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Abstract

There are many various methods to forecast time
series. However, there is no single forecasting
method that generally outperforms any other. Con-
sequently, there always exists a danger of choosing
a method that is inappropriate for a given time se-
ries. To overcome such a problem, distinct ensemble
techniques are being proposed. These techniques
combine more individual forecasting methods.

In this contribution, we employ the so called fuzzy
rule-based ensemble to determine the weights based
on time series features such as trend, seasonality or
stationarity. For identification of fuzzy rule base,
we use linguistic association mining. An exhaustive
experimental justification is provided.

Keywords: Time series, fuzzy rules, ensembles,
Fuzzy Rule Based Ensemble, fuzzy GUHA, linguis-
tic associations, perception-based logical deduction

1. Introduction and motivation

1.1. Introduction

Time series prediction is an important tool for sup-
port of individual and organizational decision mak-
ing. It has a wide practical use in economy, in-
dustry, demography, and other areas of application.
The time series is usually given as a finite sequence
y1, y2, . . . , yT of real numbers and the task is to pre-
dict future values yT +1, yT +2, . . . , yT +h where h de-
notes so called forecasting horizon. There are many
different methods to this task which are nowadays
widely used in practise, let us recall e.g. well-known
Box-Jenkins methodology [1] which consists of au-
toregressive and moving average models, decompo-
sition method which is based on a decomposition a
given time series into the components, or exponen-
tial smoothing methods. Further, a notable number
of works aiming at fuzzy approach to time series
analysis and prediction has been published. For in-
stance, a study presenting Takagi-Sugeno rules [2]
in the view of the Box-Jenkins methodology [3] or
the works dealing with the linguistic approach [4, 5]
have been published. Analogously, various neuro-
fuzzy approaches, which lie on the border between
neural networks, Takagi-Sugeno models and evolv-
ing fuzzy systems, are very often successfully used

[6, 7]. Unfortunately, there is no single forecast-
ing method that generally outperforms any other.
Thus, there is a danger of choosing a method which
is inappropriate for a given time series. We note
that even searching for methods that outperform
any other for narrower specific subsets of time se-
ries has not been successful yet, see [8]:

“Although forecasting expertise can be found in the
literature, these sources often fail to adequately

describe conditions under which a method is
expected to be successful”.

1.2. Ensembles

In order to eliminate the risk of choosing an inap-
propriate method, distinct ensemble techniques, en-
sembles in short, have been designed and success-
fully applied. The main idea of ensembles consists
in an appropriate combination of more forecasting
methods. Typically, ensemble techniques are con-
structed as a linear combination of the individual
ones. It can be described as follows. Let us as-
sume that we are given a set of M individual meth-
ods and for a given times series y1, y2, . . . , yT and a
given forecasting horizon h, j-th individual method
provides us with the following prediction:

ŷ
(j)
T +1, ŷ

(j)
T +2, . . . , ŷ

(j)
T +h, j = 1, . . . , M.

Then the ensemble forecast is given by the following
formula:

ŷT +i = 1∑M
j=1 wj

·
M∑

j=1
wj · ŷ

(j)
T +i, i = 1, . . . , h

where wj ∈ R is a weight of the j-th individual
method. These weights are usually normalized, that
is

∑M
j=1 wj = 1.

Let us recall that Bates and Granger [9] was one
of the first to show significant gains in accuracy
through combination. Another early work by New-
bold and Granger [10] combined various time se-
ries forecasts and compared the combination against
the performance of the individual methods. They
show that for set of forecasts, a linear combination
of these forecasts could be obtained which would
also be unbiased and achieve a combined forecast
error variance smaller than the individual forecasts.
They found that the better combining procedures
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did produce an overall forecast superior to individ-
ual forecasts on the majority of tested time series.

