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Abstract

In order to apply the concept of boundedness, so
crucial in the theory of metric spaces, to the case of
a general topological space Hu Sze-Tsen introduced
the notions of a bornological space and of bounded-
ness for a mapping of bornological spaces. In this
work we discuss two alternative approaches how the
concepts of bornology and boundedness can be ex-
tended to the case of fuzzy sets and many-valued
structures.
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1. Introduction and motivation

In order to apply the conception of boundness, so
crucial in the theory of metric spaces, to the case of
a general topological space Hu Sze-Tsen introduced
the notions of a bornology and of a bornological
space [14]:

Definition 1.1 [14] Given a set X a bornology on
it is a family B ⊆ 2X of subsets of X such that

(1B) ∀x ∈ X =⇒ {x} ∈ B;
(2B) if U ⊆ V ⊆ X and V ∈ B, then U ∈ B;
(3B) if U, V ⊂ X U, V ∈ B then U ∪ V ∈ B.

The pair (X,B) is called a bornological space and
the sets belonging to B are viewed as bounded in
this space.

Thus actually a bornology on a set X is an ideal in
the powerset 2X containing all finite sets. Impor-
tant examples of bornologies spaces (X,B) are:
a topological space and its relatively compact sub-
sets;
a metric space and its bounded subsets (that is sets
with finite diameter);
a uniform space and its totally bounded subsets.

Definition 1.2 [14] Given bornological
spaces (X,BX) and (Y,BY ) a mapping
f : (X,BX) → (Y,BY ) is called bounded if
the image f(A) of every set A ∈ BX belongs to BY .

Further the theory of bornological spaces was de-
veloped by different authors, see e.g. [15] and the
fundamental monograph by H. Hogle-Nled [12].

Aiming to develop an appropriate concept of
bornology in the context of fuzzy sets and fuzzy
structures we have to make a choice between differ-
ent possible ways how it can be done. As a pat-
tern of possible ways how this choice can be done
we see the three well developed approaches to ex-
tension of the concept of topology to the context
of fuzzy sets and fuzzy structures. Conceptionally
generalizing these approaches to the case of a math-
ematical structure of a sufficiently general nature,
we describe them as follows:

(FC) To consider a crisp analogue of a classical math-
ematical structure but to use families of fuzzy
sets instead of families of ordinary sets. We
call this approach a fuzzy-crisp approach. As a
typical example of this approach one can think
of Chang-Goguen fuzzy topological spaces [4],
[6], [7].

(CF) To consider fuzzy analogous of classical math-
ematical structures in case when the structure
itself is fuzzy, but acts on families of crisp sets.
Let us call it a crisp-fuzzy approach. As a typ-
ical example of this approach we have in mind
Höhle-Ying’s [13], [35] [36] definition of a fuzzy
topology. Ying uses the name of a fuzzifying
topology in this case.

(FF) Finally one can consider fuzzy analogues of
classical mathematical structures when both
the structure itself is fuzzy, and it acts on fami-
lies of fuzzy sets. An example of this approach,
which we refer to as a fuzzy-fuzzy approach is
the concept of an L-fuzzy topology first defined
in [26], [18] and later generalized in [27], [28],
[19] [20] as the concept of an (LM)-fuzzy topol-
ogy.

Although the last, that is fuzzy-fuzzy, approach is
the most general one, our experience indicates that
each one of these approaches has its own subject,
field of research and applications as well as its own
value, and therefore it makes sense, at least at the
first stage of research, to develop the theory in the
realms of each one of these approach separately.

In this work we briefly consider the theories of
bornologies in the context of "Fuzzy Mathemat-
ics" thus far developed within the the first two ap-
proaches. The first one, fuzzy-crisp approach, is dis-
cussed in Section 3; its fundamentals were published
in [1] and at present further research is being done in
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this direction. The second, fuzzy-crisp approach, is
considered in Section 4. Its idea and basic concepts
were announced at several conferences, see e.g. [31],
[32], [33], [34], and it fundamentals are developed in
in our paper [29]. In the last, Section 5, we consider
the bornological structure of a fuzzy metric space.
The restricted volume of this paper did not allow

us to include the detailed proofs here. The extended
exposition of the problems studied in this work with
detailed proofs can be found in [1, 29, 30].

