in par-
ticular in uncertainty modeling, multiple criteria ag-
gregation, group decision and game theory. While
quantitative settings rely on weighted sums, qual-
itative ones use weighted maximum or minimum
operators. In a qualitative perspective, it is re-
markable that in a finite setting, a capacity (i.e.,
an increasing set function) can be represented by a
conjunction of possibility measures or by a disjunc-
tion of necessity measures [1, 2]. Dually, decreas-
ing set functions can also be represented in terms
of decreasing max or min decomposable measures.
These observations are the starting point in this pa-
per looking for the expression of general qualitative
integrals (resp. desintgrals) in terms of the maxi-
mum or minimum of finite families of integrals (resp.
desintegrals) of the same type with respect to possi-
bility or necessity (resp. guaranteed possibility and
weak necessity) measures.
In multi-criteria decision making, Sugeno inte-

grals are commonly used as qualitative aggregation
functions [11]. They are counterparts to Choquet
integrals that apply to a quantitative setting. The
definition of Sugeno integrals depends on a capac-
ity which represent the importance of the subsets of
criteria. Importance levels may affect aggregation

operators in different ways due to several variants
of the Sugeno integrals, named qualitative integrals,
when the evaluation scale is a Heyting algebra and
the residuum is the Gödel implication [4, 5].

Qualitative integrals are such that the resulting
global evaluation increases with the partial evalu-
ations. In such a case the criteria are said to be
positive (the higher their values, the better the cor-
responding evaluations). If the global evaluation
increases when the partial evaluations decrease the
criteria are said to be negative. In such a case
other variants of the Sugeno integrals, named qual-
itative desintegrals, can be defined. The capacities
are then replaced by fuzzy anti-measures which are
decreasing set functions. Besides, it has been re-
cently shown that a Sugeno integral is a lower prior-
itized maximum [2]. This paper extends this result
to qualitative integrals and qualitative desintegrals.
It continues a systematic investigation of the qual-
itative setting for the representation of uncertainty
and preferences, which has been started by the au-
thors two years ago.

The paper is structured as follows. The next sec-
tion is devoted to the representation of qualitative
capacities and anti-capacities in terms of possibil-
ity and necessity measures, and in terms of guar-
anteed possibility measures and their duals respec-
tively. The definitions of the qualitative integrals
and desintegrals are then recalled in Section 3. For
each of them, Section 4 presents equivalent expres-
sions that require the comparison of only n cases
(the number of criteria). In Section 5, qualitative
integrals are shown to be upper and lower possibility
integrals, and before concluding, Section 6 presents
similar results for the qualitative desintegrals.

2. Qualitative capacities and anti-capacities

We first recall the qualitative setting of Heyting al-
gebras in which evaluations take place, as well as
the finite framework of multiple criteria aggrega-
tion. We then restate how a fuzzy measure, or ca-
pacity, can be naturally associated to a possibilistic
core, thus pointing out a parallel with cooperative
game theory. In particular, the minimal elements
of this core enable us to obtain a representation of
a capacity as a lower possibility measure or as an
upper necessity measure. Similar results are estab-
lished for the support associated to anti-capacities,
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which are decreasing set functions, with respect to
guaranteed possibility measures and their duals. In
this paper, these results are then used in multiple
criteria aggregation. It should be clear that these
results would be also meaningful for decision under
uncertainty [3].

2.1. Algebraic framework

We consider a finite set of criteria S = {s1, · · · , sn}.
Objects are evaluated using these criteria. The eval-
uation scale, L, associated to each criterion is as-
sumed to be totally ordered. It may be finite or
be the interval [0, 1]. Then an object is represented
by its evaluation on the different criteria, i.e., by
f = (f1, · · · , fn) ∈ Ln where fi is the evaluation of
f according to the criterion si. In the following the
evaluation of f according to the criterion s can also
be denoted f(s).
Moreover we consider L as a Heyting algebra i.e.,

as a complete residuated lattice with a greatest el-
ement denoted by 1 and a least element denoted
by 0. More precisely, 〈L,∧,∨,→, 0, 1〉 is a com-
plete lattice: 〈L,∧, 1〉 is a commutative monoid (i.e.,
∧ is associative, commutative and for all a ∈ L,
a ∧ 1 = a). The associated residuated implication,
denoted by→ is then the Gödel implication defined
by a→ b =

∨
a∧x≤b x = 1 if a ≤ b and b otherwise.

In the following, we will consider positive criteria
and negative criteria. The criteria are positive when
the global evaluation of objects increases with the
partial evaluation. When we consider negative cri-
teria, the global evaluation increases when the par-
tial evaluations decrease. Partial evaluations model
degrees of defect. In this latter case, 0 will be a good
local evaluation, 1 will be a bad evaluation and the
scale will be said to be decreasing (the scale is in-
creasing in the case of positive criteria). To play
with the directionality of the scale, we also need an
operation that reverses it. This operation (a de-
creasing involution) defined on L is denoted by η,
and 〈L,∧,∨, η〉 is a De Morgan algebra.

