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Abstract

In this paper we present new results on detection
and removal of redundancies of IF-THEN rules in
so-called linguistic descriptions (systems of such
rules). We introduce an algorithm for removal of
redundancies and describe a practical application.
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1. Introduction and motivation

In this contribution, we outline our approach to
detection of so-called redundancies in systems of
fuzzy/linguistic IF-THEN rules (we call such sys-
tems linguistic descriptions). Preliminary results
can be found in [1].

Notions of redundancy and inconsistency of fuzzy
IF-THEN rules were studied by several authors [2,
3, 4, 5]. But, for our so-called linguistic approach
originated by V. Novák [6] these questions were
not adequately investigated. We were able to suc-
cessfully apply our linguistic approach in analysis
and forecasting of time series [7, 8], decision mak-
ing [9] or data mining [10]. We found out that
this approach has distinct advantages in good in-
terpretability, great robustness, foundations in a
strong formal logical system etc. However, if we
learn our rules from real-world data, as is the case
of time series analysis or data mining, then inter-
pretability can be seriously harmed by the presence
of redundant rules. Users of these rules can be then
buried under a high number of seemingly very simi-
lar rules and consequently would not be able to com-
prehend and modify them. Therefore, theoretically
well-founded and efficient algorithm for detection of
redundant rules is necessary.1

The inference mechanism tailored for our
fuzzy/linguistic IF-THEN rules is called perception-
based logical deduction (PbLD). Quite informally,
it, for a given input u0, picks and fires that rule
from the linguistic description, whose antecedent
(IF part) has a maximal membership degree at u0.2

1Inconsistencies in systems of IF-THEN rules are also un-
pleasant for the interpretability, but they can harm the per-
formance of an inference mechanism, too. Their detection
and elimination will be a topic of our further research.

2More precisely, the antecedent is a linguistic expression,
e.g. small. This expression is, after some formal steps, inter-
preted by some fuzzy set, and the membership degree in this
fuzzy set is referred to here.

If there are several such rules, then it picks that
whose antecedent is most specific (for example, very
small is more specific than small, etc.).

A fuzzy IF-THEN rule R1 is usually thought to
be redundant with respect to rule R2 if their con-
sequents are identical and their antecedents are dif-
ferent but not contradictory. For example, let R1
and R2 be

R1 := IF X is very small THEN Y is big,

R2 := IF X is roughly small THEN Y is big.

If the interpretation of linguistic expressions roughly
small and very small is such that every element
which is very small is also roughly small in at least
the same degree, then rule R1 is redundant — noth-
ing changes if it is left out. Initially it seemed to us
that elimination of redundancies would consist sim-
ply in detection of pairs of rules such as R1 and R2
and deletion of R1. However, it turned out that it
is not that simple. We accepted a natural definition
that, informally speaking, a rule is redundant if re-
sults of inference mechanism are exactly the same if
we leave this rule out. Then, the presence of other
rules (with different consequents) can cause that a
rule such as R1 is all of a sudden not redundant at
all. Imagine that third rule is present, namely

R3 := IF X is small THEN Y is small

Figure 1: Graphical presentation of extensions
(fuzzy sets) that interpret linguistic expressions very
small, small and roughly small.

If the interpretation of small is such that it lies
“in-between” roughly small and very small (see Fig-
ure 1), then we cannot leave out rule R1, because
for values of X for which it is fired (result of infer-
ence should be “big”) suddenly, after R1 is left out,
R3 would be fired (and result of inference would be
“small”). We call R1 to be suspicious to be redun-
dant with respect to R2 and search mathematical
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results stating conditions under which it is indeed
redundant and under which it is not.

Let us remark that our results apply also to sys-
tems of IF-THEN rules and inference mechanisms
which use compatible design choices (overlapping
interpretations of linguistic expressions like very
small and small, inference mechanisms firing rules
based on the best fit of inputs and highest speci-
ficity, etc.) Particular shapes of fuzzy sets inter-
preting evaluative expressions and details of infer-
ence mechanisms are not crucial from this point of
view.

2. Theoretical background

Because of space limitations, we introduce basic no-
tions here only. For details and discussions, see
[11, 12, 1].

2.1. Evaluative linguistic expressions

One of main constituents of systems of
fuzzy/linguistic IF-THEN rules are evaluative
linguistic expressions [11], in short evaluative
expressions, e.g. very large, more or less hot, etc.
They are special expressions of natural language
that are used whenever it is important to evaluate
a decision situation, to specify the course of
development of some process, and in many other
situations. Note that their importance and the
potential to model their meaning mathematically
have been pointed out by L. A. Zadeh (e.g., in
[13, 14]).