2. Prerequisites: The context of our work

2.1. Lattices

In our work L denotes a fixed complete lattice (L,≤
,∧,∨), that is a lattice in which the suprema (joins)
and infima (meets) for all subfamilies K ⊆ L exist.
In particular, the top 1L and the bottom 0L ele-

ments in L exist and 0L 6= 1L. We use notation ∨
and ∧ to denote respectively, infima and suprema
of finite families of elements of the lattice leaving
notation

∧
and

∨
for the case when these families

are arbitrary.
In some cases we will additionally request the

lattice L to be completely distributive. Actually
we will use not the original definition of complete
distributivity, see e.g [5, Definition I-2-8], but its
characterization found by G.N. Raney [23]. Namely,
given a complete lattice L and β, α ∈ L following
[23], see also [5, Excercise IV-3-31], we introduce the
so called "wedge below" relation C on L as follows:1

β C α if and only if when K ⊆ L and α ≤
∨
K

then there there exists γ ∈ K such that β ≤ γ.
As shown by G.N. Raney [23] a lattice L is com-
pletely distributive if and only if relation C has the
approximation property, that is

α =
∨
{β ∈ L | β C α}

for each α ∈ L. Moreover, relation C has the follow-
ing important properties (see [5, 23]):

(C 1) β C α implies β ≤ α;
(C 2) γ ≤ β C α ≤ δ implies γ C δ;
(C 3) if β C α then there exists γ ∈ L such that

β C γ C α

2.2. cl-monoids

To develop the theory in a sufficiently general, as
we see it, context we present the basic definitions
in the case when the lattice L is equipped with a
further binary operation ∗ : L× L→ L.

Definition 2.1 [25] Operation ∗ : L × L → L will
be called a conjunction, or a t-norm if

1The authors are grateful to prof. M.A. De Prada Vicente
for drawing their attention to the concept of a wedge below
relation which found itself to be a very useful tool for this
research.

(1t) ∗ is commutative: α∗β = β∗α for all α, β ∈ L;
(2t) ∗ is associative: (α ∗ β) ∗ γ = α ∗ (β ∗ γ) for all

α, β, γ ∈ L;
(3t) α ∗ 1L = α, α ∗ 0L = 0L for all α ∈ L.

Following Birkhoff [3], a complete lattice endowed
with a conjunction, that is the tuple (L,≤,∧,∨, ∗)
will be called a cl-monoid. Operation ∗ in a cl-
monoid is called lower semi-continuous if

(4t) ∗ distributes over arbitrary joins:
α ∗

(∨
i∈I βi

)
=
∨
i∈I(α ∗ βi)

for every α ∈ L and for all {βi | i ∈ I} ⊆ L.

Following e.g. [16] we say that the t-norm ∗ has no
zero divisors, if

(5t) α ∗ β 6= 0L unless α 6= 0L and β 6= 0L.

Remark 2.2 In case L = [0, 1] is the closed unit in-
terval, then the definition of a t-norm (in a slightly
different form) for the first time appeared in [21].
Later it was thoroughly studied and applied in [25]
and in a recently published monograph [16]. We ex-
tend the concept of a t-norm, which is very popular
among the people working in the fields of "Fuzzy
Mathematics", and use this term also in case when
the unit interval [0, 1] is replaced by an arbitrary
complete lattice L.

Example 2.3 Among the most important exam-
ples of t-norms ∗ are (see e.g. [16]):

• ∗ = ∧. In this case cl-monoid (L,≤,∧,∨, ∗)
just reduces to the underlying lattice L.
• Let L = [0, 1] and let α ∗ β := α · β be the
product. Then we come to the so called product
t-norm.
• Let L = [0, 1] and α ∗ β = min(α+ β, 1). Then
∗ is the well-known Łukasiewicz t-norm.

In the first two examples the t-norms do not have
zero divisors, while the Łukasiewicz t-norm obvi-
ously has zero divisors.