2.2. Fuzzy measures. Their possibilistic core

A capacity (or fuzzy measure) is set increasing. For-
mally, it is a mapping γ : 2S → L such that γ(∅) =
0, γ(S) = 1, and if A ⊆ B then γ(A) ≤ γ(B).
When we consider positive criteria, γ(A) represents
the importance of the subset A of criteria.
The conjugate γc(A) of capacity γ is a capacity

defined by γc(A) = η(γ(Ac)),∀A ⊆ S, where Ac is
the complement of subset A.
A special case of capacity is a possibility mea-

sure [16, 7] which is a maxitive capacity, i.e., a
capacity Π such that Π(A ∪ B) = Π(A) ∨ Π(B).
Since S is finite, the possibility distribution π :
π(s) = Π({s}) is enough to recover the set-function:
Π(A) = ∨s∈A π(s). When modeling uncertainty,
the value π(s) is understood as the possibility that
s be the actual state of the world: ∃s ∈ S : π(s) = 1.

When modeling priorities, π(s) is the importance of
criterion s, and normalization means that there is
at least one criterion that is fully important. A pos-
sibility measure Π1 is said to be more specific than
another possibility measure Π2 if ∀A ⊂ S,Π1(A) ≤
Π2(A) (equivalently ∀s ∈ S, π1(s) ≤ π2(s)). If Π1
and Π2 are possibility measures, then Π1 ∨ Π2 is a
possibility measure too, which is less specific than
both Π1 and Π2 [8].

The conjugate of a possibility measure Π is a ne-
cessity measure N(A) = η(Π(Ac)), and then N is a
minitive capacity, i.e., N(A ∩B) = N(A) ∧ N(B).
Moreover, N(A) = ∧s6∈A ι(s) where ι(s) =
N(S \ {s}) (this is the degree of impossibility of s
when dealing with uncertainty), and ι(s) = η(π(s)),
where π defines the conjugate possibility measure
Π = N c.

There is always at least one possibility measure
that dominates any capacity: the vacuous possibil-
ity measure, based on the distribution π? express-
ing ignorance, since then ∀A 6= ∅ ⊂ S,Π?(A) = 1 ≥
γ(A),∀ capacity γ, and Π?(∅) = γ(∅) = 0. Let

S(γ) = {π : Π(A) ≥ γ(A),∀A ⊆ S}

be the set of possibility distributions whose corre-
sponding set-functions Π dominate γ. We call S(γ)
the possibilistic core of the capacity γ.

By analogy with game theory, it may be also
viewed as the possibilistic core of the capacity γ.
Indeed, in game theory, the core, which is the set
of feasible allocations p that cannot be improved
upon by a coalition, can be defined by the condi-
tions

∑
si∈A p(si) ≥ γ(A), and

∑
si∈S p(si) = γ(S),

where γ is now the characteristic function of the
game. The possibilistic core is thus just a qualita-
tive maxitive counterpart to the additive definition
of the core in game theory.

Let us recall some results on the structure of this
set of possibility distributions. Let σ be a permuta-
tion of the n = |S| elements in S. The ith element
of the permutation is denoted by sσ(i). Moreover
let Siσ = {sσ(i), . . . , sσ(n)}. Define the possibility
distribution πγσ as follows:

∀i = 1 . . . , n, πγσ(sσ(i)) = γ(Siσ) (1)

There are at most n! (number of permutations) such
possibility distributions. It can be checked that the
possibility measure Πγ

σ induced by πγσ lies in S(γ)
and that the n! such possibility distributions enable
γ to be reconstructed (as already pointed out by
Banon [1]). More precisely, for each permutation σ:
∀A ⊆ S,Πγ

σ(A) ≥ γ(A). Moreover, ∀A ⊆ S, γ(A) =∧
σ Πγ

σ(A). As a consequence, ∀π ∈ S(γ), π(s) ≥
πγσ(s),∀s ∈ S for some permutation σ of S.

This result says that the possibility distributions
πγσ (we call them the marginals of γ) include the
least elements of S(γ) in the sense of fuzzy set inclu-
sion, i.e., the most specific possibility distributions
dominating γ. In other terms, S(γ) = {π,∃σ, π ≥
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πγσ}. Of course the maximal element of S(γ) is the
vacuous possibility distribution π?.
In the qualitative case, S(γ) is closed under the

qualitative counterpart of a convex combination or
mixture: namely, if π1, π2 ∈ S(γ) then ∀a, b ∈ L,
such that a∨b = 1, it holds that (a∧π1)∨(b∧π2) ∈
S(γ). In fact, S(γ) is an upper semi-lattice. Let
C∗(γ) = minS(γ) be the set of minimal elements in
S(γ).
It is interesting to look at the properties of the

set of qualitative mixtures that can be built from
C∗(γ). Let us denote this set by

QMC∗(γ) = {
∨

πi∈C∗(γ)

ai ∧ πi| ∨i ai = 1}.

This is the qualitative counterpart of a credal set
(convex set of probabilities). It can be checked that
- QMC∗(γ)⊂S(γ), since in general Π? 6∈QMC∗ ;
- QMC∗(Π)={Π} for any possibility measure Π;
- minQMC∗(γ) = C∗(γ);
- maxQMC∗(γ)={πγ} with πγ =

∨
πi∈C∗(γ)πi.