A simple form of evaluative expressions keeps the
following structure:

⟨ling. hedge⟩⟨atomic evaluative expression⟩ (1)

Atomic evaluative expressions comprise any of the
canonical adjectives small, medium, big, abbrevi-
ated in the following as Sm, Me, Bi, respectively.

Linguistic hedges are specific adverbs that make
the meaning of the atomic expression more or less
precise. We may distinguish hedges with narrow-
ing effect, e.g. very, extremely, etc. and with widen-
ing effect, e.g. roughly, more or less, etc. In the
following text, we, without loss of generality, use
the hedges introduced in Table 1 that were suc-
cessfully used in real applications [8] and that are
implemented in the LFLC software package [15].
As a special case, the ⟨linguistic hedge⟩ can be
empty. Note that our hedges are of so-called in-
clusive type [16], which means that extensions of
more specific evaluative expressions are included in
less specific ones, see Figure 1.

Evaluative expressions of the form (1) will gen-
erally be denoted by script letters A, B, etc. They
are used to evaluate values of some variable X. The
resulting expressions are called evaluative linguistic
predications, and have the form

X is A.

Narrowing effect Widening effect
very (Ve) more or less (ML)

significantly (Si) roughly (Ro)
extremely (Ex) quite roughly (QR)

– very roughly (VR)

Table 1: Linguistic hedges and their abbreviations.

Examples of evaluative predications are “tempera-
ture is very high”, “price is low”, etc.

The model of the meaning of evaluative expres-
sions and predications makes distinction between
intensions and extensions in various contexts. The
context characterizes a range of possible values.
This range can be characterized by a triple of num-
bers ⟨vL, vM , vR⟩, where vL, vM , vR ∈ R and vL <
vM < vR. These numbers characterize the mini-
mal, middle, and maximal values, respectively, of
the evaluated characteristics in the specified con-
text of use. Therefore, we will identify the notion
of context with the triple ⟨vL, vM , vR⟩. By u ∈ w we
mean u ∈ [vL, vR]. In the sequel, we will work with
a set of contexts W ⊂ {⟨vL, vM , vR⟩ | vL, vM , vR ∈
R, vL < vM < vR} that are given in advance.

The intension of an evaluative predication
“X is A” is a certain formula whose interpretation
is a function

Int(X is A) : W −→ F(R), (2)

i.e., it is a function that assigns a fuzzy set to any
context from the set W .

Given an intension (2) and a context w ∈ W , we
can define the extension of “X is A” in the context
w as a fuzzy set

Int(X is A)(w) ⊂∼ [vL, vR],

where ⊂∼ denotes the relation of fuzzy subsethood.
We extend the theory of evaluative linguistic ex-

pressions by the following partition axiom: There
does not exist any context w ∈ W in which there
would exist some u0 ∈ w such that

(Int(X is A)(w))(u0) = (Int(X is B)(w))(u0) = 1
(3)

for A, B with different atomic evaluative expres-
sions. Indeed, no element u0 in any world is natu-
rally assumed to belong in the degree one to a fuzzy
set of small objects as well as of medium or big ob-
jects - no matter the influence of linguistic hedges.

2.2. Fuzzy IF-THEN rules, linguistic
description

Evaluative predications occur in conditional clauses
of natural language of the form

R := IF X is A THEN Y is B (4)

where A, B are evaluative expressions. The linguis-
tic predication “X is A” is called the antecedent and
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“Y is B” is called the consequent of the rule (4). Of
course, the antecedent may consist of more evalua-
tive predications, joined by the connective “AND”.
The clauses (4) will be called fuzzy/linguistic IF-
THEN rules in the sequel.

Fuzzy/linguistic IF-THEN rules are gathered in
a linguistic description, which is a set LD =
{R1, . . . , Rm} where

R1 := IF X is A1 THEN Y is B1,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5)
Rm := IF X is Am THEN Y is Bm.

Because each rule in (5) is taken as a specific con-
ditional sentence of natural language, a linguistic
description can be understood as a specific kind of
a (structured) text. This text can be viewed as a
model of specific behavior of the system in concern.

The intension of a fuzzy/linguistic IF-THEN rule
R in (4) is a function

Int(R) : W × W −→ F(R × R). (6)

This function assigns to each context w ∈ W and
each context w′ ∈ W a fuzzy relation in w×w′. The
latter is an extension of (6).

