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Abstract

The class of discrete uninorms U such that their
underlying t-norm T and t-conorm S are smooth
is studied. The different cases combining when
T is the minimum or the Łukasiewicz t-norm and
S is the maximum or the Łukasiewicz t-conorm,
are characterized and the number of discrete uni-
norms with these underlying operators is given. It
is also studied the general case when T and/or S
are smooth, but ordinal sums.
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tion, t-norms, t-conorms

1. Introduction

Uninorms are a especial kind of binary aggrega-
tion functions that generalize both t-norms and t-
conorms. They have proved to be useful in many
application fields and this have lead to an extensive
study of uninorms from the pure theoretical point
of view. One of the most interesting topics in this
direction deals with the characterization of the dif-
ferent classes of uninorms, mainly uninorms in Umin
and Umax [7], idempotent uninorms [1, 16, 11], rep-
resentable uninorms [2, 7, 15], uninorms continuous
in the open unit square [8, 5], compensatory uni-
norms [4], and even those uninorms with continuous
underlying operators [6].

Uninorms are usually defined on the unit inter-
val [0, 1], but they can be generalized to other do-
mains. In particular, uninorms defined on a finite
chain have been studied by some authors. The inter-
est of operators defined on a finite chain comes from
their usefulness in problems where qualitative infor-
mation is used. When data is qualitative, the fuzzy
linguistic approach is a good tool to model the in-
formation because then, the qualitative terms used
by experts are represented via linguistic variables
instead of numerical values. In these cases, linguis-
tic variables are often interpreted to take values on
a totally ordered scale like

L = {Extremely Bad, Very Bad, Bad, Fair, Good,
Very Good, Extremely Good}.

Then the representative finite chain Ln =
{0, 1, . . . , n} is usually considered to model these
linguistic hedges.

For this reason many papers dealing with opera-
tions defined on Ln, usually called discrete opera-
tions, have appeared in last years. Dealing with dis-
crete operators, the smoothness condition is usually
considered as the discrete counterpart of continuity.
In fact, in the discrete framework this property is
equivalent to the divisibility property as well as to
the Lipschitz condition. Thus, many classes of ag-
gregation functions with some smoothness condition
have been studied and characterized. For instance,
smooth discrete t-norms and t-conorms were char-
acterized in [13, 14], uninorms in Umin and Umax and
nullnorms in [12], idempotent discrete uninorms in
[3], weighted means in [10].

For the case of uninorms, it is well known that
there are no smooth uninorms on Ln and so, the
smoothness condition is only possible in some par-
tial regions of L2

n, like in the mentioned cases of dis-
crete uninorms in Umin and Umax or discrete idem-
potent uninorms. However, the general case of dis-
crete uninorms having smooth underlying operators
has not yet investigated and this is the main goal of
this work. The paper is organized as follows. In Sec-
tion 2 we give some preliminaries that will be used
in the paper, and the main results are presented in
Section 3. Since smooth t-norms (and t-conorms)
are given by the minimum, the Łukasiewicz t-norm
(the maximum or the Łukasiewicz t-conorm) or an
ordinal sum of these two types of operators, we have
divided our results in Section 3 in some subsections
devoting a subsection for each possible case of the
underlying t-norm and t-conorm of the correspond-
ing uninorm. Section 4 gives general conclusions
and future work.

2. Preliminaries

We suppose the reader to be familiar with some ba-
sic results on uninorms and their classes that can
be found for instance in [4, 7, 8, 11, 16].

In these preliminaries we recall some known facts
on uninorms defined on finite chains, that we will
also refer to discrete uninorms. In these cases, the
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concrete scale to be used is not determinant and the
only important fact is the number of elements of the
scale (see [14]). Thus, given any positive integer n,
we will deal from now on with the finite chain

Ln = {0, 1, 2, . . . , n}.