From the definitions it is easy to verify the fol-
lowing well known

Proposition 2.4 If L = (L,≤,∧,∨, ∗) is a cl-
monoid, then

α ∗ β ≤ α ∧ β for any α, β ∈ L.

3. Bornological structures on families of
L-fuzzy sets

3.1. Basic definitions

Definition 3.1 An L-fuzzy bornology2 on a set X
is a family B ⊆ LX such that

2In [1] the term L-bornology was used at this place. Now
we change to L-fuzzy bornology in order to make a clear
distinction between this kind of bornology-type structures
and L-valued bornologies considered in Section 4
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(FB1)
∨
{B | B ∈ B} = 1X ;

(FB2) B ∈ B, C ∈ LX , C ≤ B =⇒ C ∈ B;
(FB3) B1, B2 ∈ B =⇒ B1 ∨B2 ∈ B.

The pair (X,B) is called an L-fuzzy bornological
space and L-sets B ∈ B are called bounded in this
space.
An L-fuzzy bornology B ⊆ LX will be called a strict
L-fuzzy bornology if it satisfies the following stronger
version of the first axiom:

(FB1′) 1{x} ∈ B ∀ x ∈ X.

Remark 3.2 Obviously (FB1′) =⇒ (FB1). If 1L ∈
L is isolated, that is 1L 6= supM whenever 1L 6∈
M ⊂ L then (FB1′)⇐⇒ (FB1). For example
(FB1′)⇐⇒ (FB1) in case L = 2 is the two-point
lattice {0, 1}. On the other hand generally (for ex-
ample in case L = [0, 1]) (FB1) 6=⇒ (FB1′).

Remark 3.3 Note that conditions (FB2) and
(FB3) say that an L-fuzzy bornology on a set X
is just an ideal in the lattice LX while condition
(FB1) is specific for this ideal.

Definition 3.4 Given two L-fuzzy bornological
spaces (X,BX) and (Y,BY ) a mapping f : X → Y
is called bounded if f(B) ∈ BY whenever B ∈ BX

Obviously if mappings f : (X,BX) → (Y,BY ) and
g : (Y,BY )→ (Z,BZ) are bounded, then their com-
position g ◦ f : (X,BX) → (Z,BZ) is bounded,
too. Besides the identity mapping idX : (X,BX)→
(X,BX) is bounded. Hence L-fuzzy bornological
spaces and bounded mappings between them form
a category which will be denoted L-BOR and called
the category of L-fuzzy bornological spaces.

In case L = 2 is a two-point lattice the concept of
a 2-fuzzy bornological space is obviously equivalent
to the classical concept of a bornological space [12]
and the category 2-BOR is actually the category of
bornological spaces and bounded mappings.

3.2. Lattice of L-fuzzy bornologies on a set

Let a lattice L and a set X be fixed and let B(X,L)
be the family of all L-fuzzy bornologies on X. We
introduce a partial order � on B(X,L) by setting

B1 � B2 ⇐⇒ B2 ⊆ B1, B1,B2 ∈ B(X,L).

In this case we say that L-fuzzy bornology B2 is
stronger than L-fuzzy bornology B1. Obviously,
(B(X,L),�) is a partially ordered set. One can
easily see that its bottom ( the weakest) element is
given by B⊥ = LX .

To describe the top, i.e. the strongest element of
(B(X,L),�) we introduce the following notations.
Given a set A ⊆ X and a mapping λ : A → L0,
where L0 = L \ {0} let

Pt(A, λ) =
∨{

xλ(x) | x ∈ A
}
.

In other words λ is a mapping, assigning to each
point x ∈ A the value λ(x) ∈ L0, thus creating a
fuzzy point xλ(x). Further, let

Pt(A) = {Pt(A, λ) | λ ∈ (L0 \ {1})A}

and
Pt1(A) = {Pt(A, λ) | λ ∈ LA0 }.

