Examples of functions which preserve T-S-semitransitivity are the same as for T-S-Ferrers property.

Example 12. Conditions given in Theorems 11 and 12 are only the sufficient ones. Let us consider function F(s,t) = st (so $F = T_P$) and fuzzy relations presented by the matrices

$$R_1 = \left[\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right], \quad R_2 = \left[\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array} \right].$$

Relations R_1 , R_2 are min-max-Ferrers ([9], p. 142) and min-max-semitransitive, and $R = F(R_1, R_2)$ is both min-max-Ferrers and min-max-semitransitive, where $R \equiv 0$. However, it is not true that $F \gg$ min (the only *t*-norm that dominates minimum is minimum itself, see Theorem 3).

4. Conclusion

In this contribution we presented the necessary and sufficient conditions for the preservation of fuzzy relation properties. The considered properties involve triangular norms T and triangular conorms S. In the case of T-S-Ferrers property and T-S-semitransitivity only the sufficient conditions were obtained, but suitable counter-examples showing that the necessity does not hold were provided.

References

- U. Bodenhofer, A Similarity-based Generalization of Fuzzy Orderings, PhD thesis, Universitätsverlag Rudolf Trauner, Linz, 1999.
- [2] T. Calvo, A. Kolesárová, M. Komorníková and R. Mesiar, Aggregation operators: properties, classes and construction methods, In T. Calvo, G. Mayor and R. Mesiar, editors, Aggregation Operators vol. 97: Studies in Fuzziness and Soft Computing, pages 3–104, Physica-Verlag, Heildelberg, 2002.
- [3] B. De Baets and R. Mesiar, T-partitions, *Fuzzy Sets Syst.*, 97:211–223, Elsevier, 1998.
- [4] F. Chiclana, F. Herrera, E. Herrera-Viedma and L. Martínez, A note on the reciprocity in the aggregation of fuzzy preference relations using OWA oprators, *Fuzzy Sets Syst.*, 137:71– 83, Elsevier, 2003.
- [5] J. Drewniak, P. Drygaś and U. Dudziak, Domination between multiplace operations, In O. Hryniewicz, J. Kacprzyk and D. Kuchta, editors, *Issues in Soft Computing, Decisions and Operations Research*, pages 149–160, EXIT, Warszawa, 2005.
- [6] J. Drewniak and U. Dudziak, Aggregations preserving classes of fuzzy relations, *Kyber-netika*, 41(3):265–284, Institute of Information Theory and Automation Academy of Sciences of Czech Republic, 2005.
- [7] J. Drewniak and A. Król, On the problem of domination between triangular norms and

conorms, Journal of Electrical Engineering, 56(12/s):59–61, Slovak Centre of IEE, 2005.

- [8] J. Drewniak and U. Dudziak, Preservation of properties of fuzzy relations during aggregation processes, *Kybernetika*, 43(2):115–132, Institute of Information Theory and Automation Academy of Sciences of Czech Republic, 2007.
- [9] J. Fodor, M. Roubens, Fuzzy Preference Modelling and Multicriteria Decision Support, Kluwer Acad. Publ., Dordrecht, 1994.
- [10] S. Gottwald, A Treatise on Many-Valued Logics vol. 9: Studies in Logic and Computation, Research Studies Press, Baldock, Hertfordshire, England, 2001.
- [11] O. Grigorenko, J. Lebedinska, On another view of aggregation of fuzzy relations, In S. Galichet, J. Montero and G. Mauris, editors, *Proc. 7th Conf. EUSFLAT-2011 and LFA-2011*, pages 21–27, Atlantis Press, 2011.
- [12] E.P. Klement, R. Mesiar and E. Pap, *Trian*gular Norms, Kluwer Acad. Publ., Dordrecht, 2000.
- [13] R. Mesiar and S. Saminger, Domination of ordered weighted averaging operators over tnorms, *Soft Computing*, 8:562–570, Springer, 2004.
- [14] S. Ovchinnikov, Similarity relations, fuzzy partitions, and fuzzy orderings, *Fuzzy Sets Syst.*, 40:107–126, Elsevier, 1991.
- [15] V. Peneva and I. Popchev, Properties of the aggregation operators related with fuzzy relations, *Fuzzy Sets Syst.*, 139(3):615–633, Elsevier, 2003.
- [16] M. Roubens, P. Vincke, *Preference Modelling*, Springer-Verlag, Berlin, 1985.
- [17] S. Saminger, R. Mesiar and U. Bodenhofer, Domination of aggregation operators and preservation of transitivity, *Internat. J. Uncertain., Fuzziness, Knowl.-Based Syst.*, 10(Suppl.):11–35, World Scientific, 2002.
- [18] K. C. Maes, S. Saminger and B. De Baets, Representation and construction of self-dual aggregation operators, *European Journal of Operational Research*, 177:472–487, Elsevier, 2007.
- [19] P. Sarkoci, Dominance is not transitive on continuous triangular norms, Aequationes Mathematicae, 75:201–207, Springer, 2008.
- [20] L.A. Zadeh, Fuzzy sets, Inform. Control, 8:338–353, Elsevier, 1965.
- [21] L.A. Zadeh, Similarity relations and fuzzy orderings, *Inform. Sci.*, 3:177–200, Elsevier, 1971.