How to combine methods, i.e., how to determine
appropriate weights, is still a relatively open ques-
tion. For instance, Makridakis et al. [11] show
that taking a simple average outperforms taking
a weighted average method combination. In other
words, the so called “equal-weights combining” [12],
that is an arithmetic mean, is a benchmark that
is hard to beat and finding appropriate non-equal
weights rather leads to a random damage of the
main averaging idea that is behind the robustness
and accuracy improvements.

1.3. Motivation for the suggested approach

Although the equal-weights performs as accurately
as mentioned above, there are works that promis-
ingly show the potential of more sophisticated ap-
proaches. We recall Lemke and Gabrys [13] that
describes an approach using meta-learning for time
series forecasting based on the features of time series
such as: measure for the strength of the trend, stan-
dard deviation, skewness, etc. Given time series are
clustered using the k-means algorithm. Individual
methods are ranked according to their performance
on each cluster and then three best methods for
each cluster are selected. For a given new time se-
ries, the closest cluster is determined and the given
three best methods are combined.

It should be stressed that this approach per-
formed very well on sufficiently big set of time series.
For us, it is one of the main motivations because
it demonstrates that there exists a dependence be-
tween time series features and success of forecasting
method.

The second major motivation stems from the so
called Rule-Based Forecasting (RBF) developed by
Collopy and Armstrong [8, 12]. It is an expert sys-
tem that uses domain knowledge to combine fore-
casts from various forecasting methods. Using IF-
THEN rules, RBF determines what weights to give
to the forecasts.

We follow the main ideas of rule-based forecasting
[8] and of using time series features [13] to obtain
an interpretable and understandable model.

2. Fuzzy Rule-Based Ensemble

As mentioned above, RBF uses the rules to de-
termine weights [8]. However, only few of these
rules are directly used to set up weights. Most of
them set up rather a specific model parameters, e.g.
the smoothing factors of the Brown’s exponential
smoothing with trend. Moreover, in antecedents the
rules very often use properties that are not crisp but
rather vague, e.g. expressions such as: “last obser-
vation is unusual; trend has been changing; unsta-
ble recent trend” etc., see [12]. For such cases, using
crisp rules that are either fired or not and nothing
between, seems to be less natural than using fuzzy

rules. Similarly, the use of crisp consequents such
as: “add 10% to the weight; subtract 0.4 from beta;
add 0.1 to alpha” etc. [12], seems to be less intu-
itive than using vague expressions that are typical
for fuzzy rules.

2.1. General structure of the model

Therefore, our goal was to propose a method that
uses fuzzy rules instead of crisp rules in order to cap-
ture the omnipresent vagueness in the expressions;
to use only quantitative features (no domain knowl-
edge) in the antecedent variables which enable to
fully automatize the method; to use only individual
forecasting method weights as the consequent vari-
ables [14, 15]. The result of such motivated investi-
gation is the Fuzzy Rule-Based Ensemble (FRBE)
that is schematically illustrated on Figure 1.

Figure 1: Structure of the FRBE method.

The FRBE method uses a single linguistic de-
scription, i.e. fuzzy rule base with evaluative lin-
guistic expressions [16], for each forecasting method.
Each of these linguistic descriptions determines the
weights of a single individual method based on
transparent and interpretable rules, such as:

“IF Strength of Seasonality is Small AND Co-
efficient of Variation is Roughly Small THEN
Weight of the j-th method is Big.”

After an appropriate inference method is applied
(see Section 2.2) in order to obtain a fuzzy output,
a defuzzification method is employed and thus, a
crisp result (weight of a particular method) is de-
termined.