We also need to consider a linguistic phenomenon
of topic-focus articulation (cf. [17]), which in the
case of linguistic descriptions requires us to distin-
guish the following two sets:

TopicLD = {Int(X is Aj) | j = 1, . . . , m},

FocusLD = {Int(Y is Bj) | j = 1, . . . , m}.

The phenomenon of topic-focus articulation plays
an important role in the inference method called
perception-based logical deduction described below.

2.3. Ordering of linguistic predications

To be able to state relationships among evaluative
expressions, for example, when one expression “cov-
ers" another, we need an ordering relation defined
on the set of them. Let us start with the order-
ing on the set of linguistic hedges. We may define
the ordering ≤H of examples of hedges mentioned
in Section 2.1 as follows:

Ex ≤H Si ≤H Ve ≤H⟨empty⟩ ≤H

≤H ML ≤H Ro ≤H QR ≤H VR.

We extend the theory of evaluative linguistic ex-
pressions by the following inclusion axiom. Let
Ker(A) denotes the kernel of a fuzzy set A. For
any w,

Int(X is ⟨hedge⟩iA)(w) ⊆ Int(X is ⟨hedge⟩jA)(w)

and

Ker(Int(X is ⟨hedge⟩iA)(w))
⊂ Ker(Int(X is ⟨hedge⟩jA)(w))

hold for any atomic expression A under the assump-
tions ⟨hedge⟩i ≤H⟨hedge⟩j , i ̸= j.

Based on ≤H we may define an ordering ≤LE of
evaluative expressions. Let Ai, Aj be two evaluative
expressions such that Ai := ⟨hedge⟩iA and Aj :=
⟨hedge⟩jA. Then we write

Ai ≤LE Aj

if A ∈ {Sm, Me, Bi} and ⟨hedge⟩i ≤H⟨hedge⟩j .
In other words, evaluative expressions of the same

type are ordered according to their specificity which
is given by the hedges appearing in the expressions.
If we are given two evaluative predications with an
atomic expression of a different type, we cannot or-
der them by ≤LE.

Finally, we define the ordering of evalua-
tive predications wrt. a given observation. Let
us be given a context w ∈ W , an obser-
vation u0 ∈ w and two evaluative predica-
tions (X is Ai) and (X is Aj) from the TopicLD.
We write (X is Ai) ≤(u0,w)(X is Aj) either if
Int(X is Ai(w))(u0) > Int(X is Aj(w))(u0) or if
Int(X is Ai(w))(u0) = Int(X is Aj(w))(u0) and
Ai ≤LE Aj .

It should be noted that usually the TopicLD con-
tains intensions of evaluative predications which are
compound by a conjunction of more than one eval-
uative predication. In other words, we usually meet
the following situation

(X is Ai) := (X1 is Ai1) AND · · · AND (XK is AiK
),

(X is Aj) := (X1 is Aj1) AND · · · AND (XK is AjK ).

In this case, the ordering ≤LE is preserved with
respect to the components:

Ai ≤LE Aj if Aik
≤LE Ajk

for all k = 1, . . . , K

and the extension of the compound linguistic pred-
ication is given as follows

(Int(X is Ai)(w1, . . . , wK))(u1, . . . , uK)

=
K∧

k=1

(Int(Xk is Aik)(wk))(uk).

Then, the final ordering ≤(u0,w) is analogous to the
one-dimensional one.

On Figure 2, we provide readers with a visualiza-
tion of two fuzzy rules with two input variables.
Note that the rectangles denote areas where the
antecedent of the given rule is minimal wrt. ≤LE.
Each rectangle is also denoted by a respective con-
sequent Bi. Thus, for the sake of brevity, we will
use only the rectangles to display the areas covered
by antecedents jointly with the labels denoting the
respective consequents, as on Figure 3.

2.4. Perception-based logical deduction

This is a special inference method aimed at the
derivation of results based on fuzzy/linguistic IF-
THEN rules. A perception is understood as an
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Figure 2: Two fuzzy rules visualization: rectangles
denote areas covered by antecedents of given rules.

evaluative expression assigned to the given input
value in the given context. The choice of percep-
tion depends on the topic of the specified linguistic
description. In other words, perception is always
chosen among evaluative expressions which occur
in antecedents of IF-THEN rules, see [6, 8, 12].