In order to better characterize πγ , we need to first
introduce the (inner) qualitative Mœbius transform
γ# of the capacity γ. It is a mapping γ# : 2S → L
defined by [13, 10]

γ#(E) = γ(E) if γ(E) >
∨
B(E

γ(B)

and γ#(E) = 0 otherwise. The qualitative Mœbius
transform contains the minimal information needed
to reconstruct the capacity γ, and the qualitative
counterpart of a belief function [6, 14] based on
the basic possibilistic assignment γ# (note that∨
E γ#(E) = 1 and γ#(∅)=0) is nothing but γ itself,

namely
γ(A) =

∨
E⊆A

γ#(E).

Moreover, it can be shown [2] that πγ(s) =∨
s∈A γ#(A). Then we have

Πγ(A) =
∨

E:E∩A6=∅

γ#(E),

which expresses that Πγ is the qualitative counter-
part [6, 14] of a Shafer plausibility function [15].
Thus, the maximal element of QMC∗ , i.e., the pos-
sibility distribution πγ , is the contour function of γ.
Besides, it follows from the definition of the pos-

sibilistic core that γ(A) =
∧

Π∈S(γ) Π(A), and thus
the following proposition holds [2].

Proposition 1 Any capacity can be viewed either
as a lower possibility measure or as an upper neces-
sity measure:

γ(A) =
∧

π∈C∗(γ)

Π(A)

γ(A) =
∨

π∈C∗(γc)

N(A)

where C∗(γ) the set of minimal elements in the pos-
sibilistic core of γ.
The second result can be obtained by apply-

ing the first one to γc, and using γc(A) =
η(γ(Ac)),∀A ⊆ S, the involution of η, together with
N(Ac) = η(Π(A)). Moreover, the inner qualitative
Mœbius transform γc# of the conjugate defines the
outer qualitative Mœbius transforms γ# of a capac-
ity γ

γ#(A) = η(γc#(Ac)),

and
γ#(A) = γ(A) if γ(A) <

∧
A⊂E

γ(E)

and γ#(A) = 1 otherwise.

2.3. Fuzzy anti-measures and their support

A fuzzy anti-measure (or anti-capacity) is set de-
creasing, and is formally defined as a mapping
ν : 2S → L such that ν(∅) = 1, ν(S) = 0, and
if A ⊆ B then ν(B) ≤ ν(A).
When we consider negative criteria, ν(A) is the

level of tolerance of the subset A of criteria: the
greater ν(A), the less important is A. It makes
sense for negative scales: the degrees of defect in
the criteria forming set A have to be higher than
ν(A) in order to be considered significant.

The conjugate νc of an anti-capacity ν is defined
by νc(A) = η(ν(Ac)). This is also a fuzzy anti-
measure.

A special case of anti-capacity is the guaran-
teed possibility measure [9] defined by ∆(A) =
∧s∈Aδ(s), where δ is a possibility distribution such
that ∧s δ(s) = 0. In a multiple criteria perspec-
tive, δ(s) is the tolerance level of criterion s. The
conjugate ∇ of ∆ is the weak necessity measure
∇(A) = η(∆(Ac)).

Just as capacities have possibilistic cores, an anti-
capacity ν has a possibilistic support S(ν), defined
by

S(ν) = {δ : ∆(A) ≤ ν(A),∀A ⊆ S}.

The set S(ν) is not empty since there is al-
ways at least one guaranteed possibility under any
anti-measure based on the following tolerance func-
tion t expressing complete intolerance, since then
∀A 6= ∅ ⊂ S, t(A) = 0 ≤ ν(A),∀ anti-measure ν,
and t(∅) = ν(∅) = 1.

A result dual of Proposition 1 can then be estab-
lished. It is clear that S(ν) is a lower semi-lattice,
and that one can restrict the

∨
and
∧

to the max-
imal elements of S(ν) in the following proposition.

Proposition 2

ν(A) =
∨

δ∈S(ν)

∆(A).

ν(A) =
∧

δ∈S(νc)

∇(A).
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Proof:
For all A, we have

∨
δ∈S(ν) ∆(A) ≤ ν(A).

Let σ be a permutation of the n = |S| elements in
S. We denote the i-th element of the permutation
by sσ(i), and let Siσ = {sσ(i), · · · , sσ(n)}.
Let us define the tolerance tσν (i) = ν(Siσ). The as-

sociated guaranteed possibility ∆σ
ν belongs to S(ν).

Let Ciσσ be the smallest set in the sequence {Ciσ}i
such that A ⊆ Ciσσ . Note that we have sσ(iσ) ∈ A.
A ⊆ Ciσ entails ν(A) ≥ ν(Ciσσ ) = tσν (iσ). Moreover
∆σ
ν (A) = ∧j∈Atσν (j) ≤ tσν (iσ) ≤ ν(A).
When we consider a set of criteria A, there ex-

ists a permutation σ0 such that A = Siσ0
. Hence,

ν(A) = ν(Siσ0
) = tσ0

ν (i).
Moreover we have ∆σ0

ν (A) = tσ0
ν (i)∧· · ·∧tσ0

ν (n) =
ν(Siσ0

) ∧ · · · ∧ ν(Snσ0
) = ν(Siσ0

) = tσ0
ν (i). So ν(A) =

∆σ0
ν (A) and ν(A) ≤ max∆∈S(ν) ∆(A).
Applying the first result to νc, and applying the

relations linking νc to ν and ∆ to ∇ yields the sec-
ond expression.