We will use indistinctly the interval notation Ln =
[0, n] and also the usual notations [0, e] and [e, n]
when e ∈ Ln for the corresponding subsets of Ln.

Definition 1 A uninorm on Ln is a two-place
function U : L2

n → Ln which is associative, com-
mutative, increasing in each place and such that
there exists some element e ∈ Ln, called neutral
element, such that U(e, x) = x for all x ∈ Ln.

It is clear that the function U becomes a t-norm
when e = n and a t-conorm when e = 0. For
any uninorm on Ln we have U(n, 0) ∈ {0, n} and
a uninorm U is called conjunctive when U(n, 0) = 0
and disjunctive when U(n, 0) = n. The structure of
any discrete uninorm U on Ln with neutral element
0 < e < n is always as follows. It is given by a
t-norm T on the interval [0, e], by a t-conorm S on
the interval [e, n] and it takes values between the
minimum and the maximum in all other cases, that
is, in the region

A(e) = [0, e]× [e, n] ∪ [e, n]× [0, e].

Definition 2 Let F be a binary operator on a finite
totally ordered set Ln. It is said that F verifies
the 1-smoothness condition or that F is smooth if
whenever F (i, j) = k then

{F (i− 1, j), F (i, j − 1)} ⊆ {k − 1, k}.

The relation between the Archimedean property
(T (x, x) < x for all x ∈ Ln\{0, n}) and the smooth-
ness property for t-norms (and t-conorms) on Ln

was stated in [13] (see [14] for the current version).

Proposition 1 ([14]) The only Archimedean
smooth t-norm and t-conorm on Ln are, respec-
tively, the Łukasiewicz t-norm

TL(x, y) = max(0, x+ y − n) for all x, y ∈ Ln,

and the Łukasiewicz t-conorm

SL(x, y) = min(n, x+ y) for all x, y ∈ Ln.

Smooth t-norms were characterized in [13] and
[14], obtaining that they are the minimum, the
Łukasiewicz or an ordinal sum of t-norms of these
two classes.

Theorem 1 ([14]) A t-norm T on Ln is smooth
if and only if there exists a natural number r with
0 ≤ r ≤ n− 1 and a subset I of Ln, I = {0 = a0 <
a1 < · · · < ar < ar+1 = n} such that T is given by
T (x, y) =

max(ai, x+ y − ai+1), if (x, y) ∈ [ai, ai+1]2

and 0 ≤ i ≤ r,
min(x, y), otherwise.

There is a dual result for t-conorms that states
that they are the maximum, the Łukasiewicz or or-
dinal sums of them [14].

Respect to uninorms on Ln, only the classes
of uninorms in Umin and uninorms in Umax have
been studied and characterized through some par-
tial smoothness conditions in [12]. Specifically,
these kinds of uninorms are as follows.

Definition 3 ([12]) A binary operation U :
L2

n −→ Ln is a uninorm in Umin with neutral ele-
ment 0 < e < n if and only if there is a t-norm T
on [0, e] and a t-conorm S on [e, n] such that U is
given by

U(x, y) =


T (x, y), if (x, y) ∈ [0, e]2,
S(x, y), if (x, y) ∈ [e, n]2,
min(x, y), elsewhere.

We will denote a uninorm in Umin with neutral ele-
ment e as U ≡ 〈T, e, S〉min.

Definition 4 ([12]) A binary operation U :
L2

n −→ Ln is a uninorm in Umax with neutral ele-
ment 0 < e < n if and only if there is a t-norm T
on [0, e] and a t-conorm S on [e, n] such that U is
given by

U(x, y) =


T (x, y), if (x, y) ∈ [0, e]2,
S(x, y), if (x, y) ∈ [e, n]2,
max(x, y), elsewhere.

We will denote a uninorm in Umax with neutral el-
ement e as U ≡ 〈T, e, S〉max.

