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Abstract

Weak Heyting algebras are a natural generalization
of Heyting algebras (see [2], [5]). In this work we
study certain subvarieties of the variety of weak
Heyting algebras in order to extend some known
results about compatible functions in Heyting alge-
bras.
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1. Introduction

The algebraic similarity type of the algebras we con-
sider in this paper is the similarity type {∧,∨, 0, 1}
of bounded distributive lattices augmented with a
binary operation symbol →, i.e., it is the standard
similarity type of Heyting algebras.

A weak Heyting algebra, or WH-algebra ([2], [5]),
is an ordered algebraic structure 〈A,∧,∨,→, 0, 1〉,
where the reduct algebra 〈A,∧,∨, 0, 1〉 is a bounded
distributive lattice and → : A × A → A is a map
such that for all a, b, c ∈ A satisfies the following
conditions:

1. (a → b) ∧ (a → c) = a → (b ∧ c),

2. (a → c) ∧ (b → c) = (a ∨ b) → c,

3. (a → b) ∧ (b → c) ≤ a → c,

4. a → a = 1.

We write WH to indicate the variety of WH-
algebras.

Other examples of WH-algebras that appear in
the literature are the Basic algebras introduced by
M. Ardeshir and W. Ruitenburg in [1] and the sub-
residuated lattices of G. Epstein and A. Horn in [7];
these last structures were introduced as a general-
ization of Heyting algebras.

A Basic algebra is a WH-algebra that in addition
satisfies the inequality

(I) a ≤ 1 → a.

A subresiduated lattice a is a WH-algebra that
in addition satisfies the inequalities

aIn Theorem 1 of [7] was proved that a subresiduated
lattice is an algebra 〈A,∧,∨,→, 0, 1〉, where 〈A,∧,∨, 0, 1〉 is a
bounded distributive lattice and the following four conditions
hold for every a, b, c ∈ A: (a ∧ b) → b = 1, c → (a ∧ b) =
(c → a)∧ (c → b), (R) and (T). From this theorem and some

(T) a → b ≤ c → (a → b),

(R) a ∧ (a → b) ≤ b.

Besides Basic algebras and subresiduated lattices,
it can be considered other varieties of WH-algebras
that are obtained by considering arbitrary combi-
nations of the three inequalities (R), (T) and (I)
above. These varieties are the varieties of WH-
algebras that correspond to certain subintuitionis-
tic logics. In every WH-algebra the inequality (I)
implies (T). There are at most five subvarieties ob-
tainable in that way, and in fact there are exactly
five. They are the variety of subresiduated lattices,
denoted SRL, the variety of Basic algebras, denoted
B, the variety of the WH-algebras that satisfy (R),
whose elements will be called RWH-algebras, the
variety of the WH-algebras that satisfy (T), whose
elements will be called TWH-algebras, and finally
the variety of Heyting algebras (which are the WH-
algebras that satisfy the three inequalities (R), (T)
and (I)). The variety of RWH-algebras will be de-
noted by RWH and the variety of TWH-algebras by
TWH. If in addition we denote by H to the variety
of Heyting algebras, the relation between all these
varieties is depicted in the following figure:
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The variety WH is very well behaved from the
point of view of the properties which for the varieties
that are the equivalent algebraic semantics ([3]) of
some algebraizable logic correspond to logical prop-
erties. In particular, the five varieties abovemen-
tionated inherit some of the properties of their sub-
variety of Heyting algebras. Recall that a variety
is locally finite if its finitely generated elements are

properties given in [7] about subresiduated lattices, we have
that an algebra 〈A,∧,∨,→, 0, 1〉 is a subresiduated lattice iff
it is a WH-algebra satisfying the inequalities (R) and (T).
This fact justifies our definition.
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finite. Since H is not locally finite, the other five
varieties (WH, RWH, TWH, SRL and B) are not
locally finite either. The variety WH is an arith-
metical variety and has the congruence extension
property, therefore all of its subvarieties, and in
particular the five considered, have these proper-
ties too. Moreover, the varieties TWH and SRL
have equationally definable principal congruences,
but WH and RWH do not (see [5]).