3. Qualitative integrals and desintegrals

Last year, we have introduced different variants of
a Sugeno integral based on various interpretations
of a qualitative weighting system. We have distin-
guished between integrals which increase when the
criteria evaluations increase (positive criteria) and
desintegrals which decrease when the criteria eval-
uations increase (negative criteria). In this section,
we restate these different integrals and desintegrals,
starting with Sugeno integral.

3.1. Qualitative integrals

When the criteria are assumed to be positive the
global evaluation of objects can be calculated using
the Sugeno integral or one of its variants. Let us
present a brief reminder.
Let f : S → L be a function that describes a

vector of utility values for some object according to
several attributes (features, criteria) s ∈ S. Sugeno
integral is often defined as follows:

Sγ(f) =
∨
λ∈L

λ ∧ γ(Fλ) (2)

where Fλ = {s : f(s) ≥ λ} is the set of attributes
having best ratings for some object, above threshold
λ, and γ(A) is the degree of importance of feature
set A. An equivalent expression is [12]:

Sγ(f) =
∨
A⊆S

(γ(A) ∧
∧
s∈A

f(s))

In this disjunctive form, the set-function γ can be
replaced without loss of information by the inner
qualitative Moebius transform γ# defined earlier.

Sγ(f) = max
A∈Fγ

min(γ#(A), fA) (3)

where fA = mins∈A f(s). The above expression
of Sugeno integral has the standard maxmin form,
viewing γ# as a possibility distribution over 2S .
When γ is a possibility measure Π, Sugeno inte-

gral in form (3) simplifies into:

SΠ(f) = max
s∈S

min(π(s), f(s)) (4)

which is the prioritized max, since Π# and π coin-
cide.

There are two variants of Sugeno integrals that
use implication to model the effect of priority
weights on utility values f(s).

The first variant interprets a weight π(s) as a soft-
ening threshold that makes local evaluations f(s)
less demanding:

• f(i) ≥ π(i) is enough to reach full satisfaction:
• f(i) is kept otherwise

this is clearly modeled by Gödel implication, replac-
ing f(s) by π(s)→ f(s). The corresponding variant
of the Sugeno integral is:∮ ↑

γ

(f) =
∧
A⊆S

γ(A)→ ∨s∈Af(s) (5)

If γ is a possibility measure, then
∮ ↑
γ

(f) =
∧s∈Sπ(s) → f(s) which is a form of prioritized
minimum. This is because it can be checked that
again γ(A) can be changed into γ#(A) in (5). Note
that
∮ ↑
γ

(f) = 1 as soon as for all subsets A,∃s ∈
A, f(s) ≥ γ(A), which means that

∮ ↑
γ

(f) < 1 as
soon as f(s) < 1,∀s ∈ S. Likewise

∮ ↑
γ

(f) = 0 as
soon as for some subset A,∀s ∈ A, f(s) = 0, that is
f(s) = 0 for some feature s for which γ({s}) > 0.

In second variant, when the original rating f(s) is
higher than a threshold, the criterion s is considered
fully satisfied, but the modified rating is severely
decreased otherwise, if the criterion is important,
and increased, if not. In other words: if f(s) ≥ π(s),
the rating becomes maximal, i.e. 1, otherwise it
is always turned into η(π(s)). The corresponding
aggregation scheme is based on contraposed Gödel
implication (a ⇒ b = η(b) → η(a)), since the final
rating is either 1 or η(π(s)).

The corresponding aggregation scheme when pri-
ority weights bear on subsets of S is:∮ ⇑

γ

(f) =
∧
A⊆S

∧s∈Aη(f(s))→ γ(A) (6)

If γ is a necessity measure based on π, then∮ ⇑
γ

(f) = ∧s∈S(η(f(s)) → η(π(s))), which is an-
other form of prioritized minimum. Indeed, as
γ(A) = η(γc(A)), in (4) one can replace γ(A) by
η(γc#(A)) (= η(Π#(A)) if γ is a necessity measure).
If there is no criterion such that f(s) = 1 then∮ ⇑
γ

(f) = 0. Moreover,
∮ ⇑
γ

(f) = 1 if and only if∮ ↑
γ

(f) = 1.
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Example 1 We consider two criteria S = {s1, s2},
L = [0, 1], η = 1− and γ defined by γ({s1}) = 0.4
and γ({s2}) = 0.6. Then:
Sγ(0.2, 0.8) = ∨(0.2, 0.6) = 0.6∮ ↑
γ

(0.2, 0.8) = ∧(0.4→ 0.2, 0.6→ 0.8, 1→ 0.8) = 0.2∮ ⇑
γ

(0.2, 0.8) = 0.

3.2. Qualitative desintegrals

In this part, the evaluation scale for each criterion
is decreasing, i.e., 0 is better than 1, but the scale
for the global evaluation is increasing. In this case
the aggregation functions must be decreasing and
the capacities are replaced by the anti-measures.
A first desintegral is obtained by a saturation ef-

fect on a reversed scale:∮  

ν

(f) =
∨
A⊆S

ν(A) ∧ (∧s∈Aη(f(s))) (7)

Note that
∮  
ν

(f) = Sν(·)(η(f)).
Another viewpoint is to consider that if f(s) >

t(s) then the local evaluation is bad and f(s) be-
comes t(s). Otherwise the local evaluation is good
and f(s) becomes 1. Note that tolerance thresh-
olds turn local degrees of defect into local degrees of
merit. This corresponds to the use of the Gödel im-
plication and the global evaluation

∧
i=1,...,n f(s)→

t(s) which is generalized by the following desinte-
gral: ∮ ⇓

ν

(f) =
∧
A⊆S

(∧s∈Af(s))→ ν(A)) (8)

If there is no defect-free criterion s (such that
f(s) = 0) then

∮ ⇓
ν

(f) = 0 (the alternative is globally
bad). Note that

∮ ⇓
ν

(f) =
∮ ⇑
ν(·)(η(f)).