Based on the ordering ≤(u0,w) of linguistic predi-
cations we define a special function of local percep-
tion

LPercLD : w × W K −→ P(TopicLD)

assigning to each value u0 = [u1, . . . , uK ] ∈ w for
w = [w1, . . . , wK ] ∈ W K a subset of intensions min-
imal wrt. the ordering ≤(u0,w)

LPercLD(u0, w) = {Int(X is Ai) |
Int(X is Ai)(w)(u0) > 0 & ∀ Int(X is Aj) ∈ TopicLD :

((X is Aj) ≤(u0,w) (X is Ai)) ⇒ ((X is Aj) = (X is Ai))}
(7)

Let LD be a linguistic description (5). Let us
consider a context w ∈ W for the variable X and a
context w′ ∈ W for Y . Let an observation X = u0
in the context w be given, where u0 ∈ w. Then, the
following rule of perception-based logical deduction
(rP bLD) can be introduced:

rP bLD : LPercLD(u0, w), LD
C

(8)

where C is the conclusion which corresponds to the
observation in a way described below. Inputs to this
inference rule are linguistic description LD and lo-
cal perception LPercLD(u0, w) from (7). This local
perception is formed by a set of evaluative expres-
sions from antecedents of IF-THEN rules (i.e., from
the topic) of the given linguistic description. For-
mula (7) chooses these antecedents which best fit
the given numerical input u0, in other words, they
are most specific according to the ordering ≤(u0,w).

Once one or more antecedents Int(X is Aiℓ
) ∈

TopicLD, iℓ = 1, . . . , L are chosen according to (7),
we compute for any of them conclusions Ciℓ

:

Ciℓ
(v) =

(Int(X is Aiℓ
)(w))(u0) → (Int(Y is Biℓ

)(w′))(v).

Suppose that LPercLD(u0, w) is non-empty, i.e.,
L > 0. Then the final conclusion C is given as a
set of all L conclusions Ciℓ

that correspond to L
members in LPercLD(u0, w), i.e.,

C = {Ciℓ
| ℓ = 1, . . . , L}.

Usually, L = 1, i.e., there is one element in
LPercLD(u0, w). In this case, the only element
in C will be denoted by the same letter. If
Int(X is Ai)(w)(u0) = 0 for all Int(X is Ai) ∈
TopicLD, then, according to (7), C is the empty
set.

Remark 1 Let us note that usually the final in-
ference output is aggregated using the intersection
of all elements in C. Thus, it is easy to see that
whenever an LD contains two rules:

Ri := IF X is Ai THEN Y is Bi,

Rj := IF X is Aj THEN Y is Bj ,

such that Ai = Aj and Bi ≤LE Bj, the rule Rj is
trivially redundant.

This fact may be used in the preprocessing of lin-
guistic descriptions in order to efficiently decrease
the number of investigated rules. For the formal in-
vestigation of redundancy it suffices to deal with the
non-aggregated C.

3. Redundancy

3.1. Basic concepts

Let us fix the notation for the rest of the paper.
Let us consider a linguistic description LD and let
us be given an observation u0 in a given context
w ∈ W . Let C be the conclusion derived from u0
based on LD using the rule of perception based log-
ical deduction given by (8). Then this fact will be
denoted by

rP bLD

(
LPercLD(u0, w)

)
: C. (9)

Note that C is a set of fuzzy sets, in general. By
writing, e.g., C = D we are expressing the fact that
sets C and D are equal, i.e., they have precisely the
same elements (fuzzy sets).

Definition 1 Let LD = {R1, . . . , Rm} be a linguis-
tic description (5). Rule Ri is redundant in LD if
D1 = D2 for each value u0 ∈ w, w ∈ W , where

rP bLD

(
LPercLD(u0, w)

)
: D1,

rP bLD

(
LPercLD

′

(u0, w)
)

: D2

and LD
′

= LD r {Ri}.

As we have mentioned, redundancy is observed
as an existence of fuzzy rules with distinct overlap-
ping antecedents and identical consequents. But as

403



we will show below, sometimes such an intuitively
redundant fuzzy rule does not have to be always re-
dundant with respect to a formal definition of the
redundancy. Therefore, such a rule will be called
suspicious of redundancy and a further analysis of
its potential redundancy turns out to be necessary.

Definition 2 Let LD be a linguistic description
(5), let {Ri, Rj} ⊆ LD. Rule Ri is suspicious of re-
dundancy with respect to Rj (denoted by Ri ↪→ Rj)
if C1 = C2 for each value u0 ∈ w, w ∈ W , where

rP bLD

(
LPerc{Ri,Rj}(u0, w)

)
: C1

and
rP bLD :

(
LPerc{Rj}(u0, w)

)
: C2.