In this paper are given two characterizations for
a function to be compatible in an algebra of RWH
and in a subresiduated lattice, one for unary func-
tions and from this one for functions of arbitrary
arity is derived. These characterizations are used
to show that these two varieties are locally affine
complete, that is, on a finite subset of an algebra in
these varieties any compatible function is a polyno-
mial. Then it is proved that if an unary function
preserves finite infimum and it is expansive, then it
is compatible. Finally are given generalizations of
the notions of frontal operator, successor function
and gamma function in weak Heyting algebras.

2. Basic results

The following properties follows from [5].

Proposition 1. (Prop. 3.2) Let A be a WH-
algebra. Then for every a, b, c ∈ A we have the
following conditions:

1. If a ≤ b, then c → a ≤ c → b and b → c ≤ a →
c.

2. If a ≤ b, then a → b = 1.
3. (a → b) ∧ (a → c) ≤ a → (c ∨ b).

Proposition 2. (Prop. 4.22) Let A ∈ WH.
The following conditions are equivalent:

(a) A is a RWH-algebra.

(b) For every a, b, c ∈ A, if a ≤ b → c, then a∧ b ≤
c.

Given a WH-algebra A, a filter F of A is said to
be an open filter if for every a ∈ F , 1 → a ∈ F .
We will abbreviate 1 → a by �(a), and then the
iterated operator �

n is defined in the usual way.

Remark 1. Let A be a WH-algebra and a, b ∈ A.

(a) Straightforward computations show that �(1) =
1 and �(a ∧ b) = �(a) ∧ �(b). Thus, � is
monotonic.

(b) If in addition A is a RWH algebra, then
�(a) ≤ a It follows from that 1 → a ≤ 1 → a
and Proposition 2. Then �

n(a) ≤ �
m(a) when

n ≥ m.

Let N be the set of natural numbers. A direct
computation proves that for every a ∈ A, the open
filter generated by {a} is the filter

{x ∈ A : a∧�(a)∧ ...∧�
n(a) ≤ x, for some n ∈ N}.

The previous filter will be denoted by F o(a).
As usual, for a, b ∈ A we define

a ↔ b = (a → b) ∧ (b → a).

Theorem 1. (Th. 6.12) For every RWH-algebra
A there is an isomorphism between the lattice of
open filters of A and the lattice Con(A) of congru-
ences of A. Moreover, the isomorphism is given by
the function H defined on the set of open filters of
A by declaring

H(F ) = {(a, b) ∈ A × A : a ↔ b ∈ F},

and the inverse of H is such that for every congru-
ence θ of A, H−1(θ) = {a ∈ A : (a, 1) ∈ θ}.

The previous theorem is a generalization of the
Theorem 2 given in [7].

3. Compatible functions

Definition 1. Let A be an algebra and let f :
Ak → A be a function (not necessarily an homo-
morphism).

1. We say that f is compatible with a congruence
θ of A if (ai, bi) ∈ θ for i = 1, ..., k implies
(f(a1, ..., ak), f(b1, ..., bk)) ∈ θ.

2. We say that f is a compatible function of A pro-
vided it is compatible with all the congruences
of A.

Note that if A is an algebra and f : An → A is
a function, then f is compatible iff the algebras A
and 〈A, f〉 have the same congruences.

For θ ∈ Con(A) and a ∈ A, we write a/θ for
the equivalence class of a. For a, b ∈ A, the subset
θ(a, b) of A×A denotes the smallest congruence that
contains the element (a, b).

Let f : A → A be a function. Recall the following
convenient remark: f is compatible iff (f(a), f(b)) ∈
θ(a, b) for every a, b ∈ A.

The simplest examples of compatible functions on
an algebra are the polynomial functions; note that
in particular, all constant functions are compatible.