Also idempotent discrete uninorms, that is, those
such that U(x, x) = x for all x ∈ Ln were char-
acterized in [3]. For the sake of completeness of
the develompment of the present work, we will re-
call them in Section 3.1, instead of in the current
preliminaries. Let just recall here some necessary
concepts to give such a characterization.

Definition 5 ([3]) Given any decreasing function
g : Ln → Ln, we define its completed graph Fg as
the subset of (Ln)2 defined as:

Fg = ({0} × [g(0), n]) ∪ ({n} × [0, g(n)])
∪{(x, y) ∈ [0, n− 1]× [0, n] | g(x+ 1) ≤ y ≤ g(x)} .

Definition 6 ([3]) A subset F of (Ln)2 is said to
be Id-symmetrical if for all (x, y) ∈ (Ln)2 it holds
that

(x, y) ∈ F ⇐⇒ (y, x) ∈ F .

The above definition expresses that a subset F
of (Ln)2 is symmetrical w.r.t. the diagonal {(x, x) |
x ∈ Ln}. A similar notion of symmetry is intro-
duced for a decreasing function g : Ln → Ln.

Definition 7 [3] A decreasing function g : Ln →
Ln is said to be Id-symmetrical if its completed
graph Fg is Id-symmetrical.
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3. Discrete uninorms with smooth
underlying operators

Let us begin with some general results about dis-
crete uninorms, that will be used in next subsec-
tions. Our first result refer to the values of the uni-
norm in the points (r, n) where r is an idempotent
element of U in the interval ]0, e[.

Lemma 1 Let U ≡ 〈T, e, S〉 a uninorm on Ln. If
r is an idempotent element of U , with 0 < r < e,
then U(r, n) = r or U(r, n) = n.

Proof: Consider U(r, n) = α, it is known that r ≤
α ≤ n. Now we distinguish two cases:

• If α ≥ e, then by one side we have U(α, n) =
U(U(r, n), n) = U(r, n) and by the other side,
by increasingness of U we have U(α, n) ≥
U(e, n) = n. Therefore, U(r, n) = n.
• If α < e then, as r is idempotent of U ,

r = U(α, r) = U(U(n, r), r) = U(n,U(r, r))
= U(n, r),

and in this case U(r, n) = r.

From the previous lemma, we can deduce a par-
ticular case. This situation is depicted in Figure
1.

Lemma 2 Let U ≡ 〈T, e, S〉 a uninorm on Ln. If
r is an idempotent element of U , with 0 < r < e
and U(r, n) = r, then U(k,m) = min(k,m) for all
(k,m) ∈ {(i, j)|i ≤ r ≤ e ≤ j or j ≤ r ≤ e ≤ i}.

Proof: Let (k,m) be in {(i, j)|i ≤ r ≤ e ≤ j}.
As U(r, n) = U(r, e) = r, we have that U(r, x) =

r for all e ≤ x ≤ n, and in particular U(r,m) = r.
Now, using the associativity and commutativity of
U , we have

k = U(r, k) = U(U(r,m), k) = U(r, U(m, k)) =
= U(r, U(k,m)) = U(U(r, k),m) = U(k,m),

that concludes the proof.
Analogously to Lemmas 1 and 2, the next results

refer to the case when the idempotent element r is
in (e, n). This case can be viewed in figure 2.

Lemma 3 Let U ≡ 〈T, e, S〉 a uninorm on Ln. If
r is an idempotent element of U , with e < r < n,
then U(r, 0) = r or U(r, 0) = 0.

Lemma 4 Let U ≡ 〈T, e, S〉 a uninorm on Ln. If
r is an idempotent element of U , with e < r < n
and U(r, 0) = r, then U(k,m) = max(k,m) for all
(k,m) ∈ {(i, j)|i ≤ e ≤ r ≤ j or j ≤ e ≤ r ≤ i}.