Theorem 1 Let LD be a linguistic description (5),
let {Ri, Rj} ⊆ LD. Rule Ri is suspicious of redun-
dancy with respect to Rj if and only if Ai ≤LE Aj

and Bi = Bj.

Theorem 1 claims that a fuzzy rule with an an-
tecedent overlapped by an antecedent of another
rule with the identical consequent is suspicious of
the redundancy w.r.t. that rule. Furthermore, there
are no other fuzzy rules that could be suspicious of
redundancy w.r.t. another fuzzy rule besides those
that meet the above mentioned situation. Thus,
Theorem 1 specifies fuzzy rules that makes sense to
investigate.

3.2. Detection of suspicious rules and their
cancellation

Due to the involvement of other rules the suspi-
cious rules do not have to be necessarily redundant
which may be demonstrated easily. Let us consider
a linguistic description LD with {Ri, Rj , Rk} ⊆ LD
where Ri ↪→ Rj , antecedents are ordered as follows
Ai ≤LE Ak ≤LE Aj and where the consequent Bk is
different from the consequents Bi = Bj . Then fuzzy
rule Rk “cancels” the redundancy of which Ri was
suspicious, see Figure 3 for a visualization.

Figure 3: Fuzzy rule Rk “cancels” the potential re-
dundancy of fuzzy rule Ri w.r.t. Rj . Rectangles de-
noting Ri, Rj are black and solid to symbolize that
Bi = Bj . Area where Rk fires is displayed by blue
dashed line in order to symbolize that Bk ̸= Bi(Bj).

Naturally, one could release hypotheses stating
the situation when fuzzy rule Ri that is suspicious
of redundancy wrt. Rj is not redundant. Two such
hypotheses were formulated in [1]. However, the
authors also showed that such hypotheses are not
generally valid because there might be some other
rules that “cancel the cancellation”. For a visualiza-
tion of such cancellation of a cancellation we refer
to Figure 4 and Figure 5.

Nevertheless, the non-valid hypotheses may be
rewritten into two valid theorems if we consider lin-
guistic description that have only three rules [1].

Theorem 2 Let LD = {Ri, Rj , Rk} and let Ri be
suspicious of the redundancy with respect to Rj. If

(1) Bk ̸= Bi,
(2) Ak ≤LE Aj,

and either

(3a) Ai ≤LE Ak,

or

(3b) Ai ∥LE Ak, (∥LE stands for incomparability)

then Ri is NOT redundant in LD.

Figure 4: Fuzzy rule Rp with BP = Bi(Bj) cancels
the cancellation by Rk.

Theorem 3 Let LD = {Ri, Rj , Rk} and let Ri be
suspicious of the redundancy with respect to Rj. If

(4) Bk ̸= Bi,
(5) Ak ∥LE Aj, but Ak, Aj have the same atomic

expression,
(6) Ai ≤LE Ak,

then Ri is NOT redundant in LD.

Theorems 2 and 3 were formulated for a linguistic
description that consist of only three rules, which
makes their importance from a practical point of
view rather low. Nevertheless, their existence is
justified by the following theorem that stems from
them. This theorem already provides us with a
general result for an arbitrary number of fuzzy IF-
THEN rules.
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Figure 5: Fuzzy rule Rp with BP = Bi(Bj) cancels
the cancellation by Rk.

Theorem 4 Let LD = {R1, . . . , Rm} be a linguis-
tic description (5) and let Ri ↪→ Rj. If there exists
no rule Rk ∈ LD such that either (1)-(3a), (1)-(3b)
or (4)-(6) holds, then Ri is redundant in LD.

The main contribution of Theorem 4 is that it
provides a full classification of such rules that may
cancel the suspicion of redundancy and that no
other fuzzy rules may be responsible for this. Hence,
we may introduce the notion of cancelling rule.

Definition 3 Let LD = {R1, . . . , Rm} be a linguis-
tic description (5) and let Ri ↪→ Rj. If either (1)-
(3a), (1)-(3b) or (4)-(6) holds for Rk ∈ LD then
the rule Rk is called cancelling.

Theorem 4 then actually states that if some sus-
picion Ri ↪→ Rj exists and no cancelling rule exists
in LD, then Ri is redundant.

4. Complex answer

Section 3 provided a full classification of cancelling
rules. Hence, we know in which situation a given
suspicion may be cancelled. However, we also know
that even such cancellation may be also eliminated
(by another rule) and the suspicious rule may be
really redundant even if there exists a cancelling
rule.

In this section we attempt to obtain a more com-
plex answer on a given question whether a rule is
redundant in a given linguistic description or not.