So far, based on experiments and previous publi-
cations [13] the following features were considered:
strength of trend, strength of seasonality, length of
the time series, skewness, kurtosis, coefficient of
variation, stationarity and frequency. With help of
the forward stepwise regression on the training set
of the time series, only the statistically significant
features were used for each method [14, 15]. Note,
that for each method, different features played the
significant role.
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2.2. Components of the model

In order to estimate (set up) a particular value of the
weight of each forecasting method with help of the
fuzzy rules, an appropriate fuzzy inference mecha-
nism has to be employed. As mentioned above, the
FRBE method employs linguistic descriptions, i.e.
fuzzy rule bases with so called evaluative linguis-
tic expressions. These are expressions of natural
language that are based on the expressions of the
basic trichotomy Small (Sm), Medium (Me), and
Big (Bi). The expression of the basic trichotomy
may be modified using linguistic hedges either with
narrowing or with widening effect, see Table 1.

Narrowing effect Widening effect
very (Ve) more or less (ML)

significantly (Si) roughly (Ro)
extremely (Ex) quite roughly (QR)

– very roughly (VR)

Table 1: Linguistic hedges and their abbreviations.

Such linguistic expressions have their theoretical
model of the semantics based on intension, context
and extension, which is in detail described in the
referred literature [16]. For the purpose of this con-
tribution, it is sufficient to mention that extensions,
that model the meaning in a given context [vL, vR],
are fuzzy sets that are depicted on Figure 2. One
may easily see the influence of the modifiers on the
shape of the extensions.

Sm
Bi

Me

vL vR

1
ML Sm

Ex Sm

ML Me

DEE(Bi)DEE(Sm)

DEE(Ex Sm)

DEE(Me)

Figure 2: Shapes of extensions (fuzzy sets) of eval-
uative linguistic expressions.

If a fuzzy rule base is viewed as a linguistic de-
scription and thus, uses the above recalled evalu-
ative linguistic expressions with their model of se-
mantics, one can neither model the rules (and con-
sequently the whole description) as a conjunction of
implicative rules nor as a disjunction of conjunctions
(Mamdani-Assilian model). The used expressions,
mainly their full overlapping, require a specific infer-
ence method – Perception-based Logical Deduction
(PbLD) [17]. This method models each fuzzy rule

Ri := IF X is Ai THEN Y is Bi,

by a fuzzy relation Ri on X × Y given as follows:

Ri(x, y) = Ai(x) →Ł Bi(y)

where →Ł is the Łukasiewicz implication [18] given
by a →Ł b = 1 ∧ (1 − a + b). However, unlike in
the case of implicative rules, the rules are not aggre-
gated conjunctively. The PbLD uses a specific algo-
rithm (perception) that chooses only some rules to
be used in the inference. These are the most specific
among the most fired rules. And only the outputs
obtained based on these fuzzy rules are aggregated
by the intersection at the final stage. For details
regarding the algorithm, we refer e.g. to [19, 20].

Finally, the inferred output is defuzzified. This
is done by the Defuzzification of Evaluative Ex-
pressions (DEE) that has been designed specifi-
cally for the outputs of the PbLD inference mecha-
nism. In principle, this defuzzification is a combina-
tion of First-Of-Maxima (FOM), Mean-Of-Maxima
(MOM) and Last-Of-Maxima (LOM) that are ap-
plied based on the classification of the output fuzzy
sets. Particularly, if the inferred fuzzy set is of the
type Small, the LOM is applied; if the inferred out-
put is of the type Medium, the MOM is applied; and
finally, if the inferred output is of the type Big, the
FOM is applied, see Figure 2. In the case of the
FRBE method, the defuzzification DEE is applied
after the inference so that, the deduced weights
wAR, wDT , . . . , wES displayed on Figure 1 are al-
ready crisp numbers.

2.3. Fuzzy rule base identification

The last missing point is the identification of the lin-
guistic descriptions. This may be done by distinct
approaches. One could expect a deep applicable ex-
pert knowledge however, neither our experience nor
the experience of others confirms this expectations.
Let us once more refer to the observation of Arm-
strong, Collopy and Adya in [8] already recalled in
Section 1.

Because of the missing reliable expert knowledge,
we focus on data-driven approaches that may bring
us the interpretable knowledge hidden in the data.