If 1L is isolated in L, then

B> := {Pt1(A) | A ⊆ X, |A| < ℵ0}

is the strongest L-fuzzy bornology, as well as the
strongest strict L-fuzzy bornology, on X. In case
1L is not isolated in L, then B> is still the strongest
strict L-fuzzy bornology on X, while the strongest
L-fuzzy bornology is given by

B> := {Pt(A) | A ⊆ X, |A| < ℵ0} .

Theorem 3.5 ( cf Theorem 4.1 in [1])
Partially ordered set (B(X,L),�) is a complete in-
finitely distributive lattice. Its top and bottom ele-
ments are respectively B> and B⊥. Given a family
B0 = {Bi | i ∈ I} its supremum is

⋂
i∈I Bi and its

infimum can be obtained as the family < D > of all
finite joins of L-sets from the family

D =
⋃
{Bi | Bi ∈ Bi, i ∈ I} ⊆ LX .

3.3. Category L-BOR

Given an L-fuzzy bornological space (X,BX), a set
Y and a mapping f : (X,BX) → Y we define the
final L-fuzzy bornological structure on Y as follows.
Let Y ′ = f(X) ⊆ Y . Further, let

C = {f(BX) | BX ∈ BX}.

Given C ∈ C we define

C̃ =
{
C(y) if y ∈ Y ′

0L if y 6∈ Y ′

Further, let

BY = {C̃ | C ∈ C} ∪ {C̃ ∨D | C ∈ C, D ∈ Pt(A),

A ⊆ Y \ Y ′, |A| < ℵ0}.

In other words, BY is defined as the family of all
L-sets E : L → Y which are either of the form C̃
for some C ∈ C or are obtained as a join C̃ ∨D for
some C ∈ C and some L-set D : (Y \ Y ′)→ L with
a finite support.

One can show that BY is an L-fuzzy bornology on
Y , and moreover it is the strongest one for which the
mapping f : (X,BX) → (Y,BY ) is bounded. Thus
BY is the final L-fuzzy bornology for f : (X,BX)→
Y . To obtain the final strict L-fuzzy bornology, we
obviously have to use Pt1(A) instead of Pt(A).
This result can be extended to the case of a family

of mappings:
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Theorem 3.6 (cf Theorem 5.1 in [1])
Let (Xi,Bi), i ∈ I, be a family of L-fuzzy bornolog-
ical spaces and let Y be a set. Given a sink, that is
a family of mappings,

{fi : (Xi,Bi)→ Y | i ∈ I},

there exists a unique final lift

{fi : (Xi,Bi)→ (Y,BY ) | i ∈ I}.

Corollary 3.7 Co-products exist in the category L-
BOR.

Let now f : X → (Y,BY ). The weakest L-
fuzzy bornology BX on X such that the mapping
f : (X,BX)→ (Y,BY ) is bounded can be described
as

BX = {A | A ∈ LX ,∃C ∈ C such that A ≤ C},

where C := {f−1(B) | B ∈ BY }.
This construction can be extended to the case of a
family of mappings:

Theorem 3.8 Let (Yi,Bi), i ∈ I, be a family of L-
fuzzy bornological spaces, and X be a set. Given a
source, that is a family of mappings,

{fi : X → (Yi,Bi) | i ∈ I},

there exists a unique initial lift

{fi : (Xi,Bi)→ (Y,BY ) | i ∈ I}.

Corollary 3.9 Products exist in the category L-
BOR

From Theorems 3.6 and 3.8 follows:

Theorem 3.10 The category of L-fuzzy bornolog-
ical spaces and bounded mappings is topological [2]
over the category SET of sets with respect to the
forgetful functor F : L-BOR → SET.

4. L-valued bornologies on powersets of
sets

4.1. Basic definitions

Let (L,≤,∧,∨, ∗) be a cl-monoid and X be a set.

Definition 4.1 An L-valued bornology on a set X
is a mapping B : 2X → L such that

(LB1) ∀x ∈ X B({x}) = 1;
(LB2) If U ⊆ V ⊆ X then B(V ) ≤ B(U);
(LB3) ∀ U, V ⊆ X B(U ∪ V ) ≥ B(U) ∗ B(V ).