Theorem 5 Let LD be a linguistic description, let
{Ri, Rj , Rk} ⊆ LD and let Ri ↪→ Rj. Further-
more, let (1 ) − (3a) or (4 ) − (6 ) hold for Rk and
no further cancelling rule related to Ri ↪→ Rj exists
in LD. Then it holds that if Ri is redundant in LD
then there exists a rule Rp ∈ LD, Rp ̸= Rk such
that

a) Ri ↪→ Rp,

b) Ap ≤LE Ak.

Theorem 5 claims that if we have a cancelling rule
fulfilling (1 ) − (3a) or (4 ) − (6 ), we do not have to
investigate this pair Ri ↪→ Rj anymore because the
influence of the cancellation rule may be eliminated
only by another rule Rp with respect to which Ri

is suspicious of being redundant and moreover, the
cancelling rule does not have the cancellation prop-
erty with respect to this “eliminating” rule Rp. It
means that in order to detect the redundancy of
Ri it is sufficient to investigate this new suspicion
Ri ↪→ Rp.

Theorem 5 is crucial, but we should investigate
also the situation when a cancelling rule fulfils prop-
erties (1 ) − (3b), which is the most complicated
case. The reason is that the elimination is not al-
ways done by a rule to which the investigated rule
Ri would be also suspicious. However, a satisfac-
tory answer is obtained even for this case.

Theorem 6 Let LD be a linguistic description, let
{Ri, Rj , Rk} ⊆ LD and let Ri ↪→ Rj. Further-
more, let (1 ) − (3b) holds for Rk and no further
cancelling rule related to Ri ↪→ Rj exists in LD.
Then it holds that Ri is redundant in LD if and
only if there exists a rule Rp ∈ LD, Rp ̸= Rk such
that

(a) Ak �LE Ap,

(b) Ker(Int(X is Ai)(w)) ∩ Ker(Int(X is Ak)(w))
⊆ Ker(Int(X is Ap)(w)), for any w ∈ W ,

(c) Bp = Bi or Ap ≤LE Ai.

Based on all the results introduced in Sections 3
and 4, we may design the following algorithm that
searches for redundant rules in a given linguistic
description and removes them.

Algorithm: input LD,

1) Preprocessing (using Remark 1).

2) Search for all pairs Ri ↪→ Rj in LD, denote
them as Investigated Pairs IP .

3a) For a pair Ri ↪→ Rj ∈ IP search for an
Rk ∈ LD (using Theorem 4). If there is no
such Rk, delete Ri from LD and delete all pairs
containing Ri from IP .

3b) If there is such an Rk ∈ LD for which either
(1 ) − (3a) or (4 ) − (6 ) holds, the pair Ri ↪→
Rj is deleted from IP .

4) Repeat step 3) for all the pairs from IP .

5) For a pair Ri ↪→ Rj ∈ IP search for an
Rk ∈ LD for which (1 ) − (3b) holds. If there
is no other cancelling rule related to this pair,
search for an Rp ∈ LD fulfilling (a) − (c) from
Theorem 6. If there is such an Rp, then delete
Ri from LD and delete all pairs containing
Ri from IP . Otherwise delete only the pair
Ri ↪→ Rj from IP .

6) Repeat step 5) for all the pairs from IP .
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5. Application

In [18], the authors studied an ensemble approach to
time series forecasting which should avoid the dan-
ger of choosing an inappropriate forecasting method
for a given time series by a combination of several
methods. The combination is defined as a weighted
mean of forecasts by individual methods and the
goal of [18] was to determine appropriate weights of
individual methods using fuzzy rules. Particularly,
there were 7 individual methods combined in the
overall forecast. The weight of each method for each
time series prediction was determined with help of a
linguistic description using quantitative features3 of
the given time series as antecedent variables. Thus,
7 linguistic descriptions, each determining a weight
of an individual method, had to be determined.

A detailed analysis of the dependence of the pre-
cision of each method on the chosen features plays
an essential role. In [19], the authors have shown
that this exploration may be done with help of
linguistic associations mining, particularly, with a
fuzzy variant of the GUHA method originally pro-
posed by P. Hájek [20]. However, the fuzzy GUHA
method [10, 21] necessarily produces lots of ap-
proved yet redundant implicative associations that
may be viewed as fuzzy IF-THEN rules. Obviously,
an efficient method that significantly decreases the
number of fuzzy rules in the generated linguistic
descriptions but without any influence on their be-
havior, is highly desirable.