However, before we apply any data-mining tech-
nique, we have to clarify how we interpret the
weights in the data because only the features serv-
ing as antecedent variables are measured. Naturally,
the individual method weights should be propor-
tionally higher if a given method is supposed to pro-
vide lower forecasting error and vice-versa. Thus, it
is natural to put

wj = 1 − accj

where accj denotes an appropriate normalized fore-
casting error of the j-th method, and to estimate
directly the weight of the j-th method wj instead
of the value of the forecasting error. Now, any ap-
propriate data-mining technique may be applied in
order to determine the dependence between features
and the precision (weight) of each method.
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3. Fuzzy GUHA – linguistic association
mining

In this paper, we employ the so called linguis-
tic associations mining [21] for the fuzzy rule base
identification. This approach, firstly introduced as
GUHA method [22, 23], finds distinct statistically
approved associations between attributes of given
objects. Particularly, the GUHA method deals with
Table 2 where o1, . . . , on denote objects, X1, . . . , Xm

denote independent boolean attributes, Z denotes
the dependent (explained) boolean attribute, and
finally, symbols aij (or ai) ∈ {0, 1} denote whether
an object oi carries an attribute Xj (or Z) or not.

X1 . . . Xm Z
o1 a11 . . . a1m a1
...

...
. . .

...
...

on an1 . . . anm an

Table 2: Standard GUHA table.

The original GUHA allowed only boolean at-
tributes to be involved, see [24]. Since most of the
features of objects are measured on the real inter-
val, standard approach assumed to booleanize the
attributes by a partition of the interval into subin-
tervals, see Example 1.

The goal of the GUHA method is to search for
linguistic associations of the form

C(X1, . . . , Xp) ≃ D(Z)

where C, D are (compound) evaluative predica-
tions [16] containing only the connective AND and
X1, . . . , Xp for p ≤ m are all variables occur-
ring in C. The C, D are called the antecedent
and consequent, respectively. Generally, for the
GUHA method, the well-known four-fold table is
constructed, see Table 3.

D not D
C a b

not C c d

Table 3: Classical GUHA four-fold table.

Symbol a, in Table 3, denotes the number of pos-
itive occurrences of C as well as D; b is the number
of positive occurrences of C and of negated D, i.e.
of ‘not D’. Analogous meaning have the numbers c
and d. For our purposes, only numbers a and b are
important.

The relationship between the antecedent and con-
sequent is described by so called quantifier ≃. There
are many quantifiers that characterize validity of
the association in the data [23]. For our task, we
use the so called a binary multitudinal quantifier
≃:=@γ

r . This quantifier is taken as true if

a

a + b
> γ

and
a

m
> r,

where γ ∈ [0, 1] is a confidence degree and r ∈ [0, 1]
is a support degree.

Example 1 For example, let us consider Table 4.

BMI≤25 BMI>25 Chol>6.2 BP>130/90
o1 1 0 0 0
o2 0 1 1 1
o3 0 1 0 1
o4 1 0 0 0
o5 0 1 1 1
...

...
...

...
...

on 0 0 1 1

Table 4: Example of GUHA table. BMI≤25 denotes
Body-Mass-Index lower or equal to 25, BMI>25 de-
notes the same index above 25, Chol>6.2 denotes
Cholesterol higher than 6.2 and BP>130/90 denotes
Blood Pressure higher than 130/90. Objects oi are
particular patients.

Depending on the chosen confidence and support
degree, the GUHA method could generate the follow-
ing linguistic association:

C(BMI>25, Ch>6.2) ≃D(BP>130/90) .

In many situations, including our situation, the
fuzzy variant of the GUHA method [25, 26] seems
to be more appropriate. In the fuzzy variant of the
method, the attributes are not boolean but rather
vague (such as BMIExBi, BMIMLBi, CholVeBi etc.)
and thus, values aij(or ai) are elements of the in-
terval [0, 1] that express membership degrees.