In view of Theorem 1 and its dual for t-conorms,
to classiy all the uninorms with smooth underlying
operators, we need to consider different possibilities
depending on how is the smooth underlying t-norm
and the smooth underlying t-conorm.
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Figure 1: Discrete uninorm with neutral element e,
idempotent element 0 < r < e and U(r, n) = r.
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Figure 2: Discrete uninorm with neutral element e,
idempotent element e < r < n and U(r, 0) = r.

3.1. The idempotent case

In the case that T = TM and S = SM, we have that
U is an idempotent uninorm. This case was studied
in [3], obtaining the following results.

Theorem 2 ([3]) A binary operation U on Ln

with neutral element 0 < e < n is an idempotent
discrete uninorm if and only if there exists a de-
creasing function g : [0, e] → [e, n] with g(e) = e
such that

U(x, y) =
{

min(x, y), if y ≤ g(x) and x ≤ g(0),
max(x, y), elsewhere,

where g is the unique symmetrical extension of g,
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given by g(x) =
g(x), if x ≤ e,
max{z ∈ [0, e]|g(z) ≥ x}, if e ≤ x ≤ g(0),
0, if x > g(0).

Theorem 3 (i) The number of discrete idempo-
tent uninorms on Ln, n ≥ 2, with neutral ele-
ment e ∈ Ln, is given by

Ie,n =
(
n

e

)
.

(ii) The total number of discrete idempotent uni-
norms on Ln, n ≥ 2, is given by

In =
n∑

e=0
Ie,n = 2n.

3.2. The Łukasiewicz case

Now we give two more general results referred to the
case that the underlying t-norm or the underlying t-
conorm are Łukasiewicz operators. In the case that
T = TL and the uninorm U is conjunctive, then U
must be in the class of Umin.

Proposition 2 Let U ≡ 〈T, e, S〉 be a conjunctive
uninorm on Ln. If T = TL then U ∈ Umin.

Analogously, if S = SL and U is disjunctive, uni-
norm U must be in Umax.

Proposition 3 Let U ≡ 〈T, e, S〉 be a disjunctive
uninorm on Ln. If S = SL then U ∈ Umax.

From previous propositions, there will be only
two uninorms with underlying operators T = TL
and S = SL. The structure of both uninorms is
depicted in Figure 3.

Corollary 1 There are only two uninorms on Ln,
n ≥ 2 with neutral element e, 0 < e < n, such that
their underlying operators are T = TL and S = SL:

• If U is conjunctive, U ≡ 〈TL, e, SL〉min.
• If U is disjunctive, U ≡ 〈TL, e, SL〉max.

From this result we can calculate the number
of uninorms with Łukasiewicz underlying operators
varying the neutral element in Ln (including the
cases e = 0, the Łukasiewicz t-conorm and e = 1,
the Łukasiewicz t-norm).

Corollary 2 The total number of uninorms on Ln,
n ≥ 1, such that their underlying operators are T =
TL and S = SL is 2n.

0 e n
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n

TL

SLmin

min

0 e n

e

n

TL

SLmax

max

Figure 3: Discrete uninorms with underlying oper-
ators T = TL and S = SL, conjunctive (left) and
disjunctive (right).

3.3. Case T = TM and S = SL

In this subsection we will deal with uninorms such
that their underlying operators are T = TM and
S = SL.
Note that, from the previous case, if the uninorm

is disjunctive and S = SL, then it must be in Umax.
Considering that there will always exists r ∈ Ln

such that 0 ≤ r ≤ e, and U(r, n) = n, the uni-
norm U restricted to [r, n]2 satisfies Proposition 3.
From this and Lemma 2, we can deduce the gen-
eral structure of the uninorms with T = TM and
S = SL. This structure can be observed in Figure
4.

Proposition 4 Let U ≡ 〈T, e, S〉 be a uninorm
on Ln such that T = TM and S = SL. Let
0 ≤ r ≤ e be the smallest element such that
U(r, n) = max(r, n) = n. Then U is given by

U(x, y) =



min(x, y), if (x, y) ∈ [0, e]2,
SL(x, y), if (x, y) ∈ [e, 1]2,
max(x, y), if (x, y) ∈ [r, e]× [e, n] or

(x, y) ∈ [e, n]× [r, e],
min(x, y), otherwise.