The pair (X,B) is called an L-valued bornological
space and the value B(A) is interpreted as the degree
of boundedness of a set A in the space (X,B).
In case if we want to emphasize the specific role of
the t-norm in the cl-monoid (L,≤,∧,∨, ∗) we use
the term (L, ∗)-valued bornology in the above defi-
nition.

Note that in case ∗ = ∧, the second axiom (LB2)
is redundant since it follows from the axiom (LB3)
and hence L-valued bornology on a set X can be
defined as follows:

Definition 4.2 A mapping B : 2X → L where
(L,≤,∧,∨) is an infiinely distributive lattice is an
(L,∧)-valued bornology if and only if it satisfies con-
ditions

(LB1) ∀x ∈ X B({x}) = 1;
(LB3′) ∀ U, V ⊂ X B(U ∪ V ) = B(U) ∧ B(V ).

Moreover, from Proposition 2.4 it is clear that ax-
iom (LB3′) implies both of the axioms (LB2) and
(LB3). Thus we have

Proposition 4.3 If B : 2X → L is an (L,∧)-valued
bornology then it is an (L, ∗)-valued bornology for
any t-norm in the lattice L.

Definition 4.4 A mapping f : (X,BX) → (Y,BY )
where (X,BX), (Y,BY ) are L-valued bornological
spaces is called bounded if BX(A) ≤ BY (f(A)) for
every A ∈ 2X .

Since obviously the composition of two bounded
mappings of L-valued bornological spaces is
bounded and the identity mapping is bounded,
we conclude that L-valued bornological spaces and
bounded mappings form a category which will be
denoted BOR(L) and called the category of L-
valued bornological spaces.

4.2. Lattice of L-valued bornologies.

Given a cl-monoid (L,≤,∧,∨, ∗) and a set X let
B(X,L, ∗) stand for the family of all (L, ∗)-valued
bornologies on the set X. We introduce a di-
rected "opposite point-wise" order relation � on
B(X,L, ∗), that is

B1 � B2 ⇐⇒ B1(A) ≥ B2(A) ∀A ∈ 2X ,

and say in this case that B1 is coarser, or smaller
than B2, and B2 is finer, or larger than B1. Ob-
viously, (B(X,L, ∗),�) is a partially ordered set
whose bottom element (that is the coarsest element)
is defined by B⊥(A) = 1L for all A ∈ 2X , and whose
top element (that is the finest element) is defined by

B̃>(A) =
{

1L if | A |< ℵ0
0L otherwise.

The tuple (B(X,L, ∗),�,f,g) becomes a com-
plete lattice if the supremum g and the infimumum
f in (B(X,L, ∗),�) are appropriately defined. We
define them as follows.

Given a family

{Bi : 2X → L | i ∈ I}

of (L, ∗)-valued bornologies, we define its supremum

gi∈IBi =: B0 : 2X → L
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by setting
B0(A) =

∧
i∈I
Bi(A)

where
∧

is the infimum in the lattice L. Thus we ob-
tain an (L, ∗)-valued bornology gi∈IBi on X which
is the supremum g of the family {Bi : 2X → L | i ∈
I} in the partially ordered set (B(X,L, ∗),�) .

This already guarantees that the family
(B(X,L, ∗),�,g,f) of (L, ∗)-valued bornolo-
gies is a complete lattice and the family B(X,L) of
(L,∧)-valued bornologies is its complete sublattice.
Note however, that the point-wise supremum∨
i(Bi(A)) of the family {Bi : 2X → L | i ∈ I} need

not be an (L, ∗)-valued bornology (axiom (3LB)
can be validated) and hence it need not be the
infimum f of the family {Bi : 2X → L | i ∈ I} in
the lattice (B(X,L),�,f,g). Therefore we define
the infimum f of the family

{Bi : 2X → L | i ∈ I}

by the equality

fiBi(A) = g{Bj(A) | Bj ∈ B(X,L), Bj ≤ Bi∀i ∈ I}.

An effective description of f is given in [29].