The four-fold table analogous to Table 3 is con-
structed also for the fuzzy variant of the method.
The difference is that the numbers a, b, c, d are not
summations of 1s and 0s but summations of mem-
bership degrees of data into fuzzy sets representing
the antecedent C and consequent D or their com-
plements, respectively. Otherwise, the main idea of
the method remains the same.

The advantage is that it searches for implica-
tive associations that may be directly interpreted
as fuzzy rules.

In our case, for each individual forecasting
method, we have transformed the training data set
of time series with their normalized features into a
table similar to Table 5.

F Sm
1 . . . F Bi

3 W Sm
ES . . . W Bi

ES
TS1 0.9 . . . 0.7 0 . . . 0.9

...
...

. . .
...

...
. . .

...
TS99 0.1 . . . 0.2 0.8 . . . 0

Table 5: Transformed training data set for the Ex-
ponential Smoothing forecasting method.
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Objects TS1, . . . , TS99 in Table 5 are the time se-
ries from the training set, see Table 6; F1, . . . , F3
are those three normalized features of given time
series that were found to be statistically significant
for the performance of the Exponential Smoothing
method by the forward stepwise regression, see Sec-
tion 2.1. Note, that there are significantly more
than just 3 columns in this part of Table 5 because
each evaluative linguistic expression leads to a single
column for a single feature Fi, i.e., for the expres-
sion ExSm, there are three columns: F ExSm

1 , F ExSm
2

and F ExSm
3 . Symbol WES stands for the weight (ac-

curacy) of the Exponential Smoothing method and
again, there are as many columns in this part of the
Table 5 as there exist so many evaluative linguistic
expressions.

The fuzzy GUHA then combinatorically gener-
ates hypotheses that are immediately statistically
either declined or confirmed as linguistic associa-
tions based on the chosen quantifier parameters, see
Example 2.

Example 2 Let F1 be skewness and F2 be coeffi-
cient of variation. Our fuzzy GUHA approach pro-
vided us with the following implicative hypothesis:

C(SkewRoMe, CVExSm) @γ
r D(W MLBi

DT )

where Skew denotes the normalized skewness and
CV denotes the coefficient of variation, that was
confirmed on the following confidence degree and
support degree:

γ = 0.7, r = 0.04,

respectively.
Such a confirmed association may be viewed and

thus, directly interpreted, as the following fuzzy rule:

“IF Skewness is Roughly Medium AND Coef-
ficient of Variation is Extremely Small THEN
Weight of the decomposition method is More or less
Big.”

Note, that the above described application of the
fuzzy GUHA generates linguistic description deter-
mining the weight of a single method – in our ex-
ample of the Exponential Smoothing. Thus, the
method, including the transformation of training
data set into a table similar to Table 5, has to be
applied as many times as is the number of methods
(and consequently of the linguistic descriptions). In
our case, this led to the sevenfold use of the method
as we deal with seven individual methods.

4. Implementation

To develop and validate the model we have used
198 time series from the M3 data set repository that
contains 3003 time series from the M3-Competition

[27] and that serves as a generally accepted bench-
mark database provided by the authority of the In-
ternational Institute of Forecasters. We have cho-
sen the time series from 5 categories (Microecon-
omy, Macroeconomy, Industry, Finance, Demogra-
phy) and with different time intervals between suc-
cessive observations (yearly, quarterly, monthly).
This selected data set was divided into 2 sets (train-
ing set and testing set) both containing 99 time se-
ries, see Table 6 and Table 7.

Training set
Yearly Quarterly Monthly

Micro 5 7 7
Macro 7 8 8
Industry 7 7 6
Finance 7 7 5
Demography 7 4 7
Total 33 33 33

Table 6: Training data set.

Testing set
Yearly Quarterly Monthly

Micro 5 7 7
Macro 7 8 8
Industry 7 7 6
Finance 7 7 5
Demography 7 4 7
Total 33 33 33

Table 7: Testing data set.