In the last viewpoint ti is viewed as a tolerance
threshold such that it is enough to have f(s) ≤ t(s)
(i.e. the degree of defect remains smaller than the
threshold) for the requirement to be totally fulfilled.
Recall that now the purpose is to avoid defects (a
strictly positive evaluation of a negative criterion
means a defect). If the object possesses the defect
to an extent higher than ti, then the rating value
is reversed, leading to a poor positive local rating.
This weighting scheme is captured by the formula
η(t(s))→ η(f(s)) where → is Gödel implication.

∮ ↓
ν

(f) =
∧
A⊆S

η(ν(A))→ ∨s∈Aη(f(s)). (9)

Note that
∮ ↓
ν

(f) =
∮ ↑
η(ν)(η(f)).

Example 2 We consider two criteria S = {s1, s2},
L = [0, 1], η = 1− and ν an fuzzy anti-measure
defined by ν({s1}) = 0.2 and ν({s2}) = 0.6.∮  
ν

(0.3, 0.5) = ∨(0.6 ∧ 0.7, 0.2 ∧ 0.5, 1 ∧ 0.5) = 0.6∮ ↓
ν

(0.3, 0.5) = ∧(0.8→ 0.7, 0.4→ 0.5, 1→ 0.7) = 0.7∮ ⇓
ν

(0.3, 0.5) = 0.

4. Equivalent expressions

This part presents equivalent expressions for the
qualitative integrals and desintegrals which will be
instrumental when expressing them as lower or up-
per possibility integrals. More precisely, we are go-
ing to prove that the qualitative integrals and desin-
tegrals require the comparison of only n cases. This
result is already known for the Sugeno integrals.

Without loss of generality we can suppose that
f(s1) = f1 ≤ · · · ≤ f(sn) = fn. We define the sets
Ai = {si, · · · , sn} with the convention An+1 = ∅. It
is well-known that for Sugeno integrals:

Sγ(f) =
n∨
i=1

(fi ∧ γ(Ai)) =
n∧
i=1

(fi ∨ γ(Ai+1))

See [12] for more details. We establish similar ex-
pressions for the other integrals and desintegrals.

Proposition 3∮ ↑
γ

(f) =
n∧
i=1

(γ(Ai+1)→ fi)

where Ai+1 denotes the complement of Ai+1.
Proof

∮ ↑
γ

(f) =
∧n
i=1(γ(Ai+1) → fi) ∧∧

A6∈{A2,··· ,An+1}(γ(A)→ ∨i∈Afi).
We consider A 6∈ {A2, · · · , An+1} and let fiA be

a shorthand for ∨si∈Afi.
Now, A ⊆ AiA+1, for some index iA. Then clearly
γ(A) ≤ γ(AiA+1).

• If γ(A) ≤ fiA then γ(A) → fiA = 1 ≥
γ(AiA+1)→ fiA .
• If fiA < γ(A) then fiA < γ(AiA+1) and
γ(A)→ fiA = fiA = γ(AiA+1)→ fiA .

So γ(A) → ∨i∈Afi ≥ γ(AiA+1) → fiA ≥
∧ni=1(γ(Ai+1)→ fi) which concludes the proof.

Proposition 4∮ ⇑
γ

(f) = ∧ni=1(η(fi)→ γ(Ai+1)).

Proof: We have η(fn) ≤ · · · ≤ η(f1).∮ ⇑
γ

(f) = [
∧n
i=1(η(fi) → γ(Ai+1))] ∧∧

A6∈{A2,··· ,An+1}[∧i∈Aη(fi) → γ(A)] so∮ ⇑
γ

(f) ≤ ∧ni=1(η(fi) → γ(Ai+1)). Let us prove
the converse.

We consider A 6∈ {A2, · · · , An+1} and note that
η(fiA) = ∧si∈Aη(fi). As f is supposed to be well
ordered, A ⊆ AiA+1 for some index iA, i.e., AiA+1 ⊆
A which entails γ(AiA+1) ≤ γ(A).

• If η(fiA) ≤ γ(A) then η(fiA) → γ(A) = 1 ≥
η(fiA)→ γ(AiA+1).
• If η(fiA) > γ(A) then η(fiA) > γ(AiA+1)
and η(fiA) → γ(A) = γ(A) ≥ γ(AiA+1) =
η(fiA)→ γ(AiA+1).
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So η(fiA) → γ(A) ≥ η(fiA) → γ(AiA+1) ≥
∧ni=1(η(fi)→ γ(Ai+1))
and
∮ ⇑
γ

(f) =
∧n
i=1(η(fi)→ γ(Ai+1)).

When we use the relations between the desinte-
grals and the qualitative integrals we obtain the fol-
lowing expressions.