4.3. Construction of L-valued bornologies
from families of crisp bornologies

Given an (L, ∗)-valued bornology B : 2X → L for
every α ∈ L we define Bα = {A ∈ 2X | B(A) ≥ α}.
In case α is an idempotent element of the t-norm ∗,
the family Bα is a crisp bornology on X. In particu-
lar, in case ∗ = ∧ all Bα are crisp bornologies. Gen-
erally, however, Bα may fail to be a crisp bornology
due to validation of the 3rd axiom.

Further, let L be a completely distributive lattice
and ∗ = ∧. Since in a completely distributive lattice
every element is the supremum of a family of wedge-
below elements, it follows that the family {Bα | α ∈
L} is lower-semicontinuous from below in the sense
that

Bα =
⋂
{Bβ | β C α, β ∈ L} for every α ∈ L,

(in particular, B> = 2X as the intersection of the
empty family)
and hence an L-valued bornology can be restored
from its α-level bornologies:

B(A) = sup{β ∈ L | A ∈ Bβ(A)}.

We generalize the construction of restoration of
an L-valued bornology from α-level bornologies ob-
tained by its decomposition and describe a construc-
tion of an L-valued bornology from an indexed fam-
ily of crisp bornologies as follows.
Let K be an approximative subset of L (that is

α = sup{β ∈ K | β C α} for each α ∈ L) and let a
non-increasing family of crisp bornologies on a set

X be given: {Cα | α ∈ K} such that C0L
= 2X For

a set A ⊆ X we define

B(A) = λ where λ :=
∨
{α ∈ K | A ∈ Cα}.

Proposition 4.5 If the family {Cα | α ∈ K} is
lower-semicontinuous, that is

Bα =
⋂
{Bβ | β C α, β ∈ K} for every α ∈ L,

then the mapping B : 2X → L thus defined is an
L-valued bornology and hence the pair (X,B) is an
L-valued bornological space. Moreover, Bα = Cα for
every α ∈ K.

Since α ∧ β ≥ α ∗ β axiom (LB3) is valid also for
any t-norm ∗ : L× L→ L. we have the following

Corollary 4.6 The mapping B : 2X → L con-
structed in Proposition 4.5 is an (L, ∗)-valued
bornology for any t-norm ∗ on a completely distribu-
tive lattice L.

4.4. Category of L-valued bornological
spaces

Let (L,≤,∧,∨, ∗) be a cl-monoid.

Theorem 4.7 Every source

{fi : X → (Yi, Bi) | i ∈ I}

has a unique initial lift

{fi : (X,BX)→ (Yi,Bi) | i ∈ I}

in the category BOR(L) of L-valued bornological
spaces.

The proof is given in [29]. The idea of the proof is as
follows. Consider first the case of a single mapping
f : X → (Y,BY ) and define f−1(BY ) := BX : 2X →
L by setting BX(A) = BY (f(A)) for every A ∈ 2X .
Then BX is an (L, ∗)-valued bornology, which is
the smallest (L, ∗)-valued bornology in the lattice
(B(X,L, ∗),�,f,g) of (L, ∗)-valued bornologies B
on the set X such that f : (X,B) → (Y,BY ) is
bounded. Coming now to the general case of a
source fi : X → (Yi,Bi), i ∈ I in the category
BOR(L) we define the L-valued bornology on X
by setting BX = gi∈IBi, where g is the supremum
in the lattice (B(X,L, ∗),�,f,g), that is

BX(A) =
∧
i∈I
{BXi (A) | i ∈ I}, ∀A ∈ 2X ,

and the L-valued bornology BXi = f−1
i (Bi) for each

fi is defined as above. Then

{fi : (X,BX)→ (Yi,Bi) | i ∈ I}

is the requested initial lift.
From Theorem 4.7 by duality principle we have
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Theorem 4.8 Every sink

{fi : (Xi,Bi)→ Y, i ∈ I}

has a unique final lift

{fi : (X,Bi)→ (Y,BY ), i ∈ I}

in the category BOR(L) of L-valued bornological
spaces.

An efficient description of (Y,BY ) is in [29].
From statements 4.7, 4.8 we obtain

Theorem 4.9 The category BOR(L) of L-valued
bornological spaces and bounded mappings is topo-
logical over the category SET with respect to the
forgetful functor F : BOR(L)→ SET.