The training set was used for an identification
of our model, that is for a fuzzy rule base iden-
tification. The testing set was used for a testing
whether the determined knowledge encoded in the
fuzzy rules works generally also for other time series.

To forecast the future values of the time series,
we have chosen the most often used forecasting
methods that are at disposal to the widest com-
munity of users: seasonal Autoregressive Integrated
Moving Average (ARIMA), Decomposition Tech-
niques (DT), Exponential Smoothing (ES), Gener-
alized Autoregressive Conditional Heteroscedastic-
ity models (GARCH), Moving Averages (MA), Ran-
dom Walk process (RW) and Random Walk pro-
cess with a drift (RWd). For details about these
methods, we only refer to the relevant literature
[1, 28, 29].

In order to avoid any bias from a naive implemen-
tation of the above listed methods, we adopted im-
plementations of these methods by professional soft-
ware package such as ForecastPror for ARIMA, ES
and MA; Gretlr for GARCH and RWd and NCSSr

for DT. These tools executed fully automatic pa-
rameter selection and optimization which made pos-
sible to concentrate the investigation purely on the
combination technique. Moreover, their arithmetic
mean (AM), that represents the equal weights en-
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semble, was also determined and used as a valid
benchmark.

There are many accuracy measures that are used
to analyze the performance of the various fore-
casting methods. However, very popular mea-
sures such as Mean Absolute Error or (Root) Mean
Squared Error are inappropriate for comparison
across more time series because they are scale-
dependent. Therefore, we use Symmetric Mean
Absolute Percentage Error (SMAPE) that is scale-
independent and thus appropriate to compare meth-
ods across different time series [30]. It is defined as
follows:

SMAPE = 1
h

T +h∑
t=T +1

|yt − ŷt|
(|yt| + |ŷt|)/2

× 100%.

For further investigation, some important fea-
tures need to be extracted from a given time series.
We used the following features: strength of trend,
strength of seasonality, length of the time series,
skewness, kurtosis, coefficient of variation, station-
arity and frequency. Since most of them are stan-
dard and well-known, we do not describe them.

Since the range of some features can significantly
vary, it is crucial to normalize the range of features
to the interval [0, 1] as well as the SMAPE accuracy
measure.

Let us recall, we used the binary multitudinal
quantifier ≃:=@γ

r to find implicative associations
between features of time series occuring in the
antecedent and accuracy of individual forecasting
method occuring in the consequent. For our pur-
poses, we set up γ = 0.7 and r = 0.04.

5. Results

As mentioned above, the associations generated by
GUHA method are implicative. Thus, they may be
directly interpreted as fuzzy rules. Due to the big
number of such generated rules, a post-processing
was applied on these rules. This process consists in
search and deletion the rules that are duplicate and
redundant [19]. After that, the number of rules was
significantly reduced, see Table 8.

Methods No.of rules generated
by fuzzy GUHA

Reduced no.of
rules

ARIMA 7240 141
DT 9 3
ES 686 31
GARCH 17 7
MA 324 25
RW 234 23
RWd 152 20

Table 8: Number of rules generated by fuzzy GUHA
method and number of rules after post-processing.

In order to judge its performance, the fuzzy rule-
based ensemble was applied on the 99 time series

from the testing set. Table 9 and Table 10 show
that in the average and the standard deviation
of SMAPE forecasting errors over all testing set,
the fuzzy rule-based ensemble outperforms all indi-
vidual forecasting methods. Moreover, the equal-
weights, i.e. arithmetic mean (AM), has been out-
performed as well.

Methods Average Error
DT 21.59
GARCH 17.27
RWd 15.95
RW 15.26
MA 15.11
ARIMA 14.44
ES 14.43
AM 14.40
FRBE 14.14

Table 9: Average of the SMAPE forecasting errors.

Methods Error Std.Dev.
DT 24.64
GARCH 21.32
RWd 20.73
RW 19.53
MA 19.36
ARIMA 20.41
ES 18.48
AM 18.51
FRBE 18.24

Table 10: Standard deviation of the SMAPE fore-
casting errors.