Proposition 5∮  

ν

(f) =
n∨
i=1

η(fi) ∧ ν(Ai+1) =
n∧
i=1

η(fi) ∨ ν(Ai).

∮ ↓
ν

(f) =
n∧
i=1

(η(ν(Ai)))→ η(fi)).

∮ ⇓
ν

(f) =
n∧
i=1

(fi → ν(Ai)).

Proof We define g by gi = η(fn−i+1). We have
g1 = η(fn) ≤ · · · ≤ gn = η(f1).

•
∮
ν(·)(η(f)) =

∨n
i=1 gi ∧ ν(Agi ) where Agi =

{1, · · · , n − i + 1} = An−i+2. When we define
the index j = n − i + 1 we have

∮
ν(·)(η(f)) =∨n

j=1 gn−j+1 ∧ ν(Agn−j+1) =
∨n
j=1 η(fj) ∧

ν(Agn−j+1) =
∨n
j=1 η(fj) ∧ ν(Aj+1).∮

ν(·)(η(f)) =
∧n
i=1 gi ∨ ν(Agi+1) where Agi+1 =

{1, · · · , n − i} = An−i+1. When we define the
index j = n − i + 1 we have

∮
ν(·)(η(f)) =∧n

j=1 gn−j+1 ∨ ν(Agn−j+2) =
∧n
j=1(η(fj)) ∨

ν(Agn−j+2) =
∧n
j=1(η(fj)) ∨ ν(Aj).

•
∮ ↑
η(ν)(η(f)) =

∧n
i=1 η(ν(Agi+1)) → gi. When

we consider the index j = n − i + 1 we have∮ ↑
η(ν)(η(f)) =

∧n
j=1 η(ν(Agn−j+2)) → gn−j+1 =∧n

j=1 η(ν(Aj))→ η(fj).
•
∮ ⇑
ν(·)(η(f)) =

∧n
i=1 η(gi)→ ν(Agi+1))

=
∧n
j=1 η(gn−j+1)→ ν(Agn−j+2))

=
∧n
j=1 fj → ν(Aj).

5. Qualitative integrals as upper and lower
possibility integrals

It was proved in [2] that Sugeno integral is a lower
prioritized maximum:

Proposition 6 Sγ(f) =
∧
π∈C∗(γ) SΠ(f).

Proof: Viewing γ as a lower possibility, it comes
(with fA = ∧s∈Af(s)):
Sγ(f) =

∨
A⊆S(∧π∈C∗(γ)Π(A)) ∧ fA =∨

A⊆S
∧
π∈C∗(γ)(Π(A) ∧ fA)

≤
∧
π∈C∗(γ)

∨
A⊆S(Π(A) ∧ fA), hence Sγ(f) ≤∧

π∈C∗(γ) SΠ(f).
Conversely, let πf be the marginal of γ obtained
from the nested sequence of sets Fλ induced by
function f , then it is clear that Πf (Fλ) = γ(Fλ),

and thus Sγ(f) = SΠf (f). As ∃π ∈ C∗(γ), πf ≥ π,
by definition, SΠf (f) ≥ SΠ(f) ≥

∧
π∈C∗(γ) SΠ(f).

The obtained equality may sound surprizing. If
γ = γ1∧γ2, it only holds in general that Sγ1∧γ2(f) ≤
Sγ1(f) ∧ Sγ2(f). Nevertheless, equality holds if
γ = Π1 ∧ Π2, for two possibility measures, that is
C∗(γ) = {π1, π2}. This is because any possibility
measure Π ≥ γ is such that π ≥ π1 or π ≥ π2. To
see it directly, suppose first that π(s1) < π1(s1)
and π(s2) < π2(s2) for some s1, s2 ∈ S. Then
Π({s1, s2}) < γ({s1, s2}), which violates the as-
sumption Π ≥ γ. So, ∀s ∈ S,Π ≥ γ implies ei-
ther π(s) ≥ π1(s) or π(s) ≥ π2(s). Now suppose
π2(s1) > π(s1) ≥ π1(s1). Then if for some other
s 6= s1, π(s) < π1(s), again Π({s1, s}) < γ({s1, s}).
Hence, π ≥ π1. So, Sγ(f) = SΠf (f) ≥ SΠ1(f) ∧
SΠ2(f) since Πf ≥ γ.
Note that in the numerical case, the same feature

occurs, namely, lower expectations with respect to
a convex probability set are sometimes Choquet in-
tegrals with respect to the capacity equal to the
lower probability constructed from this probability
set (for instance convex capacities, and belief func-
tions). However, this is not true for any capacity
and any convex probability set.

Finally, using conjugacy properties, one can prove
that

Proposition 7 Sγ(f) =
∨
π∈C∗(γc) SN (f), where

SN (f) =
∧
s∈S η(π(s)) ∨ f(s).

In the following we show that these results hold
for residuated variants of Sugeno integrals.

Proposition 8∮ ↑
γ

(f) =
∨

π∈C∗(γ)

∮ ↑
Π

(f).

The fact that we have a
∨

in place of a
∧

in
Proposition 6 should not come as a surprise, since
when we are approaching γ from above by Π, we
are approaching

∮ ↑
γ
from below by

∮ ↑
Π.