Again, with this result is easy to count the total
number of uninorms in this case.

Corollary 3 (i) The number of uninorms U ≡
〈T, e, S〉 on Ln, n ≥ 2 with neutral element
e ∈ Ln such that their underlying operators are
T = TM and S = SL is given by

MLe,n = e+ 1.

(ii) The total number of uninorms on Ln, n ≥ 1,
such that their underlying operators are T =
TM and S = SL is

MLn =
n∑

e=0
MLe,n = n(n+ 1)

2 + 1.

3.4. Case T = TL and S = SM

Now we study the case of uninorms such that their
underlying operators are T = TL and S = SM. It
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Figure 4: Structure of a discrete uninorm with un-
derlying operators T = TM and S = SL.

is very similar to the previous one, and it can be
proved using duality. The structure of such uni-
norms can be viewed in Figure 5

Proposition 5 Let U ≡ 〈T, e, S〉 such that T = TL
and S = SM. Let e ≤ r ≤ n be the biggest element
such that U(0, r) = min(0, r) = 0. Then U is given
by

U(x, y) =



TL(x, y), if (x, y) ∈ [0, e]2,
max(x, y), if (x, y) ∈ [e, 1]2,
min(x, y), if (x, y) ∈ [0, e]× [e, r] or

(x, y) ∈ [e, r]× [0, e]
max(x, y), otherwise.
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Figure 5: Structure of a discrete uninorm with un-
derlying operators T = TL and S = SM.

In the next corollary we give the total number of
uninorms in this case.

HH
HHHT

S
SM SL

TM

(
n

e

)
e+ 1

TL n− e+ 1 2

Table 1: Number of discrete uninorms U ≡ 〈T, e, S〉
with neutral element e ∈ Ln, 0 < e < n, depending
on which are their underlying operators.

HH
HHHT

S
SM SL

TM 2n n(n+ 1)
2 + 1

TL
n(n+ 1)

2 + 1 2n

Table 2: Total number of discrete uninorms U ≡
〈T, e, S〉 on Ln, with T and S idempotent or
Archimedean.

Corollary 4 (i) The number of uninorms U ≡
〈T, e, S〉 on Ln, n ≥ 2 with neutral element
e ∈ Ln such that their underlying operators are
T = TL and S = SM is given by

LMe,n = n− e+ 1.

(ii) The total number of uninorms on Ln, n ≥ 1,
sucht that their underlying operators are T =
TL and S = SM is

LMn =
n∑

e=0
LMe,n = n(n+ 1)

2 + 1.

So, if we join all the results above, we can obtain
the number of uninorms in any of the considered
cases which is represented in tables 1 (with a fixed
neutral element e) and 2 (in general).

Remark 1 Note that in such a table, there are
some cases counted twice. For instance, T = TL
is included in both the cases: T = TL and S = SL,
and T = TL and S = SM.

In view of the previous remark, we obtain the
following proposition, which gives the total number
of uninorms considered in this section.

Proposition 6 The total number of discrete uni-
norms on Ln, n ≥ 1, such that their underlying
operators are idempotent or Archimedean is given
by

2n + n(n+ 3)− 2.

3.5. General case: when T or S are ordinal
sums

After studying all cases for T and S being idempo-
tent or Archimedean operators, the remaining case
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is whenever T and/or S are ordinal sums. To start
with this case, we give a similar result to Proposi-
tion 2.

Proposition 7 Let U ≡ 〈T, e, S〉 be a uninorm
such that T is smooth and there exist two consec-
utive idempotent elements of U , r, s ∈ Ln, 0 < r <
s < e with s ≥ r+2. If U(r, n) = r, then U(k,m) =
min(k,m) for all (k,m) ∈ [r, s[×[e, n]∪ [e, n]× [r, s[.