The following lemma is useful in order to give a
description for compatible functions:

Lemma 2. Let A be a RWH-algebra and a, b ∈ A.
Then

(a) F o(a) = {x ∈ A : �
n(a) ≤ x for some n ∈ N},

where we define �
0(a) = a for every a ∈ A.

(b) Let θ ∈ Con(A), Then we have that (a, b) ∈ θ
iff a ↔ b ∈ 1/θ.

(c) 1/θ(a, b) = F o(a ↔ b) = {x ∈ A : �
n(a ↔ b) ≤

x, for some n ∈ N}.

Proof. (a) It follows from Remark 1.
(b) By Theorem 1 we have that H(H−1(θ)) = θ,

i.e., (a, b) ∈ θ iff (a ↔ b, 1) ∈ θ.
(c) It is consequence from (a), (b) and Theorem

1.
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As immediate consequence of previous lemma we
have the following

Proposition 3. Let A be a RWH-algebra and f :
A → A a function.

The following conditions are equivalent:

1. f is compatible.

2. For every a, b ∈ A there exists n ∈ N such that
�

n(a ↔ b) ≤ f(a) ↔ f(b).

Let A be a subresiduated lattice and a, b ∈ A,
then

a ↔ b ≤ �(a → b) ∧ �(b → a) = �(a ↔ b).

The previous remark shows that for every n ∈ N it
holds that a ↔ b ≤ �

n(a ↔ b). Then by item (a)
of Lemma 2 we have that

a ↔ b = �
n(a ↔ b).

Thus we have the following

Corollary 3. Let A be a SRL-algebra and let f :
A → A be a function.

The following conditions are equivalent:

1. f is compatible.

2. For every a, b ∈ A, a ↔ b ≤ f(a) ↔ f(b).

Let A be an algebra and let f : Ak → A be a
function. For every bi ∈ A (i = 1, ..., k) we define
b = (b1, ..., bk) and b(i) = (b1, ..., bi−1, bi+1..., bk).
Then we define the functions f

b(i) : A → A by

f
b(i)(a) = f(b1, ..., bi−1, a, bi+1, ..., bk).
The following remark is a consequence of the de-

finition of k-ary compatible function on an algebra.

Remark 2. Let A be an algebra and let f : Ak → A
be a function. The function f is compatible iff for
every b ∈ Ak the functions f

b(i) are compatible.

Then we obtain the following

Corollary 4. Let A ∈ RWH and let f : Ak → A be
a function.

The following conditions are equivalent:

1. f is compatible.
2. For every a, b ∈ Ak there exists n ∈ N such that

�
n(a1 ↔ b1)∧...∧�

n(ak ↔ bk) ≤ f(a) ↔ f(b).
(1)

Proof. Suppose that f is a compatible function, and
let a, b ∈ Ak. By Proposition 3 there are n1, ..., nk ∈
N such that

�
n1(a1 ↔ b1) ≤ f(â) ↔ f(b1, a2, ..., ak)

�
n2(a2 ↔ b2) ≤ f(b1, a2, ..., ak)) ↔ f(b1, b2, a3, ..., ak)

...

�
nk(ak ↔ bk) ≤ f(b1, b2, ..., bk−1, ak)) ↔ f(b̂)

Let n = max {ni : i = 1, ..., k}. Then we obtain
that

�
n(ai ↔ bi) ≤ f(a) ↔ f(b),

for every i = 1, ..., k. Hence,

�
n(a1 ↔ b1) ∧ ... ∧ �

n(ak ↔ bk) ≤ f(a) ↔ f(b).

Therefore, we deduce the condition (1).

Conversely, suppose that it holds the condition
(1). Let θ ∈ Con(A) and aiθbi for i = 1, ..., k. By
Lemma 2 we obtain (ai ↔ bi)θ1, so

�
n(a1 ↔ b1)∧�

n(a2 ↔ b2)∧...∧�
n(ak ↔ bk) ∈ 1/θ.

By condition (1) we have that f(a) ↔ f(b) ∈
1/θ. Taking into account Lemma 2 we deduce that
(f(a), f(b)) ∈ θ, i.e., f is compatible.