Although the improvement does not seem signif-
icant, it is evident that the fuzzy rule-based en-
semble performs very well even against the equal-
weights combining, i.e. a procedure that has per-
formed well in prior studies. Moreover, statistical
significance test has been performed. Namely, we
have performed the t-test testing the null hypoth-
esis that the mean value of the random variable
(SMAPEAM − SMAPEFRBE) equals to zero against
the alternative hypothesis that the mean value is
positive. The null hypothesis was rejected in the
standard significance level α = 0.05 . Particularly,
the obtained p-value was equal to 0.009 . Further-
more, we have also applied the Wilcoxon test testing
the null hypothesis that median of the above defined
random variable was equal to zero, the alternative
hypothesis was defined analogously. Again, as in
the previous case, we have rejected the null hypoth-
esis on the same significance level with the p-value
equal to 0.016 in this case.

Let us stress that the victory has been reached
not only in the accuracy but also in the robustness
(standard deviation of the SMAPE forecasting er-
rors, see Table 10) which is perhaps even more im-
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portant w.r.t. the goals of ensemble methods. This
investigation also confirms that there is really a de-
pendence between time series features and success
of forecasting method. This fact is good motivation
to continue in this topic.

Rule IF part THEN part
Kurtosis CV wGARCH

R1 ML Sm Ve Sm Ro Bi
R2 Ro Me ML Sm Ro Bi
R3 Ro Me Ve Sm ML Bi
R4 Sm Ro Me Ro Bi
R5 Sm Sm Ro Bi
R6 — Sm Ro Bi
R7 — Ve Sm ML Bi

Table 11: Fuzzy rules setting up the weight of the
GARCH method. CV denotes the coefficient of vari-
ation.

In order to emphasize the linguistic nature of the
approach, we provide readers with one of the lin-
guistic descriptions generated by the fuzzy GUHA
method in Table 11. Because of the small number of
generated rules, we choose the linguistic description
that set up the weight of the GARCH method. The
fuzzy rules symbolically displayed in Table 11, can
be easily read as conditional sentences of natural
language. For example, let us take the first fuzzy
rule R1:

“IF Kurtosis is More or less Small AND Coeffi-
cient of Variation is Very Small THEN Weight of
the GARCH method is Roughly Big”

or the rule R7 can be read as:

“IF Coefficient of Variation is Very Small
THEN Weight of the GARCH method is More or
less Big”.

Recall, that we have chosen the weight to be
proportional to the expected method accuracy and
thus, the weight and the accuracy may be freely
replaced. This makes the rule even more inter-
pretable, which underlines the goal of our approach.

6. Conclusions

In this contribution, we have clearly stated the main
motivations and ideas for fuzzy rule-based ensemble,
i.e. the rule-based forecasting and use of time series
features.

The introduced fuzzy rule-based ensemble has
been “equipped” with fuzzy rule bases that were
generated by the fuzzy GUHA method. The per-
formance of the final model has been verified on
the testing set composed of 99 times series from
the world-known benchmark data-set M3. The ob-
tained results showed a slight but yet statistically
significant improvement in the accuracy compared
to the given benchmark ensemble – equal weights.
Moreover, the proposed model achieved also lower

standard deviation of the accuracy that confirms
the improvement in the sense of “robustness”.

Let us also recall the linguistic nature of the sug-
gested approach motivated by the aim to obtain an
interpretable and understandable model.

We can conclude that we have demonstrated the
promising potential of the fuzzy rule-based forecast-
ing that entitles us to continue in the future re-
search. For instance, the other techniques for fuzzy
rule base identification, e.g. fuzzy cluster analysis,
are supposed to be experimentally evaluated. Fur-
thermore, it is possible to combine the fuzzy rule
bases obtained by various techniques in order to im-
prove the results.
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