Proof: Viewing γ as a lower possibility, it comes
(with fA = ∨s∈Af(s)):∮ ↑
γ

(f) =
∧
A⊆S(∧π∈C∗(γ)Π(A)) → fA

=
∧
A⊆S
∨
π∈C∗(γ)(Π(A)→ fA)

≥
∨
π∈C∗(γ)

∧
A⊆S Π(A) → fA, hence∮ ↑

γ
(f) ≥

∨
π∈C∗(γ)

∮ ↑
Π(f).

Conversely, let f be such that f1 ≤ · · · ≤
fn. Hence we can define the possibility mea-
sure Πf , with distribution πγf , dominating γ, such
that Πγ

f (Ai+1) = γ(Ai+1),∀i = 0, . . . , n − 1, and
by Proposition 3

∮ ↑
γ

(f) =
∧n
i=1(γ(Ai+1) → fi).

As ∃π ∈ C∗(γ), πγf ≥ π, by definition,
∮ ↑
γ

(f) =∮ ↑
Πγf

(f) ≤
∨
π∈C∗(γ)

∮ ↑
Π(f).
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Proof 2: The result can be also obtained by a
direct proof. We suppose f well ordered: f1 ≤ · · · ≤
fn. Hence we can define the possibility distribution
πγf (si) = γ(Ai+1).
Let us prove that ∀A ⊆ C, Πγ

f (A) ≥ γ(A):
Let AiA+1 be the smallest set in the sequence

{Ai}i such that A ⊆ Ai. Note that we have iA ∈ A.
A ⊆ AiA+1 entails γ(A) ≤ γ(AiA+1) = πγf (siA).
Πγ
f (A) = ∨i∈Aπγf (si) ≥ πγf (siA).

So we have γ(A) ≤ Πγ
f (A).

Let us prove that for all π ∈ S(γ)
∮ ↑

Π(f) ≤
∮ ↑
γ

(f):
For all i, Π(Ai+1) → fi ≤ γ(Ai+1) → fi which
entails ∧jΠ(Aj+1) → fj ≤ γ(Ai+1) → fi for all i.
So we have

∮ ↑
Π(f) ≤

∮ ↑
γ

(f).
Hence we have

∮ ↑
γ

(f) ≥
∨
π∈S(γ)

∮ ↑
Π(f).

Moreover we have Πγ
f (Ai+1) = πγf (1) ∨ · · · ∨

πγf (si) = γ(A2) ∨ · · · ∨ γ(Ai+1) = γ(Ai+1) so∮ ↑
γ

(f) =
∮ ↑

Πγ
f
(f) ≤

∨
π∈S(γ)

∮ ↑
Π(f).

Proposition 9∮ ⇑
γ

(f) =
∧

π∈S(γ)

∮ ⇑
Π

(f).

Proof: We suppose f well ordered f1 ≤ · · · ≤ fn.
Hence we can use the possibility distribution defined
in [2]: πγf (si) = γ(Ai).
∀A ⊆ C we have Πγ

f (A) ≥ γ(A) and γ(Ai) =
Πγ
f (Ai) so

∮ ⇑
γ

(f) =
∮ ⇑

Πγ
f
(f) ≥

∧
π∈S(γ)

∮ ⇑
Π (f).

For all Π ∈ S(γ) we have
η(fi)→ γ(Ai) ≤ η(fi)→ Πγ(Ai)
so ∧iη(fi)→ γ(Ai) ≤ η(fi)→ Πγ(Ai)
and
∮ ⇑
γ

(f) ≤
∮ ⇑

Π (f) for all Π ∈ S(γ). Hence we have∮ ⇑
γ

(f) ≤
∧
π∈S(γ)

∮ ⇑
Π (f).

6. Qualitative desintegrals as upper and
lower possibility desintegrals

When we consider guaranteed anti- possibilities in-
stead of possibilities the desintegrals appear to be
the upper bound of possibility desintegrals.

Proposition 10∮ ↓
ν

(f) =
∨

∆∈S(ν)

∮ ↓
∆

(f).

Proof: We suppose f well ordered: f1 ≤ · · · ≤
fn. Hence we can define the guaranteed possibility
distribution tνf (i) = ν(Ai).
Let us prove that ∀A ⊆ C, ∆µ

f (A) ≤ ν(A):
Let AiA be the smallest set in the sequence {Ai}i

such that A ⊆ Ai. Note that we have iA ∈ A.
A ⊆ AiA entails ν(A) ≥ ν(AiA) = tνf (siA).
∆ν
f (A) = ∧i∈Atνf (i) ≤ tνf (siA).

So we have ν(A) ≥ ∆ν
f (A).

Let us prove that for all ∆ ∈ S(ν)
∮ ↓

∆(f) ≤
∮ ↓
ν

(f):
For all i, η(∆(Ai)) → η(fi) ≤ η(ν(Ai)) → η(fi)
which entails ∧jη(∆(Aj)) → η(fj) ≤ η(ν(Ai)) →
η(fi) for all i. So we have

∮ ↓
∆(f) ≤

∮ ↓
ν

(f).
Hence we have

∮ ↓
ν

(f) ≥
∨

∆∈S(ν)
∮ ↓

∆(f).
Moreover we have ∆ν

f (Ai) = tνf (i) ∧ · · · ∧ tνf (n) =
ν(Ai) ∧ · · · ∧ ν(An) = ν(Ai) so

∮ ↓
ν

(f) =
∮ ↓

∆ν
f
(f) ≤∨

∆∈S(µ)
∮ ↓

∆(f).