Then we have the following

Corollary 5. Let A ∈ SRL and let f : Ak → A be
a function.

The following conditions are equivalent:

1. f is compatible.
2. For every a, b ∈ Ak, (a1 ↔ b1) ∧ (a2 ↔ b2) ∧

... ∧ (ak ↔ bk) ≤ f(a) ↔ f(b).

The characterization for compatible functions on
Heyting algebras given in Lemma 2.1 of [4] is exactly
the same given in Corollary 5.

4. Local affine completeness

A function obtained by composition of basic oper-
ations of the algebra and parameters (polynomial
function) is compatible in every algebra. It natu-
rally rise the question of whether there are compat-
ible functions different from polynomials. In the va-
riety of boolean algebras the answer is no (see [11]),
thus we say that it is an affine complete variety.
On the other hand, the variety of Heyting algebras
is not an affine complete variety (see Example 2.1 of
[4], and [8]). However, it is locally affine complete in
the sense that any restriction of a compatible func-
tion to a finite subset is a polynomial (see [10], [11],
[13]).

Remark 3. Let A ∈ RWH, let f : Ak → A be a
compatible function and let B be a finite subset of
Ak. Let n be the maximum of the natural number
associated in Corollary 4 to all pairs (b, x) where x
and b range over all points of B. The monotony of
� implies that

�
n(b1 ↔ x1) ∧ ... ∧ �

n(bk ↔ xk) ≤ f(b) ↔ f(x).
(2)

In the next we show the locally affine complete-
ness of the variety RWH.
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Theorem 6. Let A ∈ RWH, let f : Ak → A be a
compatible function, let B be a finite subset of Ak

and let x ∈ B. Let

Tx = {�n(b1 ↔ x1)∧....∧�
n(bk ↔ xk)∧f(b) : b ∈ B},

where n is the natural number given in Remark 3
Then, f(x) =

∨
Tx.

Proof. Let x ∈ B. For every b ∈ B, by (2) of Re-
mark 3 we obtain that

�
n(b1 ↔ x1) ∧ ... ∧ �

n(bk ↔ xk) ∧ f(b) ≤ f(x).

It proves that f(x) is an upper bound of Tx.
On the other hand, since �

n(xi ↔ xi) = 1 for
every i = 1, ..., k, we have that

�
n(x1 ↔ x1) ∧ ... ∧ �

n(xk ↔ xk) ∧ f(x) = f(x).

Therefore, f(x) =
∨

Tx.

Corollary 7. The varieties RWH and SRL are lo-
cally affine complete.

It follows from the previous corollary that every
finite algebra in RWH or in SRL is affine complete.

5. Some examples of compatible functions

In the following we will write A to indicate a RWH-
algebra.

We say that a function f : A → A is a C-function
if it satisfies the following two equations:

(C1) f(a ∧ b) = f(a) ∧ f(b),

(C2) a ≤ f(a).

Proposition 4. Let f : A → A be a C-function.
Then f is compatible.

Proof. Let a, b ∈ A. Using the equation a ∧ (a →
b) ≤ b and (C1), we have that

f(a) ∧ f(a → b) ≤ f(b).

Thus,

f(a) → (f(a) ∧ f(a → b)) ≤ f(a) → f(b),

i.e.,

f(a) → f(a → b) ≤ f(a) → f(b). (3)

On the other hand, it follows from (C2) the fact
that a → b ≤ f(a → b), so

f(a) → (a → b) ≤ f(a) → f(a → b).

Hence, by (3) we obtain that

f(a) → (a → b) ≤ f(a) → f(b). (4)

As f(a) ≤ 1 we have that

f(a) → (a → b) ≥ 1 → (a → b) = �(a → b).

Then,

�(a → b) ≤ f(a) → (a → b),

so by (4) we have that �(a → b) ≤ f(a) → f(b).
In consequence we have that

�(a ↔ b) ≤ f(a) ↔ f(b).