5. L-valued bornologies induced by fuzzy
metrics

Since the bornology is the concept allowing to make
a context for studying boundedness of mappings,
and, in its turn, most clearly boundedness reveals
itself in case of metric spaces, the first examples for
L-valued bornologies also could be expected in sit-
uation when the underlying sets are equipped with,
in this case fuzzy, metrics. So we start with a very
brief introduction into the theory of fuzzy metrics.

5.1. Fuzzy metrics

Basing on the concept of a statistical metric [21],
[25], I. Kramosil and J. Michalek in [17] introduced
the notion of a fuzzy metric. Later A. George and
P. Veeramani [8], [9] slightly modified the original
concept of a fuzzy metric. This modification allows
to produce more natural examples of fuzzy metrics
which have nice properties and are important for
applications. In particular, it allows to generate in
a natural way a (crisp) Hausdorf topology on the
underlying set. In this work we also base ourselves
on George-Veeramani’s notion of a fuzzy metric.

Definition 5.1 [8, 9] A fuzzy metric on a set X is
a pair (M,�) such that M : X×X×R+ → [0, 1] is
a fuzzy set, where R+ = (0,+∞), and � is a con-
tinuous t-norm satisfying the following conditions:

(1GV) M(x, y, t) > 0 ∀ x, y ∈ X, ∀ t ∈ (0,∞);
(2GV) M(x, y, t) = 1 if and only if x = y;
(3GV) M(x, y, t) = M(y, x, t) ∀ x, y ∈ X,

∀ t ∈ (0,∞);
(4GV) M(x, z, t+ s) ≥M(x, y, t)�M(y, z, s)

∀x, y, z ∈ X ∀t, s ∈ (0,∞);
(5GV) M(x, y,−) : R+ → [0, 1] is continuous for all

x, y ∈ X as a function of t.

The triple (X,M,�) is called a fuzzy metric space.

Definition 5.2 (see e.g. [24, 10, 11, 22])
A fuzzy metric M : X×X×(0,∞)→ [0, 1] is called
strong or non-archimedian if the following stronger
version of the axiom (4GV) is satisfied

(4sGV) M(x, z, t) ≥M(x, y, t)�M(y, z, t) for all
x, y, z ∈ X and for all t > 0.

Remark 5.3 In case � = ∧ the term a fuzzy ul-
trametric is also used when speaking about fuzzy
metrics satisfying property (4sGV), see e.g. [10, 11].

As different from the situation with topological
structure of a fuzzy metric space studied, in partic-
ular, in [8, 9, 11, 10], we suggest to consider the cor-
responding bornological-type structure of this space
as an essentially L-valued bornology on the power-
set 2X . To do this in an appropriate way we start
with discussing the concept of boundedness in fuzzy
metric spaces. Unlike the situation in classical met-
ric spaces where different definitions of boundedness
are equivalent, in case of a fuzzy metric space fuzzy
counterparts of these definitions may lead to differ-
ent results. Below we discuss two approaches to the
concept of boundedness in fuzzy metric spaces.

5.2. Two types of boundedness in fuzzy
metric spaces

Let (X,M,�) be a fuzzy metric space, A ⊆ X and
t ∈ (0,∞)

Definition 5.4 A set A is called locally B-bounded
at a level t or locally B-t-bounded for short, if there
exist ε ∈ (0, 1) and x0 ∈ X such that

A ⊂ Bt(x0, ε) = {x ∈ X |M(x0, x, t) > 1− ε}.

A set A is called locally B-bounded if it is locally
B-t-bounded for all levels t ∈ (0,∞).

Definition 5.5 A set A is called locally D-bounded
at level t or locally D-t-bounded for short, if
diamtA > 0, or, equivalently, if there exists ε ∈
(0, 1) such that diamtA > 1− ε where the diameter
diamtA of set X at a level t is defined as

diamtA = inf{M(x, y, t) | x, y ∈ A}.

A set A is called locally D-bounded if it is D-t-
bounded at all levels t ∈ (0,∞).