Proposition 11∮ ⇓
ν

(f) =
∨

∆∈S(ν)

∮ ⇓
∆

(f).

Proof: We suppose f well ordered f1 ≤ · · · ≤
fn. Hence we can use the guaranteed possibility
distribution defined for the previous proof: tµf (i) =
ν(Ai).
∀A ⊆ C we have ∆ν

f (A) ≤ ν(A) and
ν(Ai) = ∆µ

f (Ai) which entails
∮ ⇓
µ

(f) =
∮ ⇓

∆µ
f
(f) ≤∨

∆∈S(ν)
∮ ⇓

∆(f).
For all ∆ ∈ S(ν) we have

fi → ∆(Ai) ≤ fi → ν(Ai)
so ∧ifi → ∆(Ai) ≤ fi → ν(Ai)
and
∮ ⇓

∆(f) ≤
∮ ⇓
ν

(f) for all ∆ ∈ S(ν). Hence we
have

∮ ⇓
ν

(f) ≥
∨

∆∈S(ν)
∮ ⇓

∆(f).

Proposition 12∮  

ν

(f) =
∨

∆∈S(ν)

∮  

∆
(f).

Proof: We suppose f well ordered f1 ≤ · · · ≤ fn.
Hence we can use the guaranted possibility distri-
bution tµf (i) = ν(Ai).
∀A ⊆ C we have ∆ν

f (A) ≤ ν(A) and
ν(Ai) = ∆µ

f (Ai) which entails
∮  
ν

(f) =
∮  

∆µ
f
(f) ≤∨

∆∈S(ν)
∮  

∆(f).
For all ∆ ∈ S(ν) we have ∆(Ai) ≤ ν(Ai) so

η(fi) ∧ ∆(Ai+1) ≤ η(fi) ∧ ν(Ai+1) and
∮  

∆(f) ≤∮  
ν

(f) for all ∆ ∈ S(ν).
Hence we have

∮  
ν

(f) ≥
∨

∆∈S(ν)
∮  

∆(f).

Proposition 13∮  

ν

(f) =
∧

δ∈S(νc)

∮  

∇
(f)

Proof: We consider a permutation
f1 ≤ · · · ≤ fn
δ(i) = νc(Ai) = η(ν(Ai)).
Ai0 the smallest set such that A ⊆ Ai0 .
We have i0 ∈ A
δ(i0) = νc(Ai0) ≤ νc(A).
∆(A) = ∧i∈Aδ(i) ≤ δ(i0) ≤ νc(A).
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When we consider A we can find a permutation
such that A = Ai0 hence ∆(A) = νc(Ai0) = νc(A).
η(∆(A)) = ∇(A) = η(νc(A)) = ν(A)∮  

ν

(f) =
∮  

∇
(f) ≥

∧
δ∈S(νc)

∮  

∇
(f). (10)

If δ ∈ S(νc) then η(νc(A)) ≤ η(∆(A)) i.e
ν(A) ≤ ∇(A). So

∮  
ν

(f) ≤
∮  
∇(f) for all δ ∈ S(νc).

So
∮  
ν

(f) ≤
∧
δ∈S(νc)

∮  
∇(f).

The qualitative desintegrals can also be expressed
as lower or upper bounds using the relations be-
tween the qualitative integrals and desintegrals.
This may be used for obtaining the results for
desintegrals from the ones regarding integrals.∮  

ν
(f) = Sν(·)(η(f)) =

∧
π∈S(ν(·)) SΠ(η(f)).∮ ↓

ν
(f) =

∮ ↑
η(ν)(η(f)) =

∨
π∈S(η(ν))

∮ ↑
Π(η(f)).∮ ⇓

ν
(f) =

∮ ⇑
ν(·)(η(f)) =

∧
π∈S(ν(·))

∮ ⇑
Π (η(f)).

For instance, Proposition 13 can be ob-
tained by noticing that

∮  
ν

(f) = Sν(·)(η(f)) =∧
π∈S(ν(·)) SΠ(η(f)) =

∧
η(δ)∈S(ν(·)) S∇(f)

since ∇δ(A) = Πη(δ)(A). It can be checked that
π ∈ S(η(ν))⇔ η(π) ∈ S(ν), and thus
η(δ) ∈ S(ν(·)) ⇔ δ ∈ S(η(ν(·))) ⇔ δ ∈ S(νc),
which completes the checking of Proposition 13.

7. Conclusion

Retrospectively, one may wonder why one has only
considered Sugeno integrals for a long time, since
the other qualitative integrals are as simple. The re-
sults obtained in this paper makes Sugeno integrals,
and other integrals or desintegrals easier to com-
pute as a simple combination of integrals or desin-
tegrals with respect to possibility, necessity, guar-
anteed possibility measures (i.e. basically weighted
max and min). Besides, the representation of capac-
ities as a finite conjunction of possibility measures,
or as a finite disjunction of necessity measures has
strong links with k-maxitivity and k-minitivity ax-
ioms, and the representation of imprecise possibili-
ties by means of possibilistic focal elements of lim-
ited size. This will motivate further investigation.
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