The seven chosen individual methods were the
following ones: Seasonal ARIMA, Exponential
Smoothing (abb. ES), Decomposition Technique
(DT), Random Walk (RW), Random Walk with a
drift (RWd), GARCH and Moving Averages (MA),
see Table 2. Expected precision of each of the
method is dependent on various features and thus,
the different dimensionality led to different numbers
of generated rules.

Methods No. of generated rules Reduced no.
ARIMA 7240 141
DT 9 3
ES 686 31
GARCH 17 7
MA 324 25
RW 234 23
RWd 152 20

Table 2: Number of rules generated by GUHA and
number of rules after post-processing.

As we may see from Table 2, the theoretical re-
search that led to a design of the algorithm intro-
duced in Section 4 significantly reduced the number
of fuzzy rules in these linguistic descriptions.

Additionally, we provide readers with one of the
linguistic descriptions before and after the redun-

3E.g., seasonality, frequency, kurtosis, skewness or coeffi-
cient of variation (CV).

Rule IF part THEN part
Kurtosis CV wGARCH

R1 Me Sm Ro Bi
R2 ML Me Sm Ro Bi
R3 ML Me Ve Sm Ro Bi
R4 ML Sm Ve Sm Ro Bi
R5 Ro Me Ex Sm Ro Bi
R6 Ro Me Ex Sm ML Bi
R7 Ro Me ML Sm Ro Bi
R8 Ro Me Sm Ro Bi
R9 Ro Me Ve Sm Ro Bi
R10 Ro Me Ve Sm ML Bi
R11 Sm Ro Me Ro Bi
R12 Sm Sm Ro Bi
R13 — Ex Sm Ro Bi
R14 — Ex Sm ML Bi
R15 — Sm Ro Bi
R16 — Ve Sm Ro Bi
R17 — Ve Sm ML Bi

Table 3: Fuzzy rules setting up the weight of the
GARCH method. Red color denotes redundant
rules, blue color denotes rules remaining in the de-
scription.

dancy analysis (Table 3). Because of the space
requirements, we choose the linguistic description
that sets-up the weight of the GARCH method and
thus, implicitly, determines a class of time series
(with particular features) for which this method
usually works. One may easily see, that e.g. R1 ↪→
R7, but, there is a cancelling rule R6 fulfilling
(1 ) − (3b) and no eliminating rule. However, R1
is redundant anyhow because R1 ↪→ R8 also holds
and there is no cancelling rule related to this suspi-
cion. Later on, also R8 is deleted as redundant be-
cause of the suspicion R8 ↪→ R7 and no cancelling
rule.

6. Conclusions and future work

As we have shown, intuitively redundant rules are
not always redundant and thus, a deeper and for-
mally correct approach had to be introduced.

Our approach is based on detecting the rules that
are suspicious of redundancy and their further in-
vestigation. Full classification of the rules that are
suspicious of redundancy has been provided. We
also obtained a full classification of rules that may
cancel the suspicion of redundancy, so called “can-
celling rules”. Finally, we have presented theoretical
results that allowed us to construct an algorithm
that detects and deletes redundant rules. It works
in such a way that the behavior of the linguistic de-
scription is preserved but, as our application show,
the number of rules is reduced significantly. This
formal understanding of redundancy, which stresses
the fact that original and new linguistic descriptions
are equivalent from the point of view of their be-
havior, is significantly different in comparison with
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other approaches aiming mainly at a simplification
of linguistic descriptions [3, 4] that use various tech-
niques, e.g. rules merging. Of course, their use may
be also beneficial. However, there is no guarantee
that the output of simplified linguistic descriptions
is equivalent with the output of the original one.

It should be recalled, that especially if fuzzy IF-
THEN rules are generated automatically from data,
then redundant rules can occur quite often. Higher
dimensionality may even strengthen this unwanted
effect. The detection and removal of such rules can
be really useful from the point of view of perfor-
mance and interpretability. We have presented one
of such real-life examples where the introduced re-
dundancy analysis made possible to apply so far to-
tally unapplicable yet theoretically approved fuzzy
rules generated by the linguistic associations mining
procedure.

Acknowledgements

This work was supported by the European Regional
Development Fund in the IT4Innovations Centre of
Excellence project (CZ.1.05/1.1.00/02.0070). Fur-
thermore, we gratefully acknowledge partial sup-
port of project KONTAKT II - LH12229 of MŠMT
ČR and of SGS06/PřF/2013 of the University of
Ostrava.