Note that the property of F -boundedness as it is
defined in [8] is equivalent to our property of local
D-t-boundedness for some t ∈ (0,∞).

Proposition 5.6 If a set A is locally D-t-bounded,
then it is also locally B-t-bounded.

Proposition 5.7 If the t-norm � has no zero-
divisors, and A is locally B-t-bounded, then A is
also locally D-2t-bounded.

Corollary 5.8 Let (M,�) be a strong fuzzy metric
and let � have no zero divisors. Then a set A is
locally B-t-bounded if and only if it is locally D-t-
bounded.
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Corollary 5.9 If � has no zero divisors, then A
is locally B-bounded if and only if it is locally D-
bounded.

Remark 5.10 Obviously, if a set A is locally B-t-
bounded (resp. locally D-t-bounded) and A′ ⊂ A,
then A′ is also locally B-t-bounded (resp. D-t-
bounded). On the other hand the unionA = A1∪A2
of two locally B-t-bounded (resp. locally D-t-
bounded) A1 and A2 may fail to be locally B-t-
bounded (resp. locally D-t-bounded). A sufficient
condition for preservation of local B-t-boundedness
and local D-t-boundedness is the request that the
fuzzy metric (M,�) is strong and the absence of
zero-divisors for the t-norm �. Also one can prove
that the union of two locally B-bounded (resp. lo-
cally D-bounded) sets is locally B-bounded (resp.
locally D-bounded).

5.3. L-valued bornologies induced by fuzzy
metrics

In this subsection L = [0, 1] and ∗ = ∧.
To construct an L-valued bornology B : 2X → L

induced by a fuzzy metric M : X × X × [0,∞) →
[0, 1] we will use the construction of an L-valued
bornology on a setX from a family of usual bornolo-
gies Cα on X developed in Section 4. The natu-
ral way to obtain such a family is to extract Cα
bornologies from locally D-t-bounded or locally B-
t-bounded families of sets in X. To realize this idea
we have to establish natural relations between the
set (0,∞), as the range of the parameter t, and
the set [0, 1] as the original range of the parameter
α. Referring to Section 4.3 for this construction we
may replace the closed interval [0, 1] by any approx-
imating subset K ⊆ [0, 1]. In our case it is natural
to take (0, 1) in the role of K.
In order to find correspondence between the range

(0,+∞) and the set (0, 1) = K one can take
any strictly decreasing continuous bijection ϕ :
(0,∞) → (0, 1). As a typical example here we can
take the hyperbola

ϕ(t) = 1
1− t ∀t ∈ (0,+∞),

whose inverse ψ : (0, 1)→ (0,∞) is defined by

ψ(α) = 1− α
α

∀α ∈ (0, 1).

Further, since the construction of an L-valued
bornology presented here does not differ whether
we start from locally D-t-bounded sets or locally
B-t-bounded sets, we use just the term a locally t-
bounded set.
Given a fuzzy metric space (X,M,�) and α ∈

(0, 1) let Cα stand for the family of finite unions
of ψ(α)-bounded subsets of the space (X,M,�).
One can easily notice that for every α the family
of sets Cα is a crisp bornology on X and the fam-
ily {Cα | α ∈ (0, 1)} is non-increasing. Hence we

can apply the construction described in Subsection
4.3 to define an L-valued bornology B : 2X → [0, 1]
from the family {Cα | α ∈ (0, 1)} of crips bornolo-
gies:

B(A) =
∨
{α ∈ (0, 1) | A ∈ Cα}.

Thus given a fuzzy metric space (X,M,�) we
construct an L-valued bornology BM . Since ∧ ≥ ∗
for any t-norm ∗, BM is an (L, ∗)-bornology also for
any t-norm ∗, in particular, an (L,�)-bornology.
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[30] I. Uļjane, A. Šostak, Some remarks on L-
fuzzy bornologies and L-valued bornologies,
in preparation.

[31] I. Uļjane, A. Šostak, On many-valued
bornological structures, 15th International
Conference "Mathematical Modelling and
Analysis"’ Druskeninkai, Lithuania, May 26–
29, 2010, Astracts, p. 106.
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