Therefore, by Proposition 3 we conclude that f
is a compatible function.

Definition 2. Let n ∈ N and let τn : A → A be a
C-function. We say that τn is a n-frontal operator
if it satisfies the additional equation

(Fn) τn(a) ≤ b ∨ (�n(b) → a).

If n = 0 we have that τ0 is a frontal operator in
the sense of [6].

Definition 3. Let n ∈ N. We define the function
sn : A → A through equations (C2), (Fn) and the
additional equation

(sn) �
n(sn(a)) → a ≤ a.

The function s0 is the successor function in the
sense of [6] (see also [4], [9], [12] for the case of
Heyting algebras).

Proposition 5. Let n ∈ N and suppose that there
exists sn on A. Then sn is a n-frontal operator and
sn(a) = min {b ∈ A : �

n(b) → a ≤ b}.

Proof. Similar to the proof of Lemma 3.3 of [6].

Definition 4. Let n ∈ N. We define the function
tn : A → A through equation (Fn) and the following
two additional equations:

(t1)n �
n(tn(0)) → 0 = 0,

(t2)n tn(a) = a ∨ tn(0).

The function t0 is the gamma function in the
sense of [6]. A direct computation based in the
previous definition shows that if there exists tn,
then it is a n-frontal operator and tn(0) = min
{b ∈ A : �

n(b) → 0 ≤ b}.

We end this work with some concrete examples
of compatible functions on finite algebras, for which
the considered functions will be polynomials.

Example 1. Consider the chain of three elements
H3 = {0, a, 1} with the following binary operation:

→ 0 a 1
0 1 1 1
a 0 1 1
1 0 0 1

Then we have that 〈H3,→〉 ∈ SRL, it is not a Heyt-
ing algebra, and 0 ↔ a = 0 ↔ 1 = a ↔ 1 = 0.
Then, by Corollary 5 we have that 〈H3,→〉 is a func-
tionally complete algebra, i.e., every n-ary function
is compatible.
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Example 2. Let H be the poset given by

•1

•a

{{{{{{{{
•e

CCCCCCCC

•0

CCCCCCCC

{{{{{{{{

Consider the following binary operation:

→ 0 a e 1
0 1 1 1 1
a e 1 e 1
b 0 0 1 1
1 0 0 e 1

Then 〈H,→〉 ∈ SRL and it is not a Heyting alge-
bra.

Let n ≥ 1. Hence for every x 6= a we have that
�

n(x) = x and �
n(a) = 0. Suppose that there is

sn, so sn(a) = min {x ∈ H : �
n(x) → a ≤ x} = e.

However a ≤ sn(a) = e, which is a contradic-
tion. Hence, there is not function sn. Moreover,
the converse of Proposition 5 is not true in gen-
eral. Now suppose that there is tn, so tn(a) =
a ∨ tn(0) = a ∨ e = 1. It follows from (Fn) that
1 = e ∨ (b → a) = e, which is an absurd. Thus,
there is not tn. In a similar way we can prove that
it is not possible define the functions s0 and t0.

Example 3. Let H be the following poset:

•1

•c

•a

{{{{{{{{
•b

BBBBBBBB

•0

BBBBBBBB

}}}}}}}}

We define the following binary operation:

→ 0 a b c 1
0 1 1 1 1 1
a b 1 b 1 1
b a a 1 1 1
c 0 a b 1 1
1 0 0 0 0 1

Then 〈H,→〉 ∈ RWH and it is not a subresidu-
ated lattice because for instance we have that b =
a → 0 � 1 → (a → 0) = 1 → b = 0.

We obtain the following table:

x s0(x) t0(x)
0 c c
a c c
b c c
c 1 1
1 1 1

Moreover, for every n ≥ 1 it holds that sn = tn =
1.

6. Conclusions

In this paper we have generalized some well known
results about compatible functions on Heyting al-
gebras. It was done on the basis of the good de-
scription of the lattice of congruences of any RWH-
algebra.
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