References

[1] A. Dvořák, M. Štěpnička, and L. Vavříčková.
Redundancies in systems of fuzzy/linguistic IF-
THEN rules. In Proc. of EUSFLAT-LFA 2011,
pages 1022–1029, Aix-les-Bains, July 2011.

[2] R. Babuška and M. Setnes. Data-driven con-
struction of transparent fuzzy models. In
H.B. Verbruggen, H.-J. Zimmermann, and
R. Babuška, editors, Fuzzy Algorithms for Con-
trol, pages 83–106. Kluwer, Boston, 1999.

[3] M. Setnes. Fuzzy rule base simplification us-
ing similarity measures (MSc Thesis). Delft
University of Technology, Deflt, Netherlands,
1995.

[4] M. Setnes, V. Lacrose, and A. Titli. Com-
plexity reduction methods for fuzzy systems.
In H.B. Verbruggen, H.-J. Zimmermann, and
R. Babuška, editors, Fuzzy Algorithms for Con-
trol, pages 185–218. Kluwer, Boston, 1999.

[5] S. Galichet and L. Foulloy. Size reduction in
fuzzy rulebases. In Proc. IEEE International
Conference On Systems, Man and Cybernetics,
pages 2107–2112, San Diego, 1998.

[6] V. Novák. Perception-based logical deduction.
In B. Reusch, editor, Computational Intelli-
gence, Theory and Applications, Advances in
Soft Computing, pages 237–250, Berlin, 2005.
Springer.

[7] V. Novák, M. Štěpnička, A. Dvořák, I. Perfil-
ieva, V. Pavliska, and L. Vavříčková. Anal-

ysis of seasonal time series using fuzzy ap-
proach. International Journal of General Sys-
tems, 39:305–328, 2010.

[8] M. Štěpnička, A. Dvořák, V. Pavliska, and
L. Vavříčková. A linguistic approach to time
series modeling with the help of F-transform.
Fuzzy Sets and Systems, 180:164–184, 2011.

[9] V. Novák, I. Perfilieva, and N. G. Yarushk-
ina. A general methodology for managerial de-
cision making using intelligent techniques. In
E. Rakus-Andersson, editor, Recent Advances
in Decision Making. Springer, Berlin Heidel-
berg, 2009.

[10] V. Novák, I. Perfilieva, A. Dvořák, Q. Chen,
Q. Wei, and P. Yan. Mining pure linguistic as-
sociations from numerical data. International
Journal of Approximate Reasoning, 48:4–22,
2008.

[11] V. Novák. A comprehensive theory of trichoto-
mous evaluative linguistic expressions. Fuzzy
Sets and Systems, 159(22):2939–2969, 2008.

[12] V. Novák and A. Dvořák. Formalization
of commonsense reasoning in fuzzy logic in
broader sense. Applied and Computational
Mathematics, 10:106–121, 2011.

[13] L. A. Zadeh. Precisiated natural language. AI
Magazine, 25:74–91, 2004.

[14] L. A. Zadeh. The concept of a linguistic vari-
able and its application to approximate rea-
soning I–III. Inform. Sci. 8 (1975) 199–250, 8
(1975) 301–357, 9 (1975) 43–80, 1975.

[15] A. Dvořák, H. Habiballa, V. Novák, and
V. Pavliska. The software package LFLC 2000
- its specificity, recent and perspective appli-
cations. Computers in Industry, 51:269–280,
2003.

[16] M. De Cock and E.E. Kerre. Fuzzy modifiers
based on fuzzy relations. Information Sciences,
160:173–199, 2004.

[17] E. Hajičová, B. Partee, and P. Sgall. Topic-
focus Articulation, Tripartite Structures, and
Semantic Content. Kluwer, Dordrecht, 1998.

[18] D. Sikora, M. Štěpnička, and L. Vavříčková.
Fuzzy rule-based ensemble forecasting: Intro-
ductory study. In Synergies of Soft Comput-
ing and Statistics for Intelligent Data Analysis
(Advances in Intelligent Systems and Comput-
ing 190), pages 379–387. Springer-Verlag, 2013.

[19] L. Štěpničková, M. Štěpnička, and D. Sikora.
Fuzzy rule-based ensemble with use of linguis-
tic associations mining for time series predic-
tion. In Proc. of EUSFLAT 2013, in this vol-
ume, Milano, 2013.

[20] P. Hájek. The question of a general concept
of the GUHA method. Kybernetika, 4:505–515,
1968.

[21] J. Kupka and I. Tomanová. Some extensions of
mining of linguistic associations. Neural Net-
work World, 20:27–44, 2010.

407