By duality, we have a similar result to Proposition
3 for uninorms with idempotent elements greater
than the neutral element e of U .

Proposition 8 Let U ≡ 〈T, e, S〉 be a uninorm
such that S is smooth and there exist two consec-
utive idempotent elements of U , r, s ∈ Ln, e < r <
s < n with s ≥ r+2. If U(s, 0) = s, then U(k,m) =
max(k,m) for all (k,m) ∈]r, s]× [0, e]∪ [0, e]×]r, s].

Now we present construction example for uni-
norms U ≡ 〈T, e, S〉 with T and S smooth operators,
in which T is an ordinal sum and S is Łukasiewicz.

Example 1 Consider L7, we want to determine all
possible uninorms with neutral element e = 4, un-
derlying smooth operators, and idempotent elements
I = {0, 2, 4, 7}, that is, S = SL and T is an ordinal
sum with one non-trivial idempotent element. This
situation can be observed in figure 6. Empty squares
correspond to not-known values of U . Now, we will
distinguish some cases:

• If U is disjunctive, using Proposition 3, we
have that U ∈ Umax.
• If U is conjunctive. By Proposition 7, U(i, j) =

min(i, j) for all (i, j) ∈ [0, 2) × [5, 7] ∪ [5, 7] ×
[0, 2). Now, depending on the values of U(2, 7)
we have the following two subcases:
– If U(2, 7) = 2, if we consider uninorm U

on the set [2, 7]2, it’s a conjunctive uni-
norm U |[2,7], and thus, by Theorem 2, this
uninorm has to be in Umin. Then, adding
all this information, U ∈ Umin.

– If U(2, 7) = 7, we can take the operator
U |[2,7], that it is disjunctive, with both un-
derlying Łukasiewicz operators and there-
fore U |[2,7] ∈ Umax.

Then, there are only three uninorms with neu-
tral element e = 4, underlying smooth operators,
and idempotent elements I = {0, 2, 4, 7}. This three
uninorms can be viewed in Figure 7.

In view of this example, if we know the idempo-
tent elements of the uninorm, by using Propositions
7 and 8, we could construct all the uninorms with
underlying operators T and S smooth.

Note that in all the studied cases it appears that
an Id-symmetrical decreasing function g on Ln with
fixed point e exists, such that the uninorm in the re-
gion A(e) is given by the minimum under the graph
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Figure 6: Structure of a discrete uninorm in L7 with
neutral element 4, smooth underlying operators and
idempotent elements {0, 2, 4, 7}.

of g and by the maximum over this graph. The
only restriction of g is that it must be constant in
any interval where the underlying t-norm T (or the
underlying t-conorm S) is given by a Łukasiewicz
summand. To formalize this idea and to used it
in characterizing all discrete uninorms with smooth
underlying operations is part of our future work on
this topic.

4. Conclusions and future work

In this work the structure of uninorms U ≡ 〈T, e, S〉
defined on a finite chain Ln, when the underlying
operators T and S are smooth has been studied, ob-
taining a characterization of the cases when these
operations are idempotent or Archimedean. Also,
the number of operations with a fixed neutral ele-
ment e ∈ Ln has been found as well as the total
number of uninorms on Ln such that its underly-
ing operators are smooth. For the case that T or S
are ordinal sums, a construction example has been
given, offering all possible uninorms with this con-
figuration of underlying smooth operators.

In a future work, our goal will be to establish
a general characterization of all possible uninorms
with smooth underlying operations, and to compute
the total number of these uninorms.
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Figure 7: The only three uninorms in L7 with neu-
tral element 4, smooth underlying operators and
idempotent elements {0, 2, 4, 7}. From top to bot-
tom, the uninorm in Umax, in Umin and a uninorm
that is not in Umax nor Umin.
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